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As an increasing public health concern worldwide, acute kidney injury (AKI) is characterized
by rapid deterioration of kidney function. Although continuous renal replacement therapy
(CRRT) could be used to treat severe AKI, effective drug treatment methods for AKI are
largely lacking. Tetramethylpyrazine (TMP) is an active ingredient of Chinese herb
Ligusticum wallichii (Chuan Xiong) with antioxidant and anti-inflammatory functions. In
recent years, more and more clinical and experimental studies suggest that TMP might
effectively prevent AKI. The present article reviews the potential mechanisms of TMP
against AKI. Through search and review, a total of 23 studies were finally included. Our
results indicate that the undergoing mechanisms of TMP preventing AKI are mainly related
to reducing oxidative stress injury, inhibiting inflammation, preventing apoptosis of intrinsic
renal cells, and regulating autophagy. Meanwhile, given that AKI and chronic kidney
disease (CKD) are very tightly linked by each other, and AKI is also an important
inducement of CKD, we thus summarized the potential of TMP impeding the
progression of CKD through anti-renal fibrosis.
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INTRODUCTION

Acute kidney injury (AKI) is characterized by an abrupt loss of renal function, mainly
manifested by increased serum creatinine (sCr) levels and decreased urine output. The
duration of AKI is generally less than 7 days, and the functional criteria are: increase in sCr
by ≥50% within 7 days or increase in sCr by ≥ 0.3 mg/dl (26.5 μmol/L) within 2 days or oliguria
for ≥6 h (Khwaja, 2012). A meta-analysis combined research data from 3,585,911 people from
most areas north of the equator. The results reported that the combined morbidity and related
mortality of AKI in adults were 21.6% and 23.9%, respectively, and 33.7% and 13.8% in children,
respectively (Susantitaphong et al., 2013). Due to different medical resources, the cause and
incidence of AKI vary greatly among different countries. In high-income countries, AKI is
mostly hospital-acquired, mainly in elderly patients with multiple organ failure. In low- and
middle-income countries, AKI mainly occurs as a complication of a single disease, and
approximately 77% of AKI is community-acquired (Mehta et al., 2015; Hoste et al., 2018).
The global burden of AKI-related mortality has exceeded the burden of breast cancer, heart
failure or diabetes, and its medical burden is increasing (Lewington et al., 2013). In addition, AKI
is associated with progressive chronic kidney disease (CKD) and the following end-stage renal
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disease (ESRD), which further aggravates the harm of AKI.
Many studies have reported some chemical and biological
agents have beneficial effects on AKI but there is still a lack
of accepted therapeutic drugs so far (Yang et al., 2016; Ronco
et al., 2019). AKI patients not only have an increased risk of
recent mortality and cardiovascular events, but also have a
long-term risk of CKD (See et al., 2019). After the occurrence
of AKI, if the kidney tissue is repaired excessively, repaired
incompletely, or the damage persists, it might lead to renal
dysfunction and renal fibrosis. The progression of AKI to CKD
is a complex process involving the regulation of multiple cells
and multiple signaling pathways, such as inflammatory
damage, G2/M cell cycle arrest, oxidative stress and
apoptosis, and these processes ultimately lead to or
aggravate renal fibrosis (Vernon et al., 2010; He et al., 2017;
Liu et al., 2017; Dong et al., 2018).

Tetramethylpyrazine (ligustrazine, TMP) is the active
ingredient and characteristic alkaloid of the Chinese herbal
medicine Ligusticum wallichii (Chuan Xiong) (Figure 1). TMP
has the effects of inhibiting platelet aggregation, reducing
blood viscosity, increasing coronary flow, scavenging free
radicals, protecting cerebral vessels, and expanding renal
vessels (Zou et al., 2018). The pyrazine ring on the TMP
molecule is the key group for its pharmacological effect, but
the methyl group in its side chain is easily excreted by oxidative
metabolism, which leads to the short half-life of TMP and
weakens its pharmacological effect (Wang et al., 2019).
Pharmacokinetic studies have shown that after oral or
intravenous injection, TMP is mainly distributed in tissues
such as liver, brain, kidney, and small intestine, and is
eventually excreted from urine through the kidney (Lou
et al., 1986; Pan et al., 2021). In view of its anti-oxidative
and anti-inflammatory effects, TMP is widely used in
cardiovascular and cerebrovascular diseases (Zhao et al.,
2016). To date, many studies have focused on the benefits
of TMP in a variety of animal or cell models of AKI (Li et al.,
2019). Through years of exploration, our team has also
confirmed that TMP and Chinese herbal formulas
containing Chuan Xiong have an intervention effect in AKI
caused by contrast mediums (Gong, 2018; Norgren and Gong,
2018; Gong, 2020). TMP also could function as anti-renal
fibrosis and be used in clinical to treat renal fibrosis and CKD.
Although there are many reports on TMP effects in AKI, no
systematic summary is available. Based on the evaluation of

the evidence supporting this hypothesis, we mainly reviewed
the therapeutic effects and mechanisms of TMP on AKI.
Considering the close relationship between AKI and CKD,
the present study also briefly summarized the effects of TMP
on renal fibrosis and CKD.

