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Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental
disorders. However, it is difficult to investigate the underlying causal pathways becausemany diagnostic groups
have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can
provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The
current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associ-
atedwith a specific neurodevelopmental phenotype including prominent speech and language impairments and
intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this
group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction,
parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical,
and interhemispheric white matter projections. These findings are compared to reports for other genetic groups
and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype
suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal
areas, and their connections.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Childhood speech and language problems are highly prevalent, but
the neurodevelopmental mechanisms contributing to these impair-
ments are not well understood (Grigorenko, 2009; Newbury and
Monaco, 2010; Webster and Shevell, 2004). Developmental speech
and language problems typically have a heterogeneous aetiology; this
variability means that despite their general prevalence it is difficult to
identify the pathways (biochemical, cellular, neural systems) that result
in these cognitive deficits. However, it is increasingly possible to identify
small groups of individualswho share the same rare genetic cause of de-
velopmental language disorder. Although rare, neuroimaging studies of
disorders that combine aetiological homogeneity with cognitive speci-
ficity offer a uniquewindow into the dysregulation of brain systems rel-
evant to common neurodevelopmental disorders in the general
population. For example, the study of whitematter organisation inWil-
liams syndrome has highlighted distinct visual and facial processing
pathways (Meyer-Lindenberg et al., 2006). Similarly, the study of a
rare familial speech disorder (KE family, FOXP2mutation) has highlight-
ed the importance of striatal systems and cortico-striatal networks for
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motor speech control and emergent higher-order language skills
(Liégeois et al., 2011; Watkins, 2011).

The current study investigated the structural brain differences of in-
dividualswithmutations in ZDHHC9, a recurrent cause of X-linked Intel-
lectual Disability (XLID; Raymond et al., 2007). Systematic assessment
of clinical history across multiple XLID-associated genes led to the ob-
servation that ZDHHC9 mutations are associated with surprisingly ho-
mogeneous neurological and cognitive features (Baker et al., 2015).
Specifically, a high proportion of the ZDHHC9 group had a history of
childhood seizures similar to Rolandic Epilepsy (RE, also known as Be-
nign Epilepsy with CentroTemporal Spikes or BECTS). In view of the
known association between BECTS and developmental language disor-
ders (Clarke et al., 2007; Datta et al., 2013; Monjauze et al., 2005;
Overvliet et al., 2011), we went on to obtain quantitative assessments
of both linguistic and non-linguistic abilities applying standardised
methods. Carer-report questionnaires highlighted communication abil-
ities on average 15 standardised points lower than motor skills or daily
living skills and 20 standardised points lower than socialisation skills
(median Vineland Adaptive Behaviour scores: communication 53,
daily living skills 73, socialisation 67, motor skills 67). We conducted
neuropsychological assessments of oromotor abilities and speech pro-
duction in cases and IQ-matched controls, rated blind to genetic diagno-
sis by speech and language therapists. We found that mutations in
ZDHHC9 are associatedwith persistent deficits in oromotor control, ver-
bal fluency and expressive language, and that speech and expressive
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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language functions were significantly more impaired than in age-
matched and IQ-matched individuals with mutations in other XLID
genes. Hence despite IQ differences between BECTS and the ZDHHC9
group, this monogenic disorder is associated with a developmental im-
pairment in communication skills not common to all causes of X-linked
ID, and reminiscent of the developmental communication impairments
associated with RE.

To date, the neurobiological basis for speech and language deficits in
individuals with a history of RE has proven elusive, perhaps because of
aetiological heterogeneity and variability in cognitive outcome in this
group. Previous investigations of the neural correlates of language defi-
cits in RE identified reduced cortical thickness in perisylvian areas
(Overvliet et al., 2013a; Pardoe et al., 2013) and white matter changes
in the parietal and temporal lobe (Ciumas et al., 2014; Xiao et al.,
2014). The observation of RE-like speech and language difficulties in in-
dividuals with ZDHHC9 mutations provides an opportunity to further
specify the neural basis for RE-associated developmental language dis-
order in a group with defined aetiology.

Preliminary neuro-radiological assessment and volumetric analyses
indicated no gross morphological abnormalities in the ZDHHC9 group
other than hypoplasia of the corpus callosum and reduced volume of
subcortical structures including the thalamus and striatum (Baker et
al., 2015). In the current study, we extended these initial observations
by measuring the impact of ZDHHC9 mutation on brain organisation
using MRI focussing on global and regional cortical thickness and sur-
face area, and on white-matter integrity. Furthermore, we used
tractography to explore themicrostructural integrity of cortical associa-
tion tracts, regional projections of the corpus callosum and thalamo-
cortical radiations, Finally, the integrity of tracts related to language
functions (arcuate fasciculus, uncinate fasciculus) was assessed to in-
vestigate possible neural correlates of language deficits in this group.

In summary, the current study takes a holistic viewof brain develop-
ment in the ZDHHC9 group, enabling similarities and differences to pub-
lished results in groups with a similar cognitive and clinical phenotype
(RE, ID, dyspraxia of speech) to be assessed, and to highlight unique fea-
tures pointing towards molecular and developmental pathways of cog-
nitive outcome.

2. Participants & methods

2.1. Participants

This studywas performed in accordancewith theDeclaration of Hel-
sinki. The studywas approved by the Central CambridgeResearch Ethics
Committee (REC 11/0330, IRAS 83633). Written informed consent was
obtained from adults, or from parents of individuals under the age of
16 years. The study recruited 7 males with inherited loss of function
mutations in the ZDHHC9 gene (Age in years: mean = 29.13, SE =
4.86, Range=13.83–41.83). Mutation analysis and biochemical charac-
terisation of mutations have been previously reported (Raymond et al.,
2007, Mitchell et al., 2014). The ZDHHC9 group was compared to 7
males individually matched in age ± 2 years (Age in years: median =
23.38, mad = 18.72, Range = 10.17–42.5). Comparison subjects were
recruited by local advertisement and had no history of neurological ill-
ness or cognitive impairment. Statistical analysis indicated no signifi-
cant difference in age between the groups (Wilcoxon signed-rank
test: W = 40.6, p = 0.711).

