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Abstract
Understanding the underlying mechanisms of COVID-19 progression and the impact of various pharmaceutical
interventions is crucial for the clinical management of the disease. We developed a comprehensive mathematical
framework based on the known mechanisms of the SARS-CoV-2 virus infection, incorporating the renin-angiotensin
system and ACE2, which the virus exploits for cellular entry, key elements of the innate and adaptive immune
responses, the role of in�ammatory cytokines and the coagulation cascade for thrombus formation. The model
predicts the evolution of viral load, immune cells, cytokines, thrombosis, and oxygen saturation based on patient
baseline condition and the presence of co-morbidities. Model predictions were validated with clinical data from
healthy people and COVID-19 patients, and the results were used to gain insight into identi�ed risk factors of
disease progression including older age, co-morbidities such as obesity, diabetes, and hypertension, and
dysregulated immune response 1,2. We then simulated treatment with various drug classes to identify optimal
therapeutic protocols. We found that the outcome of any treatment depends on the sustained response rate of
activated CD8+ T cells and su�cient control of the innate immune response. Furthermore, the best treatment –or
combination of treatments – depends on the pre-infection health status of the patient. Our mathematical framework
provides important insight into SARS-CoV-2 pathogenesis and could be used as the basis for personalized, optimal
management of COVID-19.    

Background
COVID-19 has created unprecedented challenges for the healthcare system, and until an effective vaccine is
developed and made widely available, treatment options are limited. A challenge to the development of optimal
treatment strategies is the extreme heterogeneity of presentation. Infection with SARS-CoV-2 results in a syndrome
that ranges in severity from asymptomatic to multi-organ failure and death. In addition to local complications in the
lung, the virus can cause systemic in�ammation and disseminated micro thrombosis, which can cause stroke,
myocardial infarction or pulmonary emboli3-6. Risk factors for poor COVID-19 outcome include advanced age,
obesity, diabetes and hypertension 1,7-13.

Computational analyses can provide insights into the transmission, control, progression and underlying
mechanisms of infectious diseases. Indeed, epidemiological and statistical modeling has been used for COVID-19,
providing powerful insights into co-morbidities, transmission dynamics and control of the disease 14-17. However, to
date, these analyses have been population dynamics models of SARS-CoV-2 infection and transmission or
correlative analyses of COVID- 19 comorbidities and treatment response. Simple viral dynamics models have been
also developed and used to predict the SARS-CoV-2 response to anti-viral drugs18,19. All these models, however, do
not explicitly consider the biological or physiological mechanisms underlying disease progression or the time-course
of response to various therapeutic interventions.

Several therapies targeting various aspects of COVID-19 pathogenesis have been proposed and have either
completed – or are currently being tested in – clinical trials 20. Despite strong biologic rationale, these treatments
have generally produced con�icting results in the clinic. For example, the initial trials of the anti-viral remdesivir have
been mixed: the original trial from China failed21, while the recent trial in the US is more encouraging and has led to
the approval of remdesivir in the US and other countries 22. Other anti-viral drugs alone or in combination are also
showing promise 23.
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Other potential treatments include anti-in�ammatory drugs and anti-thrombotic agents. Because of the systemic
in�ammation seen in many patients, anti-in�ammatory drugs have been tested, including anti-IL6/IL6R therapy (e.g.,
tocilizumab, siltuximab) and anti-JAK1/2 drugs (e.g. barcitinib). It is not clear if these drugs will be effective as
stand-alone treatments, particularly after the recent failure of tocilizumab in a phase III trial 3,24-26. In addition, given
that a common complication of COVID-19 is the development of coagulopathies with microvascular thrombi
potentially leading to the dysfunction of multiple organ systems4,5, anti-thrombotic drugs (e.g., low molecular weight
heparin) are being tested. Recognizing the interactions of COVID-19 with the immune system 27, the corticosteroid
dexamethasone have been tested, showing some promising results. Given the large range of patient comorbidities,
disease severities, and variety of complications such as thrombosis, it is likely that patients will have heterogeneous
responses to any given therapy, and such heterogeneity will continue to be a challenge for clinical trials of
unselected COVID-19 patients28.