CATEGORIES AND PATHOLOGY OF AKI

Although the cause of the disease is extremely complex, AKI is
usually regarded as a single disease. Generally, it is divided into
three categories based on anatomical location: pre-renal,
intrinsic, and post-renal. In recent years, this simple
classification method of AKI has been replaced by more
specific etiological categories, since different etiologies often
mean different pathological mechanisms (Bellomo et al.,
2012). Related causes in the latter etiological categories
include drugs, sepsis, toxins, cardiorenal, obstruction,
hepatorenal, and renal hypoperfusion (Figure 2) (Privratsky
et al., 2018; Huang et al., 2019; Jentzer et al., 2020; Simonetto
et al., 2020; Molema et al., 2021). In terms of pathological
manifestations, AKI is generally described as damage to renal
tubular epithelial cells and vascular system (Linkermann et al.,
2014; Sancho-Martínez et al., 2015). Due to pathological
factors, a variety of stresses occur in AKI, including
hypoxia, nutrient deprivation, energy consumption,
oxidative damage, genotoxic stress, and endoplasmic
reticulum stress. These stresses eventually affect renal
tubular epithelial cells by causing oxidative stress damage,
inflammation, necrosis, mitochondrial dysfunction, apoptosis,
and autophagy (Sureshbabu et al., 2015; Cybulsky 2017;
Kimura et al., 2017). Renal hypoperfusion is due to the lack
of oxygen and nutrition in the nephrons, which activates the
damage and death of epithelial cells through necrosis or
apoptosis, ultimately leading to endothelial injury,
inflammatory activation, and renal dysfunction (Makris and
Spanou 2016). Nephrotoxic drugs and toxins have direct
cytotoxic effects on renal tubular epithelial cells and
endothelial cells. In addition, they impair hemodynamics
and deposit metabolites (Yatim and Oberbarnscheidt, 2015;
Wu and Huang, 2018). In sepsis, the reduction of effective
circulating blood volume leads to a reduction in renal blood
flow and oxygen delivery. Simultaneously, it is accompanied by
immune inflammation and activation of the coagulation
cascade (Peerapornratana et al., 2019). Although the
mechanisms of renal hypoperfusion, nephrotoxic drugs,
sepsis, and other causes of AKI are different, they all
involve the pathophysiological links of hemodynamic
changes, oxidative stress injury, and inflammation.

METHODS

This study required a systematic search of electronic databases
to identify studies to determine the renal protective effect of
TMP on AKI. The search was performed using PubMed and
Embase. The following combination of terms were used as

FIGURE 1 | Illustration of Ligusticum wallichii plant (A), decoction pieces
(B) and chemical structure of TMP (C).
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search keywords: “Tetramethylpyrazine” OR “Ligustrazine”
AND “kidney injury” OR “Renal Injury” OR
“Nephrotoxicity” OR “Renal ischemia.” The specified
exclusion criteria included: a) case reports, clinical studies,

case series, editorials, and reviews; b) research on
tetramethylpyrazine derivatives; and c) articles not written
in English. A summary of the literature search process is
presented in Figure 3.

FIGURE 2 | Categories of the causes of AKI.

FIGURE 3 | Summary of the literature search process.
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TABLE 1 | In vivo and in vitro studies of TMP intervention AKI.

Type Animal/
Cell

Model Inducer TMP Histological score Markers References

In vivo ICR mice ethanol-
induced
AKI

absolute ethanol 10, 25,
50 mg/kg;
p.o.

No scoring SrCr↓, BUN↓, MDA↓, Cytc↓ Liu et al. (2002)

In vivo Wistar rats I/R injury renal artery clipping +
reperfusion

4 ml/kg; i.v. proximal convoluted tubule: 0 =
normal; 1 = mitoses and necrosis
of individual cells; 2 = necrosis of
all cells in adjacent tubules; 3 =
necrosis confined to the distal
third of, necrosis across the inner
cortex; 4 = necrosis affecting all
three segments of tubule

MDA↓, SOD↑, ET-1↓ Sun et al.
(2002)

In vivo Wistar rats I/R injury hepatic/renal I/R not clear; i.v. No scoring SrCr↓, BUN↓, P-selectin↓ Chen et al.
(2003)

In vivo C57BL/6
mice

I/R injury right nephrectomy +
left renal ischemia

80 mg/kg; i.p. number of necrotic and apoptotic
cells, loss of tubular brush
border, tubular dilatation, cast
formation, and neutrophil
infiltration: 0 = none; 1=< 10%; 2
= 11–25%; 3 = 26–45%; 4 =
46–75%; 5=> 76%

SrCr↓, BUN↓, MDA↓, SOD↑, Bcl-
2↑, ICAM-1↓

Feng et al.
(2004)

In vivo SD rats ANP-AKI sodium taurocholate 6 g/L; i.v. tubular epithelial cells: 0 =
normal; 1 = notable cloudy
swelling; 2 = swelling
denaturation, interstitial
congestion, edema and
infiltration of inflammatory cells; 3
= diffuse coagulation necrosis

SrCr↓, BUN↓, TXA2/PGI2↓ Zhang et al.
(2006)

In vitro
and In
vivo

SD rats/
NRK-52E
cells

DI-AKI gentamicin 80 mg/kg/
d; i.p.