For detailed description of clinical and cognitive characteristics of
the ZDHHC9 group see Baker et al., 2015. In summary, all individuals
with a ZDHHC9 mutation had mild to moderate intellectual disability
(full-scale IQ: median = 64.5, Range = 57–73; verbal IQ median 63.5,
performance IQ median 68). 5 individuals had a history of epilepsy,
with seizure characteristics and EEG features similar to the Rolandic ep-
ilepsy spectrum. At the time of MRI acquisition, 1 participant reported
seizures within the previous 3 months, and 3 were currently received
anti-epileptic medication (carbemazapine n = 1, carbemazapine and
lamotrigine n = 1, phenytoin n = 1). Vineland scores (Sparrow et al.,
2005) indicated impaired communication abilities in comparison to
other domains of function, with stronger receptive language abilities
compared to expressive and written language abilities in the ZDHHC9
group. The Verbal Motor Production Assessment for Children
(VMPAC) (Hayden and Square, 1999) indicated significant oromotor
difficulties in the ZDHHC9 group, including lower performance than
IQ-matched controls in tests of speech and non-speech oral control, se-
quencing, voice characteristics, and connected speech.

2.2. MRI acquisition

Magnetic resonance imaging data was acquired at the MRC Cogni-
tion and Brain Sciences Unit, Cambridge U.K. All scans were obtained
on the Siemens 3 T Tim Trio system (SiemensHealthcare, Erlangen, Ger-
many), using a 32-channel quadrature head coil. The imaging protocol
consisted of two sequences: T1-weightedMRI and a diffusion-weighted
sequence.

T1-weighted volume scans for surface analysis were acquired using
a whole brain coverage 3D Magnetisation Prepared Rapid Acquisition
Gradient Echo (MP RAGE) sequence acquired using 1 mm isometric
image resolution. Echo time was 2.98 ms, and repetition time was
2250 ms.

Diffusion scanswere acquired using echo-planar diffusion-weighted
images with an isotropic set of 60 non-collinear directions, using a
weighting factor of b = 1000 s mm−2, interleaved with 4 T2-weighted
(b= 0) volumes. Whole brain coverage was obtained with 60 contigu-
ous axial slices and isometric image resolution of 2 mm. Echo time was
90 ms and repetition time was 8400 ms.

2.3. Cortical morphology analysis

Structural T1-weighted images were analysed with surface-based
methods that allow more accurate local mapping of the cortical mor-
phology compared to voxel-based methods. Two commonly used mea-
sures reflecting different cellular parameters were derived for the
current analysis: cortical thickness and cortical surface area. Broadly
speaking, cortical surface area reflects the number of cortical columns,
whereas cortical thickness is determined by the number of cells within
that column (Raznahan et al., 2011). Other authors suggest that cortical
area is tied to the volumeofwhitematter beneath the cortex (Worker et
al., 2014). Inter-individual differences in cortical morphology have been
linked to age (Schmitt et al., 2014), gender (Sowell et al., 2007), cogni-
tive ability (Schnack et al., 2015), disorders such as intellectual disability
and attention deficit hyperactivity (Saute et al., 2014; Zhang et al.,
2011), and genetic factors (Joshi et al., 2011; Panizzon et al., 2009;
Schmitt et al., 2014; Strike et al., 2015).

For the current analysis, T1-weighted images were processed using
the FreeSurfer v5.3.0 (http://surfer.nmr.mgh.harvard.edu/) recon-all
pipeline. Detailed description of FreeSurfer algorithms are available
from the published literature (Dale et al., 1999; Fischl, 2012; Fischl
and Dale, 2000; Fischl et al., 2004). In summary, after correction for
magnetic field inhomogeneities, skull stripping and intensity normal-
isation, surface reconstruction is achieved through segmentation of
the boundary between subcortical white matter and grey matter
based on intensity differences. Next, a triangular mesh is generated to
construct a three dimensional representations of the cortical sheath. De-
fects in brainmask, GMorWMvolumesweremanually corrected if nec-
essary and the surface generation steps were repeated on the corrected
volumes. All surface reconstructions were visually inspected and incor-
rect GM/WM segmentation was corrected if necessary following the
FreeSurfer guidelines (https://surfer.nmr.mgh.harvard.edu/fswiki/
FsTutorial/TopologicalDefect_freeview).

Surface-based registration was used for group level comparison
(Fischl et al., 1999). After surface reconstruction, surfaceswere co-regis-
tered to a spherical atlas, and subsequently parcellated for region-wise

http://surfer.nmr.mgh.harvard.edu
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comparison (Fischl et al., 2004). For comparison of cortical morphology,
cortical thickness was measured in the surface space of each partici-
pants as the mean of the two shortest distances between the pial and
the white matter mesh (Fischl and Dale, 2000). Surface area was calcu-
lated as the sum of the areas of each vertex falling within a given ROI of
the cortical parcellation in each subject's native space. The spatial distri-
bution of cortical measures was smoothed using a Gaussian kernel with
10 mm radius.

For statistical comparison, surface maps with morphometric values
were projected onto the FreeSurfer average surface (fsaverage5). Nor-
mality of surface measures was assessed at each vertex using the Sha-
piro-Wilk test (Ghasemi and Zahediasl, 2012). Significant deviances
from normality were very rare and scattered over the cortex (Percent-
age of significant deviance from normality: ZDHHC9: thickness =
0.446%, area = 0.492%; control: thickness = 1.205%, area = 0.896%).
Because the data met normality assumptions, morphometric values
were compared using standard pairwise t-tests that provide greater sta-
tistical power. Probabilities were corrected for multiple comparisons
across both hemispheres using false discovery rate correction with the
Benjamini-Hochberg algorithm (Hochberg and Benjamini, 1990).
These calculations were carried out using in-house software based on
the Scientific Tools for Python package (SciPy) v0.17 (Jones et al.).

2.4. White matter analysis

Diffusion-weighted imaging allows the quantification ofwater diffu-
sion in vivo. Based on the diffusion measurement a diffusion model can
be fitted to estimate the orientation of maximum diffusion presumed to
be co-aligned with the underlying tissue orientation within each voxel.
Diffusion-based imaging is the only available method to assess white
matter structure in humans in vivo and has provided many insights
into the role ofwhitematter structures in health and disease since its in-
ception in the early 1990s (Besseling et al., 2012; Dell'Acqua and Catani,
2012; Johansen-Berg and Behrens, 2006).

In the current study, MRI scans were converted from the native
DICOM to compressed NIfTI-1 format using the dcm2nii tool developed
at the McCauseland Centre for Neuroimaging ([http://www.
mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html]). Subsequent-
ly, the images were submitted to the DiPy v0.8.0 implementation
(Garyfallidis et al., 2014) of a non-local means de-noising algorithm
(Coupe et al., 2008) to boost signal to noise ratio. Next, a brain mask
of the b0 image was created using the brain extraction tool (BET) of
the FMRIB Software Library (FSL) v5.0.8. Motion and eddy current cor-
rection were applied to the masked images using FSL routines. The
corrected images were re-sliced to 1mm resolutionwith trilinear inter-
polation using in-house software based on NiBabel v2.0.0 functions
([http://nipy.org/nibabel/]). Finally, fractional anisotropy maps were
created based on a diffusion tensor model fitted through the FSL dtifit
algorithm (Behrens et al., 2003; Johansen-Berg et al., 2004). All data
processing was carried out on a computer cluster under Scientific
Linux release 6.6 (64bit).