Here, we developed a systems biology-based mathematical model to address this urgent need. Our model
incorporates the known mechanisms of SARS CoV-2 pathogenesis and the potential mechanisms of action of
various therapeutic interventions that have been tested in COVID-19 patients. In previous work, we have exploited
angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEis) for the improvement of
cancer therapies and developed mathematical models of the renin-angiotensin system in the context of cancer
desmoplasia 29-32 . Using a similar approach, we developed a detailed model that includes lung infection by the
SARS-CoV-2 virus and a pharmacokinetic/pharmacodynamic (PK/PD) model of infection and thrombosis to
simulate events that take place throughout the body during COVID- 19 progression (Figure 1 and Supplementary
Figure 1). The model is �rst validated against clinical data of healthy people and COVID-19 patients and then used
to simulate disease progression in patients with speci�c co-morbidities. Subsequently, we present model predictions
for various therapies currently employed for treatment of COVID-19 alone or in combination, and we identify
protocols for optimal clinical management for each of the clinically- observed COVID-19 phenotypes.

Model Description
The model includes SARS-CoV-2 infection, the renin angiotensin system (RAS), in�ammatory and anti-in�ammatory
cytokines, innate and adaptive immune cells, and factors involved in the coagulation cascade (Fig. 1). SARS-CoV-2
enters the cell by docking to ACE2, a key component of the RAS. ACE2 can be membrane-bound or soluble, and it
regulates in�ammation by converting Ang II to Ang 1-7 and Ang I to Ang 1-9; as opposed to Ang I and Ang II, which
lead to in�ammation. Ang 1-7 and Ang 1-9 have anti-in�ammatory effects. Intracellular virus initiates in�ammatory
pathways through toll-like receptors and NFkB, which produces interferons and other in�ammatory cytokines. The
viral antigens, along with in�ammatory cytokines, cause activation of naïve T cells, creating virus-speci�c T effector
cells. T cell activation is controlled by viral antigen strength and the presence of PD-L1 / PD-1 inhibition. We
combine in�ammatory cytokines into a single variable, but explicitly account for IL6 production via the trans
pathway in epithelial and endothelial cells and the canonical pathway in immune cells. In the presence of
in�ammatory cytokines and virus, neutrophils can produce neutrophil extracellular traps (NETs).

Because the virus can infect endothelial cells, we also consider viral dissemination via the blood stream, and the
possibility of systemic infection and thrombosis. We include the major organs in a PK/PD model, with physiological
blood �ow patterns explicitly modeled. Infection of endothelial cells, combined with high levels of in�ammatory
cytokines in the plasma, can result in thrombosis. Damage to virally-infected endothelial cells and the production of
NETs can exacerbate the thrombosis, and microthrombi can enter the blood stream to accumulate in other organs,
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including the brain, heart and lung. We use a simpli�ed model of the coagulation pathways, assuming that
formation of microthrombi is proportional to the number of infected endothelial cells, the presence of neutrophil
NETs, and the level of in�ammatory cytokines. Transport of oxygen from the alveolar space to the blood vessels in
the lung is calculated using a modi�ed diffusion model, which accounts for damage-induce thickening of the
alveolar membrane 33.

Results
Model validation with data of healthy people and various COVID-19 phenotypes.

Model predictions were validated with clinical data from healthy humans and severe COVID-19 patients 34-36. Figure
2A-D presents the comparison showing agreement between model predictions and clinical data for Angiotensin II
(Ang II), Neutrophils, CD8+ T cells and IL6 levels. Figure 2E further validates model predictions for the evolution of
IL6 in COVID-19 patients admitted to the intensive care unit of Massachusetts General Hospital 37.

Subsequently, we focused on the clinically observed phenotypes of COVID-19. We used the model to predict the time
evolution of critical disease variables, namely the virus load, levels of IL6 and other pro-in�ammatory cytokines, the
formation of microthrombi in the lung, the numbers of neutrophils, macrophages and activated cytotoxic CD8+ T
cells, and the blood oxygen saturation (SpO2). The COVID-19 patient phenotypes considered include young patients
(age<35), older patients (age>65) who more frequently require hospitalization, female patients, as well as patients
with co-morbidities such as hypertension, obesity and diabetes, and patients with a dysregulated immune response,
whose condition is characterized by high levels of pro-in�ammatory cytokines (Figure 3). Supplementary Table 2
presents the model parameters that were modi�ed from the baseline values to account for these various patient
phenotypes. In all phenotypes, the viral load increases during early lung infection with divergent trajectories seen
after day 5, depending on the levels of activated T cells. In younger patients (age<35) with a healthy immune
system, the sustained recruitment of T cells results in a reduction in viral load and in�ammation, as well as a
decrease in neutrophils and macrophages. All these effects cause a signi�cant reduction in the formation of
thrombi and restoration of oxygenation.