No scoring Bcl-xL↑, TNF-α↓, NF-κB↓,
caspase-3↓, caspase-8↓,
caspase-9↓

Juan et al.
(2007)

In vivo Wistar rats DI-AKI cisplatin 80 mg/kg/
d; p.o.

approximate extent of necrotic
area in the cortical proximal
tubules: 0 = no necrosis; 1 = a
few focal necrotic spots; 2 =
necrotic area about onehalf; 3 =
necrotic spots about two-thirds;
4 = nearly all of the area necrotic

SrCr↓, BUN↓, GSH↑, NAG↓,
SOD↑, TOX↑

Ali et al. (2008)

In vivo SD rats DI-AKI Cisplatin 50,
100 mg/kg;
i.p.

No scoring SrCr↓, BUN↓, MDA↓, NAG↓,
SOD↑, GSH↑, GST↑, NOS↓, NO↓

Liu et al. (2008)

In vivo Wistar rats DI-AKI Gentamicin 100 mg/kg/
d; p.o.

No scoring SrCr↓, BUN↓, UNAG↓ Ali et al. (2009)

In vivo
and In
vitro

C57B6
mice/
NRK-52E

DI-AKI gentamicin 80 mg/kg/
d; i.p.

tubular necrosis: 0 = normal; 1 ≤
10%; 2 = 10–25%; 3 = 26–75%;
4 ≥ 75% cells exhibiting necrosis

HO-1↑, Bcl-xL↑, Hax-1↑,
NADPH↓, NF-κB↓, Cox-2↓,
caspases-3↓, caspases-9↓

Sue et al.
(2009)

In vivo C57BL/6
mice

I/R injury renal artery clipping +
reperfusion

80 mg/kg; i.p. positive tubular brush border,
tubular dilatation, cast formation,
neutrophil infiltration: 0 = none; 1
= 10%; 2 = 11–25%; 3 =
26–45%; 4 = 46–75%; 5 = 76%

MPO↓, MDA↓, SOD↑, TNF-α↓,
ICAM-1↓

Feng et al.
(2011)

In vivo Lewis rats severe
burn

30% TBSA scald injury 40 mg/kg/
d; i.p.

expression of Bcl-2 and MICA: 0
= 0–5% stained; 1=> 5–25%;
2=> 25–50%; 3=> 50–75%;
4=> 75%

MDA↓, SOD↑, MICA↓, Bcl-2↓ Gao et al.
(2012)

In vivo SD rats CIN 80 mg/kg/
d; i.p.

No scoring Gong et al.
(2013)

(Continued on following page)
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RESULTS

Studies Characteristics and Mechanism
In total, 98 potentially relevant studies were screened. Ultimately,
23 experimental studies met the inclusion and exclusion criteria
(Table 1). In Table 1, there are 17 in vivo studies, 2 in vitro
studies, and four both. Of the 23 studies, 12 were on nephrotoxic
drugs and toxins, seven on ischemia-reperfusion, two on contrast
mediums, one on sepsis, and one on severe burns. These studies
involve the use of TMP, including oral, intravenous, and
intraperitoneal injections. Based on the results of these studies,
TMP had a therapeutic effect on AKI caused by a variety of
etiologies. In terms of mechanism, TMP could alleviate AKI by

reducing oxidative stress, inflammation, mitochondrial and other
organelle damage, or affecting cytoprotective mechanisms such as
autophagy or apoptosis (Figure 4). The target highlighted by the
red dashed line in the figure represents the key link for TMP to
exert its effect. These mechanisms are described in detail below.

TMP Relieves Oxidative Stress Injury
Oxidative stress reflects a state of imbalance between the
formation of reactive oxygen and nitrogen and antioxidant
system. Oxidative stress occurs when the production of pro-
oxidants or reactive oxygen species (ROS) exceeds the
endogenous antioxidant capacity (Sies et al., 2017). ROS are
several active molecules and free radicals derived from

TABLE 1 | (Continued) In vivo and in vitro studies of TMP intervention AKI.

Type Animal/
Cell

Model Inducer TMP Histological score Markers References

L-NAME +
indomethacin +
iohexol

SrCr↓, BUN↓, phospho-p38
MAPK↓, FoxO1↓, Bcl-2↑, Bax↓,
iNOS↓, CysC↓, UNAG↓, UGGT↓

In vivo SD rats DI-AKI Cadmium chloride
(CdCl2)

50 mg/kg; i.p. No scoring BUN↓, kim-1↓, indoxyl sulfate↓,
clusterin↓, MDA↓, SOD↓, GR↓,
LDH↓, ALP↓

Lan et al.
(2014)

In vitro HK-2 cells DI-AKI sodium arsenite — No scoring ROS↓, GSH↑, β-catenin↓, NF-κB↓,
p38 MAPK↓, COX-2↓, TNF-α↓,
Cytc oxidase↑, mitochondrial
membrane potential↑

Gong et al.
(2015)

In vitro HK-2 cells DI-AKI sodium arsenite — No scoring HO-1↓, ARS2↓ p38 MAPK↓,
JNK↓, AP-1↓, Nrf2↓, NF-κB↓

Gong et al.
(2016)

In vivo SD rats DI-AKI Cadmium chloride
(CdCl2)

50 mg/kg; i.p. No scoring SrCr↓, BUN↓, MDA↓, 4-HNE↓,
GSH↑, GSH/GSSG↑, SAM↑,
cystathionine↑, MATs↑, CBS↑

Kuang et al.
(2017)

In vivo SD rats CIN L-NAME +
indomethacin +
iohexol

80 mg/kg/
d; i.p.