2.5. Tract-based spatial statistics (TBSS)

For whole-brain comparison, FA maps were analysed using tract-
based spatial statistics (TBSS) (Smith et al., 2006), which provides a
voxel-by-voxel whole-brain analysis for group comparisons. Initially,
FA maps were affine-aligned to the MNI52 standard space. Next, the
mean FA image of the whole sample was created and thresholded at
an FA value of 0.2 to create a white matter skeleton representing the
centre of the tracts common to all images. FA values were then
projected onto these skeletons for voxel-wise statistical comparisons
using the Threshold-Free Cluster Enhancement method, which adjusts
statistics for multiple comparisons across space. Statistical results are
reported for group comparisons including mean-centred age as a
covariate.
2.6. Tractography

Global measures of diffusion parameters based on the diffusion ten-
sor model may be influenced by the definition of the tract skeleton and
differences in crossing fibres (Bach et al., 2014). In order to address
these short-comings, the integrity of particular white matter pathways
was further investigated using tractography based on a model that is
better suited to resolve crossing fibres. Tractography is a method used
to follow the dominant directions of diffusion within each voxel to re-
construct white matter pathways based on regions of interest (ROI)
(Chanraud et al., 2010; Le Bihan, 2003; Wedeen et al., 2005). Eigenvec-
tor and FAmaps were calculated from the diffusion-weighted images in
MRTrix (Tournier et al., 2012). A spherical constrained deconvolution
(CSD)modelwas fitted to the 60 gradient direction images using amax-
imumharmonic order of 8. Correct anatomical orientation of CSD glyphs
was visually inspected for white matter tracts of known orientation
(corpus callosum, cortico-spinal tract).

The tractography approach followed the recommendations given for
MRTrix software (Tournier et al., 2012): The fibre tracking algorithm
was set to a minimum and maximum track length of 10 mm and
200 mm respectively. The minimum radius of curvature was set to
1 mm and the track size to 0.2 mm. The track termination threshold
was set to an FA value of 0.1. Definition of region of interest was based
on previous reports in the literature. ROIs were defined on FA maps.
Overlays of eigenvector maps or co-registered T1-weighted images
were used to aid the identification of ROIs. Reconstructions were com-
pared to reference atlases to establish anatomical correspondence
(Catani and de Schotten, 2015).

Subsequently, streamlines were propagated probabilistically with a
target of 150,000 streamlines using MRTrix functions. Tracts of interest
(uncinate fasciculus, corpus callosum, cortico-spinal tract, thalamic ra-
diations) were selected from whole-brain tractography using atlas-
based approaches described below. The resulting tracts were exported
to TrackVis format for virtual in-vivo dissection (Catani and Thiebaut
de Schotten, 2008). ROI delineation for each tract of interest is described
below. For volume comparisons, maps of streamline counts were
thresholded (N1 streamline per voxel) and binarised to calculate tract
volumes with fslstats.

2.6.1. Corpus callosum
The corpus callosum (cc) was segmented according the scheme by

Hofer et al. (Hofer and Frahm, 2006). The cc was identified on a medial
sagittal slice and segmented to the proportions in the segmentation
scheme using voxel counts. The volume of the corpus callosumwas es-
timated from the voxel counts on amedial slice usingMRIcron software
(version from the 6th of June 2013).

2.6.2. Thalamic radiations
For reconstruction of connections of the thalamus with cortical re-

gions, streamlines from whole-brain tractography were co-registered
to FreeSurfer-processed T1-weighted images using a rigid transform
with normalised correlation ratio as a cost function as implemented in
FSL FLIRT (Jenkinson and Smith, 2001). Binary masks for the frontal,
pre-central, post-central, parietal, temporal, and occipital cortex in the
left and right hemisphere were created from automatic parcellation of
the cortical white matter surface according to the Desikan-Killany
atlas performed using FreeSurfer software (Klein & Tourville, 2012).
Thalamus ROIs were defined by hand separately for each hemisphere
on an axial slice of the T1-weighted image. Streamlines were selected
that traversed both thalamic and target cortical ROIs for comparison of
diffusion measures.

2.6.3. Arcuate fasciculus
The arcuate fasciculus was reconstructed using a ROI placed on an

axial slice above the body of the corpus callosum. The ROIwas identified
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as a half-moon shaped region lateral to the corona radiata as described
by Catani and Thiebaut de Schotten, (2008).

2.6.4. Uncinate fasciculus
The uncinate fasciculus (UF) was reconstructed using the method

described by Catani et al. (2008) (Catani and Thiebaut de Schotten,
2008). A two ROI approach with one ROI placed in the temporal lobe
on the most posterior coronal slice that showed a clear separation be-
tween temporal and frontal lobe. The second ROI was positioned in a
high-FA ventral region of the frontal lobe proximal to the temporal lobe.

2.6.5. Cortico-spinal tract
The cortico-spinal tract was reconstructed separately for each hemi-

sphere using a 2 ROI approach. A spherical seed ROI with a diameter of
20 mmwas placed in a high-FA region within the cerebral peduncle on
the most dorsal level of the pons. A second spherical inclusion ROI with
a diameter of 20 mm was placed to include the pre- and post-central
gyrus.

2.7. Statistical analysis

Diffusion measures for each tract were extracted as the mean across
all voxels that contained streamlines for each tract. Because of the lim-
ited sample size, median and median deviance were used to describe
distributions in the control and ZDHHC9 case groups. For statistical com-
parison, the non-parametric Wilcoxon signed rank tests was used for
paired samples of ZDHHC9 cases with control participants of the same
age (±2 years). Bonferroni correction was used to account for multiple
comparisons. Statistical analyseswere carried out in R v3.1.2 using func-
tions of the ‘stats’ package (The R Development Core Team, 2008).