In general, the simulations resulting in poor outcome were due to increased baseline in�ammation or more active
innate immune response combined with less effective adaptive immunity. This was the case –in varying degrees—
for older patients and those with diabetes, obesity, hypertension, and dysregulated immunity (“hyper-in�amed”; see
supplement Table 2 for the parameters varied in each population). In the latter case, the adaptive immune response
is intact and clears the virus, but the innate immune response is sustained, perpetuating in�ammation, thrombosis
and hypoxemia.

An outstanding question is why males tend to have more severe COVID-19 disease compared with females 38.
Proposed mechanisms include the higher CD4/CD8 T cell ratio in females39 and androgen-induced differences in
susceptibility to viral entry into the cells due to higher TMPRSS levels in males 40. To simulate COVID-19 in an older
female, we decreased the production of naïve T cells and the rate of virus entry into the cells 41. The simulations
predict lower viral load compared with the older males, with correspondingly less in�ammation and hypoxemia.
These results suggest that reduced viral entry into cells due to lower TMPRSS2 level can explain the improved
outcomes in females—even if the adaptive immune response is not as vigorous38.
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E�cacy of current treatments on COVID-19 progression
To identify optimal treatment protocols, we simulated the effects of the various treatments currently being
investigated for COVID-19. We �rst simulated a patient of age >65 years (assumed to have baseline in�ammation
and impaired T effector cell function) and performed simulations of various treatments given at early (day 3,
SpO2�92%) and late (day 7, SpO2<90%) stages of the disease. For the purpose of the simulations, day 0 is the time
of arrival of the virus in the lung, so signi�cant symptoms are expected starting around day 3. Simulating treatment
on day 3 represents early treatment (e.g., upon hospital admission); later treatment (day 7) could be due to delayed
diagnosis/hospital admission or in response to disease progression. Treatments that were considered include:
heparin (anti-coagulant), anti-viral therapy, dexamethasone, ARBs, ACEi, hrACE2, anti-IL6 and anti-IL6R treatment.
Supplementary Table 2 summarizes the model parameters that were modi�ed from their baseline values to account
for the different treatments. The severity of disease was primarily assessed based on the degree of hypoxemia and
thrombus formation. The dynamics of the disease progression are shown in Supplementary Figure 2 and the values
at the last day of the simulation (day 20) are summarized in Table 1.

Unsurprisingly, we found that heparin decreases thrombus formation and improves oxygenation when administered
during early stages of disease, but has no effect on viral load. The anti-viral remdesivir is effective in reducing viral
load in early stages, but less effective in reducing thrombus formation and improving oxygenation. Interestingly,
dexamethasone is helpful when started later, but early administration can prevent the production of activated T
cells, making it di�cult to reduce the viral load. This mirrors the data from the RECOVERY trial, where
dexamethasone was demonstrated to improve outcomes in patients requiring ventilatory support, but not in those
with milder symptoms. These simulations also identify IL-6 directed therapies as potential therapeutics that may
bene�t patients if started early in the disease course. As far as inhibitors of the RAS are concerned, both ARBs and
ACEi show modest bene�ts only when administered early, whereas the model predicts a signi�cant bene�t from the
use of hrACE2 on day 7, but not day 3.

Optimizing clinical management of COVID-19 by
combining therapies
Because of the diverse mechanisms involved in COVID-19 pathogenesis, clinical management currently involves
combination of multiple therapies in an effort to optimize therapeutic outcomes. To investigate the effects of
combination treatments, we performed simulations combining various therapeutic approaches in pairs, using the
best treatment time for each single treatment (i.e., day 3 or day 7, Table 1). We also accounted for older patients and
those with co-morbidities and dysregulated immune responses. Table 2 presents a summary of the combined
treatments for older patients (>65 years); the results for the other COVID-19 phenotypes are presented in
Supplementary Tables 3-6. According to the model predictions, effective clinical management of older patients (with
some baseline in�ammation and impaired adaptive immunity) involves combination of heparin (day 3) with
dexamethasone (day 7), which can improve oxygenation and decrease micro-thrombosis signi�cantly; however,
these treatments have little effect on viral load. For patients with obesity or hypertension, the combination of
heparin with dexamethasone is again bene�cial compared to other treatments. In addition, the use of anti-IL6/anti-
IL6R therapy could also be considered in both these patient populations. For diabetic patients, the combination of
heparin with dexamethasone can improve oxygenation and thrombus formation similar to the other scenarios.
Other treatments predicted to be bene�cial for this phenotype is the combination of dexamethasone with hrACE2 or
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anti-IL6/anti-IL6R. These combination therapies in diabetic patients can treat hypoxemia and coagulation but also
reduce the viral load. For patients with dysregulated immune systems, early blockade of IL6 combined with
dexamethasone on day 7 give optimal results; anti-IL6/anti-IL6R combined with anti-viral therapy and/or heparin
could also be considered.