No scoring SrCr↓, BUN↓, Drp1↓, Mfn2↑,
CCL2↓, CCR2↓, LC3B-II/I↓,
Beclin-1↓, p62↑, procaspase 9↑,
caspase 3↓, TNF-α↓, ROS↓, IL-6↓,
CysC↓, UNAG↓, UGGT↓

Gong et al.
(2019)

In vivo SD rats DI-AKI Cisplatin 50,
100 mg/kg/
d; i.p.

No scoring SrCr↓, BUN↓, HMGB1↓, TLR4↓,
NF-κB↓, TNF-α↓, IL-1β↓, GSH↑,
SOD↑, PPAR-γ↑, Nrf2↑, Bax↓,
Bcl2↑, caspase-3↓, HO-1↑,
NQO1↑, COX-2↓, iNOS↓, Kim-1↓

Michel and
Menze, (2019)

In vivo C57BL/6
mice

Sepsis-
AKI

cecal ligation and
puncture (CLP)

10, 30,
60 mg/kg; i.v.

pathological changes of renal
cortex or outer zone of medulla: 0
= normal; 1 = less than 5%; 2 =
5–25%; 3 = 25–75%; 4= > 75%

Kim1↓, caspase- 3↓, NMDAR1↓ Ying et al.
(2020)

In vivo SD rats I/R injury renal artery clipping +
reperfusion

40 mg/kg; i.p. renal tubular injury: 1 = normal; 2
= 0–10%; 3 = 11–25%; 4 =
26–45%; 5 = 46–75%; 6= > 75%

TNF-α↓, IL-1β↓, IL-6↓, MDA↓,
GSH↑, LC3B-II/I↑, Beclin-1↑

Chen et al.
(2020)

In vivo
and In
vitro

SD rats/
NRK-52E
cells

I/R injury renal artery clipping +
reperfusion/CoCl2/
OGD + reoxygenation

40 mg/kg; i.p. injury in tubules of the outer
medulla: 0 = none; 1 = 0–10%; 2
= 11–25%; 3 = 26–45%; 4 =
46–75%; 5=> 75%

SrCr↓, BUN↓, NOD2↓, TNF-α↓, IL-
6↓, MCP-1↓, caspase-3/cleaved
caspase-3↓, LC3A/B-II/I↑

Jiang et al.
(2020)

In vivo
and In
vitro

SD rats/
NRK-52E
cells

I/R injury renal artery clipping +
reperfusion/OGD +
reoxygenation

200 mg/kg;
p.o.

No scoring SrCr↓, BUN↓, TNF-α↓, IL-6↓,
NLRP3↓, HIF-1α↓, KIM-1↓

Sun et al.
(2020)
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FIGURE 4 | The mechanism of TMP intervention in AKI. The figure summarizes the molecular pathways of TMP treatment of AKI involved in this review. Receptors
such as TNR, TLR, and CCR2 are stimulated by nephrotoxic drugs, LPS, I/R, and inflammatory factors. In addition, hypoxia and I/R can also directly affect the
mitochondrial quality control process and membrane potential, leading to the generation of ROS. The activation of the above receptors and the production of intracellular
ROS can activate downstream pathways, further triggering inflammation, apoptosis, and autophagy, and ultimately leading to kidney damage. TMP can target Nfr2
and HIF-1 to activate the expression of antioxidant factors and enhance cell tolerance to oxidative stress. TMP can also inhibit TLR4 and TNFR or, by activating PPAR-γ,
further inhibit the NF-κB pathway and reduce inflammation. In addition to the targeted inhibition of caspase-8/3/6/7 through the TNFR pathway, TMP can also affect
mitochondrial-related apoptosis by inhibiting the ERK/JNK pathway. There is still controversy regarding the regulation of autophagy by TMP. It is generally believed that
TMP activates the autophagy process and eliminates damaged mitochondria by targeting mitochondrial quality control, ultimately reducing cell damage.
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molecular oxygen, including superoxide anions (O2−) and
hydroxyl radicals (OH). At high concentrations, ROS can be
toxic to macromolecules, including lipids, proteins, and DNA,
leading to the destruction of the integrity and capacity of the cell
structure (Davies, 1987; Sies, 1997). Oxidative stress is an
important pathological mechanism of AKI caused by various
etiologies. In AKI induced by ischemia-reperfusion injury, sepsis,
and contrast mediums, changes in renal hemodynamics can lead
to increased ROS production. In the hypoxic state, electron
transfer in the mitochondrial respiratory chain is obstructed,
causing electron leakage. The leaked electrons combine with
oxygen to generate a large amount of active oxygen (Granata
et al., 2015; Kusirisin et al., 2020). Cisplatin and aminoglycoside
drugs can induce mitochondrial dysfunction and increase the
production of ROS and can also react with thiol-containing
molecules, including glutathione (GSH). The consumption or
inactivation of GSH and related antioxidants leads to the
intracellular accumulation of endogenous ROS (Kruidering
et al., 1997; Sureshbabu et al., 2015). Other studies have also
shown that oxidative stress plays a key role in the development of
AKI. For example, in a mouse model of renal I/R injury, heme
oxygenase-1 knockout (HO-1−/−) mice were found to be more
sensitive to I/R injury, while increasing the incidence of renal
injury and mortality rate (Tracz et al., 2007). Oxidative stress
further leads to downstream effects such as inflammatory
damage, necrosis, and apoptosis. During oxidative stress, TMP
mainly inhibits ROS generation and activates the antioxidant
system. Liu et al. studied the protective effect of TMP on
cisplatin-induced nephrotoxicity in rats, using ligustrazine for
7 consecutive days of intraperitoneal injection, starting from
2 days before a single intravenous injection of cisplatin. The
results showed that cisplatin increased the levels of MDA,
NOS, and NO, while the levels of GSH, GST, and SOD
decreased. These changes were reversed by TMP treatment
(Liu et al., 2008). Nrf2 is an important regulator of the
antioxidant system that can neutralize the activation of cellular
oxidative stress. Under basic conditions, the Keap1/Nrf2 complex
is easily degraded by ubiquitination. However, under oxidative
stress conditions, Keap1 is oxidized, and Nrf2 is introduced into
the nucleus and binds to the antioxidant response element in the
gene promoter region to initiate the transcription of a series of
antioxidant factors (Saito, 2013; Suzuki and Yamamoto, 2015).
Michel et al. found that TMP pretreatment significantly activated
the Nrf2 defense pathway in rats with nephrotoxicity induced by
cisplatin indicated by the increase in levels of Nrf2 and
downstream antioxidant enzymes such as HO-1 and NQO1 in
the kidney. This also shows that TMP inhibits cisplatin-induced
oxidative stress by activating the Nrf2 defense mechanism
(Michel and Menze, 2019). However, the regulation of Nrf2
and HO-1 signals by TMP is obviously complex. For example,
as a response biomarker for arsenic exposure in various types of
cells, HO-1 was observed downregulated by TMP pretreatment in
arsenic-induced nephrotoxicity cell model, so did Nrf2 (Gong
et al., 2016). We speculated that the reasons for the above
contradictory results are multifaceted and complicated. The
protective effect of Nrf2 in the kidney is affected by its
activation degree and duration, and there might be a delicate