3. Results

3.1. Cortical morphology

3.1.1. Global measures of segmentation volumes
AWilcoxon signed rank test indicated that there was no differences

in FreeSurfer-derived intracranial volumes between the ZDHHC9 and
control group (ZDHHC9: median = 1,622,699, mad = 54,657; control:
cortical thickness

Left Hemisphere Right Hemisphere

1-p

Fig. 1.Vertex-wise analysis of cortical volume and thickness comparing the ZDHCC9 and control
for multiple comparison including both hemispheres. Decreased cortical thickness was found i
parietal lobule.
median = 1,636,124, mad = 111,567 [all values in mm3]; W = 28,
p=1). Therewas also no indication of a significant differences between
groups in total grey matter or white matter volume (Total grey matter
volume: ZDHHC9: median=69,073,mad=56,916; control: median=
690,703,mad=27,631;W=23, p=0.602; totalwhitematter volume:
ZDHHC9: median = 439,017, mad = 38,098; control: median =
477,671, mad = 31,706; W = 15, p = 0.1473).

3.1.2. Cortical thickness
Comparison of mean cortical thickness across the entire cortical sur-

face indicated a significant main effect of participant group with lower
mean cortical thickness in the ZDHHC9 group (all values in mm,
ZDHHC9: median= 2.13, mad= 0.21, 25%ile-75%ile = 1.99–2.27; con-
trol:median=2.53,mad=0.09, Range=2.48–2.58,Wilcoxon signed-
rank test:W=49, p=0.002). Follow-up analysis using a general linear
model including intracranial volume as a regressor indicated no signifi-
cant influence of intracranial volume differences on group effects on
mean cortical thickness (Effect of intracranial volume: F(1,10) =
0.827, p = 0.384). Vertex-wise comparison of cortical thickness across
both hemispheres showed reductions in the ZDHHC9 group, particularly
in areas surrounding the temporo-parietal junctions and parietal lobule
(see Fig. 1).

3.1.3. Cortical surface area
Comparison of total surface area indicated a significant difference

between groups with higher surface area in the ZDHHC9 group in the
left and right hemisphere (all values in m2, ZDHHC9: median = 0.74,
mad = 0.03, 25%ile-75%ile = 0.72–0.75; control: median = 0.71,
mad = 0.01, 25%ile-75%ile = 0.69–0.7; W = 2, p = 0.005). Vertex-
wise comparison of cortical area across the cortical surface in both
hemispheres indicated focal increases in themedial occipital lobe bilat-
erally, the left posterior temporal lobe, and the left inferior frontal lobe
in the ZDHHC9 group (see Fig. 1).

3.2. White matter

3.2.1. Whole-brain analysis of diffusion parameters
Reductions in fractional anisotropywere found in the ZDHHC9 group

compared to the control group in one very large region (1 cluster of
cortical area

Left Hemisphere Right Hemisphere

group. Statistical analysiswas based on a paired t-tests and false discovery rate adjustment
n the ZDHHC9 group, particularly in areas surrounding the temporo-parietal junctions and

Image of Fig. 1


Fig. 2.Overview of tract-based spatial statistics (TBSS) results comparing fractional anisotropy (
age. Results are presented superimposed on the T1-weighted MNI152 brain at 1 mm3 resolut
ZDHHC9 case group compared to the control group are shown in red. The bottom rows sho
location of the mean FA skeleton. The numbers indicate the axial position with referenc
Abbreviations: Arc: arcuate fasciculus, CC: corpus callosum, Cing: cingulate, CST: cortico-spin
longitudinal fasciculus, Unc: Uncinate fasciculus. (For interpretation of the references to colour

Table 1
Overview of peaks within the cluster of significantly lower FA values in the ZDHHC9 com-
pared to the control group. Statistical analysis with threshold-free cluster-wise correction
for multiple comparison had identified a single cluster. Follow-up analysis provided the
highest t-values at the coordinates listed above. Anatomical structures were identified
through white matter atlas comparison (Catani and de Schotten, 2015).

MNI coordinates [mm] t-peak

X y z

Anterior thalamic radiation L −16 −16 18 13.28
Cerebellar white matter −4 −57 −28 17.59
Body of the corpus callosum −8 −21 26 16.06
Splenium of the corpus callosum 23 −50 11 13.12
Cingulum L −18 −46 2 13.76
Inferior longitudinal fasciculus L −24 −76 14 12.64
Inferior longitudinal fasciculus R 30 −65 20 15.45
Inferior fronto-occipital fasciculus R 33 −62 2 13.72
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85,502 voxels atp b 0.05 and 39,880 at p b 0.001). Peakswithin this clus-
ter were observed in the left anterior thalamic radiations, the cerebellar
white matter, the body and splenium of the corpus callosum, the left
cingulum, bilaterally in the inferior longitudinal fasciculus, and the
right inferior fronto-occipital fasciculus (see Table 1). There were no
statistically significant increases in FA in the ZDHHC9 group relative to
controls. A similar pattern of increasedmean diffusivity (MD) and radial
diffusivity (RD) was also found (see Fig. 2 & Table 1).

3.2.2. Tractography

3.2.2.1. Corpus callosum
Statistical comparison indicated significantly reduced volume of

projections of the anterior corpus callosum (CI) in the ZDHHC9 case
group compared to controls (W = 1, p = 0.023, see Table 2, see Fig. 3
for an illustration of the segmentation). Analysis of FA showed
significantly lower FA in the ZDHHC9 group for all segments of the
FA) between patients with ZDHHC9mutation and typical controls adjusted for participant
ion. The top figure shows significant reductions in FA on p b 0.05 significance level in the
w significant increases in MD and RD in the ZDHHC9 case group. Green lines show the
e to the MNI coordinate system. Annotations highlight key white matter structures.
al tract, IC: internal capsule, ILF: inferior longitudinal fasciculus, Fx: Fornix, SLF: superior
in this figure legend, the reader is referred to the web version of this article.)

Image of Fig. 2


Table 2
Volume and diffusion parameter in corpus callosum (cc) projection segments. Statistical
comparison indicated reductions fractional anisotropy (FA) in all segments of the CC in
the ZDHHC9 group compared to controls. Mean diffusivity (MD) and radial diffusivity
(RD) were found to be significantly increased in the ZDDHC9 group. Volume was found
to be lower for the anterior segment in the ZDHHC9 group.