Discussion
COVID-19 is a complex disease that can affect multiple organs and is characterized by extremely heterogenous
presentation. As with other critical care syndromes such as septic shock, and non- COVID-19 ARDS disease severity
results from a complex interplay of viral replication, adaptive and maladaptive immune response and patient
comorbidities. Such heterogeneity is a challenge to the development of effective therapies as candidate approaches
may elicit different responses depending on the phase of illness or patient comorbidities. Because of the complexity
of the underlying mechanisms and interactions among the various components involved in the disease, the
response of COVID-19 patients to any treatment is not intuitive and for that reason we developed a highly
sophisticated mathematical model to provide insights into the underlying mechanisms and predict optimal
treatment strategies.

A main conclusion of our study is that disease progression and outcome of any treatment largely depends on the
response rate of activated CD8+ T cells and subsequent control of the innate immune system response. A sustained
activation of CD8+ T cells along with the control of the populations of neutrophils and macrophages can lead to a
decrease in viral load and in�ammation. This, in turn, will improve arterial oxygen saturation levels due to the
decreased endothelial damage and micro thrombosis, and limited formation of neutrophil extracellular traps
(NETs)42. In line with these conclusions about the underlying mechanisms of the disease, our model predicts that
anti-viral and anti-in�ammatory drugs that were �rst employed to treat COVID-19 might have limited e�cacy,
depending on the stage of the disease progression. Furthermore, our simulations suggest that an optimal approach
would be to enhance the adaptive immune response in the early stages while limiting harmful in�ammation in the
later stages of the disease. We also found that addition of heparin to the treatment regimen of COVID-19 can
improve therapeutic outcomes. In case of patients with co-morbidities (obesity, diabetes, hypertension) or
dysregulated immunity, the treatment regimen could further include anti-in�ammatory drugs (e.g., anti-IL6/anti-IL6R)
and RAS inhibitors and hrACE2 for the diabetic patients in particular.

Our mathematical modeling framework is subject to certain limitations. The model is able to account for the
currently-known components and interactions involved in disease pathogenesis but results in a large number of
model parameters. Most of the values of these parameters were taken from the literature. However, because COVID-
19 is a new disease, many of the parameter values are not known yet. For these parameters, it was necessary to
make reasonable assumptions about their values, as summarized in Supplementary Table 1. We further validated
the model predictions quantitatively with available clinical data for healthy and infected humans and qualitatively
based on clinical observations for the different COVID-19 phenotypes. Our mathematical framework can be further
re�ned as new mechanisms and more data become available and can be adapted for other diseases similar to
COVID-19.

Another limitation of the model is that it does not account for adverse effects of the various treatments considered
in this study, which could affect the therapeutic outcome. For instance, heparin use might be associated with
hemorrhage and RAS inhibitors can reduce blood pressure. Even though incorporation of adverse effects could be
important, they would not affect the basic conclusions of the study and were omitted to avoid adding further
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complexity to the model. In conclusion, this study presents a mathematical representation of the known
mechanisms of COVID-19 and could be utilized by the scienti�c community as a useful tool for further
understanding the disease and investigating the bene�ts of treatments on a patient-speci�c basis.

Methods
A detailed description of model equations, the description and values of model parameters and the solution strategy
are provided in the Supplementary Information. The mathematical model consists of two components: a detailed
model of lung infection by the SARS-CoV-2 virus and a pharmacokinetic/pharmacodynamic (PK/PD) model of
COVID-19 infection and thrombosis to simulate events that happen throughout the body (Figure 1). The lung model
incorporates the infection of epithelial and endothelial cells by the SARS-CoV-2 virus through ACE2 modulation and
activity, the release of pro-in�ammatory cytokines and the entire RAS. Cytokines that are central to COVID-19 (e.g.,
IL-6) are explicitly accounted for in the model, incorporating all known signaling pathways, such as the canonical
and trans signaling pathway of IL-6 and its interaction with IL-6r and soluble IL-6r. Additional innate immune cells,
speci�cally neutrophils and macrophages, are incorporated into our model along with the interaction of immune
cells with viral particles and infected cells as well as the formation of neutrophil extracellular traps (NETs). The
model incorporates the recruitment of cytotoxic T cells by the infected cells and by IL-6 as well as the virus killing of
cytotoxic T cells. In addition, the model accounts for the role of immune cells in modulating the expression of pro-
in�ammatory cytokines. Subsequent events, such as the impairment of the vascular network owing to the infection
of endothelial cells by the SARS-CoV- 2 virus and the resulting changes in blood oxygenation are also included.