balance. Studies have shown that in mice with renal tubule-
specific knockout of Keap1, moderate activation of Nrf2 might
reduce the damage caused by ischemia or nephrotoxic substances,
while excessive and continuous activation of Nrf2 loses this
protective effect (Noel et al., 2016; Tan et al., 2016; Nezu
et al., 2017). Moreover, the transcription of the HO-1 gene is
complicated and might not only be regulated by Nrf2. For
example, sodium arsenite has been shown to cause BACH1-
specific HO-1 induction independent of Nrf2 (Reichard et al.,
2016). Additionally, there is a functional κB element in the
promoter of mouse HO-1 gene, which might be the
mechanism of HO-1 upregulation in vivo mediated by NF-κB
subunits p50 and p65 (Li et al., 2009). Our previously data
indicated clearly that arsenic-induced HO-1 expression is
mediated by multiple pathways, and the corresponding
transcription factors includes Nrf2, NF-κB AP-1, p38 MAPK,
and JNK (but not ERK) (Gong et al., 2016). As an organ rich in
mitochondria, kidney is very susceptible to oxidative stress
mediated damage, thus reducing mitochondrial-derived ROS
might be another important way to protect kidney against
oxidative stress injury (Gorin, 2016). Our previous study also
found that TMP could improve abnormal mitochondrial
dynamics and regulate mitochondrial damage in contrast-
induced nephropathy (CIN) (Gong et al., 2019). In addition,
oxidative stress also interacts with a variety of pathological
processes in the AKI process, including inflammation and
apoptosis, which are discussed below. Therefore, TMP has the
therapeutic potential of antagonizing oxidative stress in AKI
caused by various etiologies.