ZDHHC9 Control

W p corr-pMed Mad Med Mad

Cl

FA 0.28 0.010 0.34 0.015 3 0.004 0.041 *
MD 1.14 0.144 0.94 0.038 48 0.001 0.012 *
RD 0.96 0.162 0.74 0.022 48 0.001 0.012 *
Volume 12.93 11.415 54.89 20.112 1 0.002 0.023 *

CII

FA 0.29 0.044 0.36 0.017 2 0.002 0.023 *
MD 1.17 0.099 0.93 0.018 49 0.001 0.006 **
RD 0.97 0.071 0.74 0.012 48 0.001 0.012 *
Volume 10.76 3.527 37.20 8.475 7 0.026 0.262

CIII

FA 0.29 0.049 0.36 0.011 2 0.002 0.023 *
MD 1.20 0.103 0.97 0.030 49 0.001 0.006 **
RD 1.03 0.062 0.78 0.048 49 0.001 0.006 **
Volume 4.19 1.358 17.18 10.449 8 0.038 0.379

CIV

FA 0.28 0.057 0.37 0.020 1 0.001 0.012 *
MD 1.33 0.171 0.99 0.046 48 0.001 0.012 *
RD 1.17 0.167 0.80 0.049 48 0.001 0.012 *
Volume 2.36 2.552 11.58 6.802 10 0.073 0.728

CV

FA 0.28 0.040 0.37 0.019 3 0.004 0.041 *
MD 1.31 0.103 1.04 0.087 45 0.007 0.070
RD 1.08 0.152 0.83 0.082 44 0.011 0.111
Volume 15.21 12.183 49.84 33.480 10 0.073 0.728

Comparison of diffusion measures within segments of the corpus callosum. Statistical
comparison was based on Wilcoxon ranked sign tests corrected for multiple comparison
across segments. Abbreviations: fractional anisotropy (FA) [no unit], mean diffusivity
(MD) [10−3 ram2, s−1], radial diffusivity (RD [10−3 mm2 s−1], volume [cm3]. (* pb0.05,
** pb0.01, *** pb0.001).

Table 3
Values of FA, RD, and MD in the ZDHHC9 group and the control group. Statistical compar-
ison indicated significantly lower FA for thalamic projections towards the right pre-cen-
tral, post-central, temporal, and occipital. FA was also significantly lower for left occipital
projections.

ZDHHC9 Control

W p corr-pMed Mad Med Mad

Left frontal FA 0.27 0.030 0.30 0.013 59 0.077 0.460
MD 0.97 0.040 0.98 0.049 123 0.265 1.000
RD 0.83 0.048 0.84 0.048 123 0.265 1.000

Right frontal

FA 0.29 0.037 0.31 0.006 62 0.104 0.621
MD 1.00 0.061 0.97 0.057 142 0.044 0.266
RD 0.86 0.064 0.81 0.068 140 0.056 0.334

Left precentral

FA 0.31 0.037 0.35 0.048 60 0.085 0.510
MD 0.95 0.039 0.92 0.039 151 0.014 0.085
RD 0.80 0.056 0.76 0.053 153 0.011 0.064

Right precentral FA 0.33 0.053 0.34 0.015 38 0.005 0.029 *
MD 1.00 0.056 0.97 0.088 170 0.001 0.003 **
RD 0.84 0.032 0.81 0.071 170 0.001 0.003 **

Left postcentral

FA 0.29 0.039 0.33 0.032 33 0.002 0.012 *
MD 0.95 0.083 0.91 0.035 152 0.012 0.073
RD 0.82 0.169 0.75 0.023 154 0.009 0.055

Right postcentral

FA 0.32 0.034 0.35 0.007 21 0.000 0.001 ***
MD 1.03 0.057 0.97 0.027 154 0.009 0.055
RD 0.87 0.027 0.82 0.014 164 0.002 0.010 *

Left parietal FA 0.31 0.051 0.33 0.024 59 0.077 0.460
MD 1.00 0.075 0.92 0.053 123 0.265 1.000
RD 0.85 0.104 0.75 0.041 123 0.265 1.589

Right parietal

FA 0.30 0.026 0.35 0.007 62 0.104 0.621
MD 1.06 0.057 0.95 0.039 142 0.044 0.266
RD 0.89 0.039 0.77 0.048 140 0.056 0.334

Left temporal FA 0.27 0.034 0.29 0.014 60 0.085 0.510
MD 1.08 0.115 1.03 0.019 151 0.014 0.085
RD 0.96 0.117 0.88 0.019 153 0.011 0.064

Right temporal

FA 0.25 0.038 0.30 0.021 38 0.005 0.029 *
MD 1.17 0.097 1.07 0.123 170 0.001 0.003 **
RD 1.01 0.086 0.92 0.113 170 0.001 0.003 **

Left occipital

FA 0.27 0.048 0.29 0.021 33 0.002 0.012 *
MD 1.07 0.121 0.98 0.026 152 0.012 0.073
RD 0.94 0.137 0.82 0.044 154 0.009 0.055

Right occipital
FA 0.23 0.027 0.31 0.017 21 0.000 0.001 ***
MD 1.16 0.105 1.06 0.053 154 0.009 0.055
RD 1.02 0.112 0.89 0.060 164 0.002 0.010 *

Comparison of diffusion measures within the thalamic radiations. Statistical comparison
was based onWilcoxon ranked sign tests corrected for multiple comparison across radia-
tion segments. Abbreviations: fractional anisotropy (FA) [no unit], mean diffusivity (MD)
[10−3 mm2 s−1], radial diffusivity (RD [10−3 mra2 s−1], volume [cm3]. (* pb0.05, **
pb0.01, *** pb0.001).
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corpus callosum. Mean diffusivity (MD) was significantly increased in
the ZDHHC9 group in all segments of the corpus callosum (p b 0.05), ex-
cept segment CV (W= 45, p = 0.07). Radial diffusivity was also found
to be higher in the ZDHHC9 group in all segments (W = 44, p b 0.05)
apart from segment CV (p = 0.111).

3.2.2.2. Thalamo-cortical projections. Statistical comparison of diffusion
parameters of projections of the thalamic radiations to cortical target re-
gions indicated significantly lower FA in the ZDHHC9 case group for pro-
jections towards right precentral (W = 38, p = 0.012, see Table 3),
temporal (W = 38, p = 0.029), occipital (W− = 21, p b 0.001), and
left postcentral cortex (W= 33, p= 0.012, see Fig. 4 for an illustration
of the projections). Differences in the right precentral and right tempo-
ral thalamic radiations were also characterised by significantly higher
MD (precentral: W = 170, p = 0.003; temporal: W = 170, p = 0.03).
Significant increases in RDwere found for right precentral, right tempo-
ral, and right occipital projections (precentral: W = 170, p = 0.03;
Fig. 3.Visualisation of projections of the corpus callosum (cc) in segments in theHofer and
Frahm (2006) parcellation scheme for a control participant. Projections of the anterior
segment of the cc mainly contain fibres of the prefrontal cortex. The second segment
consists of fibres crossing between premotor and supplementary motor cortex. The
third segment holds motor cortex projections. The fourth segment is made up of fibres
projecting to sensory areas of the parietal lobe. The most posterior segments contain
fibres of the parietal, temporal, and occipital lobe (Hofer and Frahm, 2006).
temporal:W=33, p=0.012; occipital:W=164, p=0.01). Similar re-
ductions in the left hemisphere that did not survive correction for mul-
tiple comparisons.