To study how the virus affects systemic events, such as in�ammation and thrombosis, we coupled the lung model
with a PK/PD model of viral infection. The PK/PD model represents the major organs of the body as compartments
connected in an anatomical manner by the blood and lymphatic circulations (Supplementary Figure 1). The organ
compartments are then further subdivided into vascular and extravascular sub-compartments, and each organ has
a draining lymph node compartment. Brie�y, the main transport processes for the biochemical species include: i)
convective and diffusive transport across capillary walls, ii) reversible, non-saturable, nonspeci�c binding in the
extravascular compartments, iii) reversible, and saturable, speci�c binding of virus to endothelial cells, and
probabilistic infection of bound cells. Any infected cell generates microthrombi, which enter the circulation and can
accumulate in target organs including brain, heart and lung. Each species can be produced, bound or degraded
within each compartment. Blood �ow is distributed according to known �ows through each organ, and the overall
mass balance allows calculation of the concentration of each species in each compartment over time. The PK/PD
model includes the following key processes involved in the tra�cking of viruses: i) transport from the lung via the
systemic circulation, ii) entry into endothelial cells via binding to ACE2, iii) entry into the cell and replication, iv) exit
from the cell and entry into the blood circulation. The important outputs of the model are the level of thrombosis in
each organ and the viral load. When coupled with the lung model, we are able to analyze the dynamics of these
readouts in light of local lung pathologies and predicted cytokine levels.

The model consists of a set of 90 partial and ordinary differential equations. The values of the model parameters
are summarized in Supplementary Table 1. We simulated COVID-19 infection and progression within a period of 20
days. Notice that the model does not account for the �rst stages of virus infection of the upper respiratory tract but
from the time the virus has infected the lungs. Therefore, day 0 of the simulations corresponds to the initiation of
lung infection. For the formulation of the model and the solution of the equations, the commercial �nite elements
software COMSOL Multiphysics v.5.5 was used. The computational �nite element mesh employed in the present
study consisted of 2,440 elements resulting in 1,201,044 degrees of freedom. The solution was tested and found to
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be mesh-independent, the PARDISO solver was selected for the solution of the model equations and the total
solution time was approximately 30 minutes.

Data availability. All data supporting the �ndings of this study are available in the paper and the Supplementary
Information.

Code availability. The COMSOL code will become available in Zenodo upon acceptance of the manuscript.
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Tables
Table 1.  Summary of model predictions for the therapeutic outcome of currently employed
treatments initiated either in the beginning (day 3) of the disease or later (day 7). The table presents
the results at the end of the simulation (day 20). Values have been normalized to the corresponding
initial values except for SpO2.

 

Table 2. Summary of model predictions for the therapeutic outcome of combined treatments for
patients > 65 years old. The table presents the results at the end of the simulation (day 20). Values
have been normalized to the corresponding initial values except for SpO2.
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Figure 1

Schematic of the detailed lung model. The model incorporates the virus infection of epithelial and endothelial cells,
the RAS, T cells activation and immune checkpoints, the known IL6 pathways, neutrophils and macrophages, as
well as the formation of NETs, and the coagulation cascade. The lung model is coupled with a PK/PD model for the
virus and thrombi dissemination through the body.
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Figure 2

Validation of the model. A-B) Model comparison with clinical data for healthy, uninfected people and for severe
COVID-19 patients taken from pertinent studies 34-36. E) Comparison of model predictions with IL6 clinical data
from patients hospitalized at the Massachusetts General Hospital. The data were taken at day 1 and day 3 from the
time of patient’s admission to the Intensive Care Unit (ICU).

Figure 3

Dynamics of disease progression. Time evolution of key model variables: viral load, IL6 concentration, pro-
in�ammatory cytokines concentration, activated T cells, microthrombosis in the lung, saturated oxygen levels,
neutrophils and macrophages for young (<35 years old) and old (>65 years old) patients, females and patients with
co-morbidities: hypertension, obesity and diabetes, as well as for hyper-in�amed patients and for anti-androgen
treatment. Values have been normalized to the corresponding initial values except for S(Po2).
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