TMP Improves Inflammation
Inflammation is a physiological process that protects the body
from acute damages such as ischemia, pathogens, or toxins.
Inflammation is believed to play an important role in the
pathogenesis of AKI. Basically, all immune cells, such as
neutrophils, monocytes/macrophages, and NK cells are
involved in the pathogenesis of AKI to varying degrees (Rabb
et al., 2016). Activation of the inflammatory process in AKI is
caused by multiple pathways. In models of ischemia, sepsis, and
nephrotoxicity, the initial damage occurs in the tubular
epithelium and vascular endothelial cells (Akcay et al., 2009).
The above-mentioned damage induces the production of
inflammatory mediators such as inflammatory factors,
chemokines, and adhesion factors (TNF-α, TGF-β, IL-6, IL-1β,
IL-18, CCL2, MCP-1, ICAM-1, and P-selectin), which help
recruit leukocytes to the kidney. Neutrophils, macrophages,
and lymphocytes infiltrate the injury site (McWilliam et al.,
2021). In addition, oxidative stress can promote inflammation,
and cell damage caused by inflammation further aggravates
oxidative stress (Tucker et al., 2015). In the tetracycline-
induced AKI rat model, the use of mitochondrial-targeted
antioxidants significantly reduced the accumulation of
dendritic cells and T cells in the kidney tissue, suggesting that
mitochondrial-derived ROS are involved in antigen presentation
and T-cell activation (Gentle et al., 2013). Under oxidative stress,
NADPH oxidase (NOX) can interact with Toll-like receptor 4
(TLP4) to directly activate the nuclear transcription factor NF-κB
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pathway, leading to an increase in the transcription of
downstream inflammatory mediators and further increasing
inflammation (El-Benna et al., 2016). Most of the studies in
Table 1 show an inhibitory effect on the level of inflammatory
mediators, and the regulation of the NF-κB pathway is the key to
TMP. NLRP3 is a member of the nucleotide-binding
oligomerization domain-like receptor protein family (NLRPs)
and is a common inflammasome. It promotes the maturation
of the pro-inflammatory factors IL-1β and IL-18 by activating
caspase-1 (Liston and Masters, 2017; Shi et al., 2017). The
expression of signal sensing receptors such as TLRs and
TNFRs and downstream gene expression proteins such as NF-
κB and ROS is involved in the activation of NLRP3 (Xue et al.,
2019). Many studies have shown that the NLRP3 inflammasome
and its downstream apoptosis and inflammation play important
roles in the occurrence and development of AKI (Bakker et al.,
2014; Shen et al., 2016). Sun et al. explored the protective effect of
TMP on renal ischemia-reperfusion injury in rats and its
potential mechanism. The expression level of NLRP3 in NRK-
52E cells increased after hypoxia and glucose deprivation, and
decreased significantly after TMP treatment (Sun et al., 2020). As
an important member of the CC subfamily of chemokines, CCL2
is also called monocyte chemotactic protein-1 (MCP-1). CCL2 is
formed under pathological conditions such as pro-inflammatory
stimuli (IL-8, TNF-α, and LPS stimulus). It usually binds to the
extracellular specific ligand CCR2 to mediate the migration and
activation of a variety of inflammatory cells (Kawaguchi-Niida
et al., 2013). Our previous study found that the abundance of
CCL2 and CCR2 in the renal tubules of rats with contrast-
induced nephropathy (CIN) increased, accompanied by an
increase in the concentration of IL-6 and TNF-α in the kidney
and serum, and TMP could inhibit the CCL2/CCR2 pathway
activation (Gong et al., 2019). The peroxisome proliferator-
activated receptor (PPAR) is a member of the superfamily of
nuclear transcription factors activated by ligands (Wu et al.,
2018). PPAR-γ can inhibit the inflammatory response by
competing with the inflammatory signaling pathway and the
production of inflammatory mediators such as activator protein-
1 (AP-1) and NF-κB (Ju et al., 2020). Studies have found that
PPAR-γ expression is significantly reduced in cisplatin-induced
acute kidney injury in rats, and TMP administration can
significantly improve this change (Michel and Menze, 2019).
In summary, TMP is a promising anti-inflammatory agent for
treating AKI.

TMP Inhibits Apoptosis
Apoptosis refers to the biochemical process of cell breakdown
by a set of specific proteins that interact with each other and
program death-inducing signals. Unlike necrosis, apoptosis
does not cause inflammation (Kønig et al., 2019). When a cell
receives an apoptosis signal, it activates the initial caspases
through different signaling pathways, reactivates the effector
caspases, and degrades related substrates, eventually leading to
cell apoptosis (Chota et al., 2021). Since there are many
apoptotic signaling pathways, the upstream regulation of
caspases is also different. Bcl-2 family molecules are
involved in upstream regulatory pathways for the reception