3.2.2.3. Arcuate fasciculus. Statistical analysis indicated no significant dif-
ference in volume of the arcuate fasciculus between the ZDHHC9 and
control group (see Table 4 for descriptive statistics and Fig. 5 for an illus-
tration of the tract reconstruction, left Arcuate: W= 5, p=0.066, right
Arcuate: W= 6, p=0.105). Comparison of FA values indicated signifi-
cantly lower FA values in the ZDHHC9 group (left Arcuate: W= 3, p =
0.024, right Arcuate: W= 2, p=0.014). Mean diffusivity (MD) and ra-
dial diffusivity (RD)were found to be significantly higher in the ZDHHC9
group for the right Arcuate (MD:W= 49, p=0.003; RD:W= 49, p=
0.003).

3.2.2.4. Uncinate fasciculus. There was no statistically significant differ-
ence in volume between the ZDHHC9 case group and control group for
either the left or right Uncinate fasciculus (left Uncinate: W = 25,
p= 1; right Uncinate: W= 10, p= 0.437). FA was found to be signifi-
cantly reduced in the right Uncinate fasciculus in the ZDHHC9 case
group (W = 4, p = 0.042). MD was significantly higher for the left
and right Uncinate fasciculus (left Uncinate: W = 45, p = 0.045; right

Image of Fig. 3


frontal

pre-central post-central

parietal

occipitaltemporal

Fig. 4. Visualisation of thalamic projections to cortical target areas. Projections from the
thalamus to frontal, pre-central, post-central, parietal, temporal, and occipital cortical
target areas were distinguished. ROIs were mutually exclusive, i.e. pre-central
projections were not included in frontal projections, and post-central projections were
not included in the parietal ones.

Fig. 5. Visualisation of tractography reconstruction of the arcuate fasciculus (AF), cortico-
spinal tract (CST), and uncinate fasciculus (UF) in the left hemisphere for a representative
participant in the control group.
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Uncinate: W = 45, p = 0.042). RD was significantly higher in the left
Uncinate (W= 45, p = 0.042).

3.2.2.5. Cortico-spinal tract. There was no statistically significant differ-
ences in the volume of the cortico-spinal tract between the ZDHHC9
and control group (see Table 4 for descriptive statistics, F(1,18) =
1.510, p = 0.234). FA of the left CST was significantly lower in the
ZDHHC9 case group (W=0, p=0.003), whilstMD and RDwere signif-
icantly higher compared to controls (MD:W=48, p=0.007; RD:W=
49, p = 0.003).

3.3. Summary of results

In summary, analyses of cortical morphology in individuals with
mutations in ZDHHC9 indicated reductions in cortical thickness.
Table 4
Descriptive statistics for volume, FA,MD, and RD in the arcuate, fasciculus, uncinate fascic-
ulus, and cortico-spinal tract (CST) in the left and right hemisphere.

ZDHHC9 Control

W p corr-pMed Mad Med Mad

Left arcuate

FA 0.23 0.013 0.28 0.011 3 0.004 0.024 *
MD 0.99 0.065 0.84 0.039 41 0.038 0.227
RD 0.87 0.084 0.72 0.039 44 0.011 0.066
Volume 4.73 4.012 9.01 2.979 5 0.011 0.066

Right arcuate

FA 0.22 0.035 0.29 0.038 2 0.002 0.014 *
MD 1.02 0.088 0.83 0.036 49 0.001 0.003 **
RD 0.90 0.065 0.71 0.050 49 0.001 0.003 **
Volume 5.15 1.327 14.66 2.595 6 0.017 0.105

Left uncinate FA 0.22 0.009 0.28 0.035 11 0.097 0.584
MD 0.97 0.035 0.89 0.062 47 0.002 0.014 *
RD 0.86 0.048 0.77 0.086 45 0.007 0.042 *
Volume 0.08 0.055 2.09 0.464 25 1.000 1.000

Right uncinate

FA 0.21 0.024 0.31 0.022 4 0.007 0.042 *
MD 0.97 0.045 0.87 0.010 45 0.007 0.042 *
RD 0.83 0.011 0.72 0.010 43 0.021 0.128
Volume 0.31 0.322 1.88 0.882 10 0.073 0.437

Left CST

FA 0.38 0.040 0.41 0.014 0 0.001 0.003 **
MD 0.97 0.057 0.87 0.033 48 0.001 0.007 **
RD 0.76 0.027 0.67 0.024 49 0.001 0.003 **
Volume 3.09 2.559 2.11 0.624 6 0.035 0.210

Right CST FA 0.42 0.031 0.43 0.040 16 0.318 1.000
MD 0.91 0.037 0.86 0.023 40 0.053 0.318
RD 0.70 0.039 0.66 0.057 39 0.073 0.437
Volume 4.83 3.747 5.50 1.696 23 0.902 1.000

Descriptive statistics for tractography of the arcuate fasciculus, uncinate fasciculus, and
corticospinal tract in the left and right hemisphere. Statistical comparison was based on
Wilcoxon ranked sign tests corrected for multiple comparison across segments. Abbrevia-
tions: fractional anisotropy (FA) [no unit], mean diffusivity (MD) [10−3 mm2 s−1], radial
diffusivity (RD [10−3 mm2 s−1], volume [cm3]. (* pb0.05, ** pb0.01, *** pb0.001).
Prominent differences were observed “Rolandic” cortical areas i.e.
areas associated with Rolandic-type seizure activity and with lan-
guage-relevant cognitive functions such as fine control of oral move-
ment, converting articulation, and audio-visual-motor integration
(Price, 2010). Global cortical surface area was found to be increased
in the ZDHHC9 group, but vertex-wise comparison indicated no
differences between ZDHHC9 cases and the control group. Collective-
ly these analyses suggest that loss of ZDHHC9 activity leads to an
abnormality of neuronal proliferation, with variation in impact on
cytoarchitecture across the cortex.

Total white matter volume did not differ between groups but whole
brain analysis of white matter integrity indicated widespread
differences in diffusion parameters (lower FA, higher MD and RD).
Tractography identified relatively severe reductions in microstructural
integrity of anterior projections of the corpus callosum and of
thalamo-cortical radiations projecting to precentral, postcentral, tem-
poral and occipital cortex (differences maximal on right side). Analyses
of cortical association tracts known to be associatedwith language com-
petence showed reductions in FA of the arcuate bilaterally and right un-
cinate fasciculus. FA of the left cortico-spinal tract was also found to be
reduced. In summary, examination of white matter in this group sug-
gests that ZDHHC9 loss of function influences axonal development
with impact on cortical, subcortical-cortical and interhemispheric
networks.

4. Discussion

The current study aimed to comprehensively characterise differ-
ences in brain structure associated with a mutation in the ZDHHC9
gene. Our data demonstrate that ZDHHC9 mutations are associated
with reductions in cortical thickness and white matter microstructural
integrity, particularly in regions and networks known to contribute to
language function.

Individuals with a ZDHHC9mutation showed significantly decreased
cortical thickness and increased surface area. Decreased cortical thick-
ness is likely to indicate a reduction of the number or size of cortical
cells (Schmitt et al., 2014; Sowell et al., 2007), whereas increased corti-
cal surface area is generally interpreted to reflect atrophy or underde-
velopment of white matter beneath the cortex, which leads to deeper
sulci (Worker et al., 2014). These results are in line with previous re-
ports of other participant groups with language impairments (see
Table 5 for a detailed comparison with published studies on other
groups with language deficits). A voxel-based morphometry study of a
family with oro-motor deficits associated with mutations in the FOXP2
gene also indicated reduced grey matter in the pre-supplementary
motor cortex and cingulate (Belton et al., 2003; Vargha-Khadem et al.,
1998; Watkins et al., 2002). Studies of specific language impairment

Image of Fig. 4
Image of Fig. 5


Table 5
Overview of findings in the current investigation compared to published results for other monogenic disorders associated with developmental speech and language impairments, idio-
pathic Rolandic epilepsy, or idiopathic developmental speech and language impairments. Legend: ↑ increase, ↓ reduction, FA: fractional anisotropy, GM: grey matter, WM: white matter,
N/A: not available.

Genetic disorders associated with language deficits Heterogeneous diagnostic groups with language deficits

ZDHHC9 FOXP2 CNTNAP2 Rolandic epilepsy Speech
disorder

Specific language impairment

Volumetric
findings

Cortical None reported ↓GM in left
pre-supplementary
motor area,
cingulate cortex,
Broca's area

↓GM bilat.
fusiform gyri,
post, occipital
cortices, right
frontal pole

N/A †GM in
bilateral
superior
temporal
gyrus

↑volume & GM of right
perisylvian regions,
↓volume & GM of left
perisylvian regions

Subcortical ↓GM bilat. in
thalamus, bilat. in
caudate

↓GM bilat. in
globus pallidus and
putamen
↓GM bilat. in
caudate nucleus

None reported N/A None
reported

↓caudate volume

Cortical
morphology

Cortical
thickness

↓bil. in
supramarginal
gyrus, superior
parietal lobule,
inferior frontal
gyrus, cingulate
cortex

N/A N/A ↓bil. areas of frontal and
temporal lobe, parietal lobe,
↓supramarginal gyrus, banks
of the superior temporal
sulcus, lower

↓ left supra
marginal
gyrus in
children
(3–6 y)

N/A

Cortical
surface
area

↑bilateral medial
occipital lobe,
posterior temporal
lobe

N/A N/A N/A N/A N/A

White matter
findings

Hypoplasia of the
corpus callosum,
↓FA, ↑MD, ↑RD
cortical,
cortical-subcortical,
interhemispheric
projections

N/A ↓FA inferior
fronto-occipital
fasciculus, bil.
post,
corticothalamic
radiations,
uncinate
fasciculus

↓FA ipsilateral to epilepsy
focus in corpus callosum,
forceps minor; seizure
frequency correlated with
↓FA in corpus callosum, bil.
cingulate and left uncinate

↑WM of
corpus
callosum and
WM of the
right lateral
occipital
cortex

↑RD of arcuate fasciculus, ↓FA in
superior longitudinal fasciculus

References Baker et al. (2015),
present paper

Belton et al.
(2003),
Vargha-Khadem et
al. (1998), Watkins
et al. (2002)

Clemm von
Hohenberg et al.
(2013), Tan et al.
(2010)

Ciumas et al. (2014), Kim et
al. (2014), Overvliet et al.
(2013b), Pardoe et al. (2013),
Xiao et al. (2014)

Kadis et al.
(2014),
Preston et al.
(2014)

Badcock et al. (2012), Gauger et
al. (1997), Girbau-Massana et al.
(2014), Leonard et al. (2002),
Roberts et al. (2014),
Soriano-Mas et al. (2009),
Verhoeven et al. (2012)
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(SLI) (Soriano-Mas et al., 2009) and language deficits in children with
RE (Overvliet et al., 2013a) also identified reduction in areas around
the temporo-parietal junction.

Individuals with ZDHHC9mutations also show extensive differences
in white-matter integrity, in terms of decreased FA and increased mean
diffusivity (MD) and radial diffusivity (RD). Mutations in the CNTNAP2
gene, which are also associated with language deficits, also show re-
duced FA in the inferior fronto-occipital fasciculus, posterior thalamo-
cortical radiations, and uncinate fasciculus (Clemm von Hohenberg et
al., 2013; Tan et al., 2010). Likewise, for SLI, increased radial diffusivity
of the arcuate fasciculus and reduced FA of the superior longitudinal fas-
ciculus have been reported (Roberts et al., 2014; Verhoeven et al., 2012).
In addition, studies of neural differences in RE have also reported wide-
spread reductions in FA, particularly within the corpus callosum, bilat-
eral cingulate gyrus, and left uncinate fasciculus (Gong et al., 2008;
Kimiwada et al., 2006).

At the subcortical level, our previous investigation found reduced
thalamic volumes in the ZDHHC9 group (Baker et al., 2015), which is a
feature of this genetic group that has not been reported for FOXP2 mu-
tations, CNTNAP2 mutations, or for idiopathic groups with similar
speech and language difficulties. The current investigation found that
FA of posterior thalamo-cortical projections is also reduced in the
ZDHHC9 group. Differences in diffusion properties of the thalamo-corti-
cal radiations have also been reported in temporal lobe epilepsy, a dis-
order associated with language deficits (Gong et al., 2008; Kimiwada
et al., 2006). Previous theoretical accounts have suggested a role of the
thalamus in oro-motor control related to speech (Vargha Khadem et
al., 2005), but familial speechdisorder (FOXP2) has hitherto beenmostly
associated with the caudate nucleus. The current study adds a genetic
group with language deficits in combination with intellectual disability
that shows effects on the thalamus and thalamo-cortical connections.