and transmission of apoptosis signals. They mainly regulate
apoptosis via the mitochondrial pathway. When pro-apoptotic
proteins receive apoptosis signals, they can release cytochrome
C (Cytc) from the mitochondria to activate downstream
caspases, then causing apoptosis (Singh et al., 2019). The
permeability of the mitochondrial membrane is regulated by
Bcl-2 family proteins. In renal epithelial cells, Bcl-2 members
Bax and Bak cause an increase in membrane permeability,
while Bcl-2 and Bcl-XL antagonize this “membrane attack”
effect (Youle and Strasser, 2008). Intrarenal stress and
ischemia both increase the ratio of Bax/Bcl2, which is the
main determinant of cell death (Chien et al., 2005; Liu and
Baliga, 2005). In most AKI models, the adjustment effect of
TMP on the ratio of Bax/Bcl2 has been confirmed in many
studies. Juan et al. showed that gentamicin significantly
induced apoptosis in NRK-52E cells in a dose-dependent
manner. TMP pretreatment can inactivate the activities of
caspase-3, caspase-8, and caspase-9 stimulated by
gentamicin, inhibit the release of Cytc, and increase the
expression of Bcl-XL (Juan et al., 2007). Although renal
tubular cell apoptosis is often reported in various AKI
models, the upstream signaling pathways leading to
apoptosis may be different (Havasi and Borkan, 2011;
Linkermann et al., 2013). Although there are different
initiation mechanisms, most apoptotic pathways cluster on
the mitochondria. The endogenous mitochondrial apoptotic
pathway begins with oxidative stress. ROS and other stress
products enter the mitochondria with the Bax/Bcl-2 protein
complex, promote the increase in mitochondrial permeability
with other pro-apoptotic genes, and then release Cytc
(Galluzzi et al., 2018). Therefore, the anti-oxidative stress
ability of TMP can regulate the mitochondrial apoptosis
pathway from the source. There is also a close relationship
between apoptosis and mitochondrial dynamics. Previous
studies have shown that in the early stage of apoptosis, Bax
is transferred from the cytoplasm to the mitochondria before
the caspases are activated, and, at the same time, dynein-
related protein 1 (DRP1) is also transferred from the
cytoplasm to the mitochondrial division site and then
mediates mitochondrial division (Suen et al., 2008).
Inhibiting the activity of Drp1 not only inhibits
mitochondrial division but also inhibits the activation and
apoptosis of caspases (Hoppins and Nunnari, 2012). In
addition, high expression of mitochondrial outer membrane
fusion proteins Mfn1 and Mfn2 can also inhibit apoptosis (Jian
et al., 2018). Our previous found that TMP could improve
abnormal mitochondrial dynamics by upregulating Mfn2 and
downregulating Drp1 and alleviating the apoptosis of tubule
epithelial cells caused by contrast agents (Gong et al., 2019). In
addition, the external pathway of apoptosis mediated by TNFR
may also be involved in renal tubular cell apoptosis in ischemic
and septic AKI (Cunningham et al., 2002; Linkermann et al.,
2014). TNFR knockout mice are resistant to cisplatin-induced
AKI, supporting this pathogenesis (Ramesh and Reeves, 2004).
TMP can simultaneously regulate the upstream ligand (TNF-
α) and downstream signaling pathways (JNK and NF-κB) of
the TNFR-mediated apoptosis pathway.
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TMP Adjusts Autophagy
Autophagy is a process in which a double-membrane
autophagosome encapsulates cytoplasm, organelles, and
protein polymers and is transported to lysosomes for
catabolism (Youle and Narendra, 2011). Under normal
physiological conditions, low levels of basal autophagy
maintain cell homeostasis by removing damaged proteins and
organelles. The autophagy pathway is upregulated in stress states
such as cell starvation, hypoxia, and endoplasmic reticulum stress
(Feng et al., 2014). Autophagy is non-selective, but it can also
selectively degrade damaged organelles such as mitophagy to
clear damaged mitochondria. The formation of autophagosomes
depends on the coordination of autophagy-related proteins,
which mainly include the ULK1/2 complex, Beclin-1/class III
PI3K complex, and autophagy-related genes (ATG). LC3-II is
located in pre-autophagosomes and autophagosomes, and its
level increases with the increase in autophagosome
membranes. The Beclin-1/class III PI3K complex promotes the
nucleation of autophagosomes on the phagocytic vesicle
membrane. Both LC3-II and Beclin-1 are markers for
autophagy detection (Dancourt and Melia, 2014). There are
many reports on the link between AKI and autophagy, most
of which indicate the protective effect of autophagy on AKI.
Studies have found that the expression of LC3 in proximal tubule
cells of ATG5-deficient mice after renal I/R injury is inhibited,
suggesting that basic autophagy has a protective effect against
renal injury caused by I/R injury (Kimura et al., 2011). In the CI-
AKI rat and cell models established with iohexol, it was found
that the expression of autophagy marker LC3-II in renal tubular
epithelial cells increased, the mitochondrial damage of renal
tubular cells increased after the use of autophagy inhibitors,
and apoptosis increased (Ko et al., 2016). Although most
studies have found that autophagy activated in renal tubular
epithelial cells of various AKI plays a protective role, a few studies
have suggested that autophagy aggravates cell damage in AKI.
Chen et al. found that TMP could reduce renal I/R damage by
enhancing autophagy, indicated by increased LC3-II/I ratio and
Beclin-1 in kidney tissue (Chen et al., 2020). Another study found
that TMP reduced inflammation in renal I/R injury and was
related to the activation of autophagy (Jiang et al., 2020).
Interestingly, in a study on CI-AKI, we found that the
mechanism by which TMP protected the kidney from contrast
agent damage was partly related to the inhibition of autophagy
(Gong et al., 2019). The reason for this apparently contradictory
result may be related to the different AKI models. Some studies
have reported that autophagy induces cell metabolism imbalance
and induces cell death in renal tubular epithelial cells induced by
contrast agents, and this result can be attenuated by curcumin
(Buyuklu et al., 2014). This shows that the role of autophagy in
AKI is still controversial. As an upstream regulator of autophagy
induction, ROS not only induces autophagy through the
mitochondrial pathway but also induces mitophagy through
the signaling pathway mediated by HIF-1 (Scherz-Shouval and
Elazar, 2007; Zhang et al., 2008). The regulation of oxidative stress
and HIF-1 by TMP is also one of the ways to regulate autophagy.
In addition, there is an interaction between autophagy and
apoptosis. In response to stress such as hypoxia, autophagy

can prevent cells from triggering the apoptotic pathway by
degrading misfolded proteins and damaged organelles. The
inhibitory effect of Bcl-2 family proteins on autophagy in
renal tubular cells has been confirmed in many experiments.
In Bcl-2/GFP-LC3 transgenic mice, autophagy induced by
ischemia-reperfusion was attenuated (Isaka et al., 2009).
Studies have shown that enhancing the expression of Bcl-XL
in the kidney is sufficient to inhibit autophagy induction and
apoptosis (Chien et al., 2007). Regarding the mechanism by
which Bcl-2 downregulates autophagy, it is generally believed
that Bcl-2 family proteins bind Beclin-1 through the BH3
domain, blocking the necessary process of autophagosome
formation. The details of the simultaneous regulation of
autophagy and apoptosis by TMP are still unclear, and this
may be a promising research direction. In short, the
mechanism by which TMP interferes with autophagy in AKI
is unclear, and there are still controversies.

THE POTENTIAL OF TMP PREVENTS CKD
AND RENAL FIBROSIS

AKI and CKD are very tightly linked by each other. Many studies
suggested that AKI is also an important inducement of chronic
kidney disease (CKD) (Horne et al., 2017; See et al., 2019). There are
many published data of TMP against CKD as well as renal fibrosis.
In China, several TMP injections have been used to treat CKD in
clinical, especially in diabetic nephropathy patients (Wang et al.,
2012). Cao et al. reported that TMP had an inhibitory effect on the
proliferation of human renal interstitial fibroblasts in a time- and
concentration-dependent manner (Cao et al., 2006). Unilateral
ureteral obstruction (UUO) model is a classic model for studying
renal fibrosis, Yuan et al. reported that TMP treatment could reduce
the score of interstitial collagen deposition, the density of
macrophages, and the mRNA expressions of TGF-β1 and CTGF
in this rat model (Yuan et al., 2012). The matrix accumulation
caused by the reduction of the ratio of MMPS/TIMPS is the basic
pathophysiological process of renal interstitial fibrosis (Kelly et al.,
2010). Studies had found that TMP could inhibit the high expression
of TIMP-1 and the imbalance of MMP-9/TIMP-1 ratio in UUO
model rats, and thereby slow the progression of renal fibrosis (Li
et al., 2017). TGF-β/Smad3 is themain pathway of renal fibrosis, and
Smad7 could block the phosphorylation of Smad3, thereby limiting
the effect of TGF-β (Meng et al., 2016; Chen et al., 2018). The results
of Lu et al. showed that TMP could reduce the content of TGF-β1 in
kidney tissue and restore the expression levels of Smad reverse
regulators Smad7 and SnoN protein (Lu et al., 2009). In addition,
aristolochic acid is very toxic to kidney, which would cause
tubulointerstitial damage and renal fibrosis, and TMP has been
reported to reduce the kidney damage caused by aristolochic acid in
rats (Wang et al., 2006).

CONCLUSION AND PERSPECTIVE

Considering the importance of oxidative stress and inflammation
in AKI, the application of TMP in AKI treatment deserves

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 8200719

Li and Gong TMP against AKI and RF

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


attention. The present study mainly focuses on the experimental
research of TMP in preventing AKI, and aims to synthesize the
current knowledge in this field, concurrently, this study also briefly
sums up the effects of TMP against renal fibrosis and CKD. Based on
the collected data, TMP not only improves kidney function, reduces
the level of kidney injury markers (including kim-1, CysC, UNAG,
and UGGT), but also decreases the degree of pathological damage in
kidney. Although the pathological mechanisms of AKI caused by
various factors are different, the preventive effects of TMP against
AKI are inseparable from the following four processes: oxidative
stress, inflammatorymediators, apoptosis, and autophagy. These data
support the potential application of TMP as a new therapeutic drug
for AKI. It should be noted that these data mainly are preclinical
studies, and the clinical application of TMP in AKI treatment still
needs more rigorous clinical research data. As mentioned above, our
group has been focusing on the basic experimental research of TMP
against CI-AKI formore than 10 years (Gong et al., 2013, 2019; Gong,
2018; Norgren and Gong, 2018), and we hope these basic
experimental research data should promote the followed clinical
research progress of TMP treating CI-AKI and other types of
AKI, not just for anti-renal fibrosis and the treatment of CKD.
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GLOSSARY

ALP alkaline phosphatase

ANP acute necrotizing pancreatitis

ARS2 Arsenic response protein 2

BUN blood urea nitrogen

CBS cystathionine-beta-synthase

CIN contrast-induced nephropathy

COX-2 cyclooxygenase-2

ET-1 endothelin-1

FoxO1 Fork-head box O1 transcriptional factor

GR glutathione reductase

GSH glutathione

GSSG glutathione disulfide

GST Glutathione-S-transferase

HAX-1 HS-1-associated protein

HMGB1 high mobility group box 1

HIF-1 hypoxia inducible factor-1α

HO-1 Heme oxygenase-1

ICAM-1 intercellular cell adhesion molecule-1

IL interleukin

I/R Ischemia-reperfusion

kim-1 kidney injury molecule-1

LDH lactate dehydrogenase

LPO lipid peroxidation

MAPK Mitogen-activated protein kinase

MATs methionine adenosyltransferases

MCP-1 monocyte chemoattractant protein

MDA malondialdehyde

MICA major histocompatability complex class I chain-related antigen A

NAG N-acetyl-b-D-glucosaminidase

NF-κB Nuclear factor-κB

NLRP3 nucleotide-oligomerization domain-like receptor 3

NMDARs N-methyl-d-aspartate receptors

NO Nitric oxide

NOD2 Nucleotide-binding oligomerization domain-containing 2

NOS nitric oxide synthase

NQO1 NAD (P) H: quinone oxidoreductase 1

Nrf2 Nuclear factor erythroid derived-2

OGD oxygen-glucose deprivation

PGI2 prostaglandin I2

PPAR-γ peroxisome proliferator-activated receptor-gamma

ROS reactive oxygen species

SAM S-adenosylmethionine

SOD superoxide dismutase

SrCr serum creatinine

TBSA total body surface area

TLR4 toll-like receptor 4

TNF-α tumor necrosis factor

TOX total antioxidant activity

TXA2 thromboxane A2

4-HNE 4-hydroxynonenal
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