In context of studies of structural brain abnormalities in disorders
with at least partially overlapping phenotypes (Table 5), our findings
suggest convergence in the cortical systems involved in developmental
language disorders, irrespective of aetiology. Observed differences in
cortical morphologymay correlate with immature language processing,
rather than being primary causative abnormalities. This proposal is sup-
ported by differences in the overt speech phenotypes across these
different disorders – FOXP2 mutation is associated with profound
oromotor dyspraxia plus higher order language impairments, whereas
oromotor impairments are subtle in Rolandic epilepsy and are not com-
mon within the heterogeneous population of individuals diagnosed
with specific language impairments of unknown aetiology. The extent
of similarity in clinical speech disorder and underlying cognitive impair-
ments between ZDHHC9, FOXP2, and other monogenic disorders of lan-
guage development is not yet known and should be the focus of a future
comparative study ideally in parallel with longitudinal comparative
neuroimaging. In particular, comparison to individuals with GRIN2A
mutation may be informative in view of association with speech disor-
ders, intellectual disability and focal epilepsy (Turner et al., 2015;
Lesca et al., 2013). According to a recent review of neuroimaging studies
of language function in adults, these areas are involved in word selec-
tion and articulatory planning (inferior frontal lobe) and, covert articu-
lation and audio-visual-motor integration (supramarginal gyrus) (Price,
2010). However, neuroanatomical models based on typical adults or
adults with abnormalities arising later in life may not apply in the
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context of an atypical developmental trajectory, and a within-sample
correlative study is required to assess structure-function relationships
for the ZDHHC9mutation group.

The interpretation of these findings has some important limitations.
Because of the rarity of single gene mutations, the possible sample size
of studies of this kind is inherently limited. Therefore, the current find-
ings are based on a small sample, which increases the chance of false
positive findings and may exaggerate effect sizes (Button et al., 2013).
However, investigations of homogeneous aetiology groups as presented
in the current work provide unique insight into the effect of single gene
disorders that is not afforded in large heterogeneous samples of
behaviourally defined groups. In a future study with larger number of
participants andmore detailed clinical and behavioural evaluations (in-
cluding, importantly, clinical diagnostic assessments of motor speech
disorders) it may be possible to correlate variation in neuroanatomical
differences within the ZDHHC9 group with specific outcomes, to link
structural development with functional consequences. At present such
correlations are not possible, which also imposes limits on comparison
with other disorders (both monogenic and mixed aetiology) where ab-
normalities of speech and language development have beenmore high-
ly specified. Another caveat concerns the specificity of the observed
effect of ZDHHC9 on neuroanatomy. Similar to other genetic groups,
participants in the current investigation presented with a broader pro-
file of behavioural characteristics, namely overall reductions in IQ. Be-
cause IQ reductions are found in all ZDHHC9 cases but not in the
typical control group, IQ differences cannot not be adjusted for statisti-
cally, and some of the observed neuroanatomical differences may be
non-specific correlates of low cognitive ability rather than reflecting
aetiology-relevant or phenotype-relevant pathways. A profile of re-
duced IQ scores has also been reported for members of the KE family
with mutations in the FOXP2 gene (Vargha-Khadem et al., 1995), but
to a lesser extent. It is important to consider that neurodevelopmental
disorders do not function like acquired disorders in adulthood. A chron-
ic impairment in a particular domain from birth will have cascading
consequences for other systems over the course of development. This
is true for groups with genetic disorders like children with mutations
in FOXP2 and ZDHHC9; whilst there is a single causal gene, the cognitive
and behavioural impairments associated with this mutationwill impact
upon cognitive development more broadly. Ideally, the impact of
ZDHHC9mutation on brain structure would be investigated in individ-
uals before, during and after the ages of typical speech and language
maturation, however this is not currently feasible. Effects may also ap-
pear large in comparison to our control group of typical volunteers.
Healthy volunteers for neuroimaging studies are tend to be from a
higher socio-economic background, enjoyed more years of education,
and perform better on cognitive tests compared to the general
population.

To conclude, the overlap in the brain phenotype across many
neurodevelopmental language disorders and RE may suggest a common
developmental pathway that particularly affects temporo-parietal and in-
ferior frontal areas and their associated networks. Temporo-parietal and
frontal cortical regions as well as associated white matter show a partic-
ularly prolonged maturation in humans and show large heritability ef-
fects (Joshi et al., 2011; Kochunov et al., 2010, 2015; Lenroot et al.,
2009; Thompson et al., 2001). Previous studies of genetic disorders impli-
cated the regulation of cell migration and cell adhesion as important fac-
tors (CNTNAP2 regulated through FOXP2) for the development of these
networks (Dityatev et al., 2008; Garcia-Calero et al., 2015). At the cellular
level ZDHHC9 codes for a palmitoylation enzyme, involved in post-trans-
lational modification of specific target substrates. Palmitoylation plays an
important role in subcellular compartmentalisation and shuttling of pro-
teins between cell compartments (Fukata and Fukata, 2010; Mitchell et
al., 2014). For instance, palmitoylation has been found to play an impor-
tant role in the recruitment of receptors and ion channels at the synapse
(El-Husseini et al., 2000; Topinka and Bredt, 1998; Young et al., 2014).
The current investigation adds palmitoylation of specific substrates
currently unknown as another necessary mechanism for the develop-
ment of cortical and subcortical networks thatmediate language-relevant
cognition. A possible pathwaymay lie in the regulation of the post-synap-
tic density protein 95 (PSD95), which is implicated in the pathophysiolo-
gy of both CNTNAP2 and DHHC mutations (Fukata and Fukata, 2010;
Rodenas-Cuadrado et al., 2014). Altered regulation of PSD95 and down-
stream targets along the NRXN–NLGN–SHANK pathway (Bourgeron,
2009; Südhof, 2008) may lead to altered synaptogenesis and imbalance
between excitatory and inhibitory activity (Won et al., 2013), with
downstream impact on emergent connectivity supporting language
development.

Here we provide the first comprehensive characterisation of the
structural brain deficits associatedwith amutation in ZDHHC9– a devel-
opmental group with an interesting and homogenous cognitive pheno-
type. In the coming years the next step will be to explore comparable
differences in children with different aetiologies but partially of fully
overlapping phenotypes, such that we can draw firm specific conclu-
sions about structure-function relationships.
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