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Abstract 

Mutations in KEAP1 and/or NRF2 genes have been identified across many cancers and the 
dysregulation of the NRF2 pathway due to these mutations leads to drug and radioresistance in 
several cancers. Identification of biomarkers associated with these mutations allows the researchers 
and clinicians to identify the personalized medicine and quicker diagnosis. In this current study, we 
carried out an integrated, multi-omics, multi-database analysis of exome, transcriptomics data’s of 
KEAP1 mutated TCGA- Lung adenocarcinoma (LUAD) patients against non-mutated counterparts. 
Finally, we discovered the gene signature associated with KEAP1 mutations, prognostic genes which 
were highly correlated with the upregulation of the NRF2 pathway in the KEAP1 mutated LUAD 
patients. Our finding might be useful to identify the early diagnosis of KEAP1 mutated LUAD 
patients. 
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Introduction 
Lung cancer reported as one of the highest 

cancer-related deaths worldwide which accounts for 
more than 1.2 million deaths annually [1]. The most 
common subtype of lung cancer is Non-small cell 
lung cancer (NSCLC) attributed 85% of lung cancers 
and the overall 5-year survival rate is very low (16%) 
[2]. Currently, personalized medicine and targeted 
therapies are available for a small subset of lung 
cancer patients [3]. Emerging cancer genomics studies 
generated by the Cancer Genome Atlas (TCGA) have 
provided high throughput data of several cancers 
including the genetic landscape of Lung 
adenocarcinoma (LUAD) [4] which led the 
researchers to identify the underlying mechanisms of 
mutation-specific lung tumorigenesis.  

Kelch-like ECH-associated protein 1 
(KEAP1)/nuclear factor erythroid 2-related factor 2 

(NFE2L2 or NRF2) pathway plays a major role in 
redox homeostasis. NRF2 combat against oxidative 
stress in mammalian cells during redox imbalance by 
inducing the expression of several cytoprotective 
genes [5]. Under homeostatic conditions, KEAP1 
negatively regulates the NRF2 via Cullin3 (CUL3) 
mediated ubiquitination followed by proteasomal 
degradation [6]. Dysregulation of KEAP/NRF2 
pathway due to loss of function mutations in the 
KEAP1 gene as well as gain-of-function mutations in 
NRF2 and epigenetic changes leads to drug- and 
radio-resistance in lung cancer [7]. The high frequency 
of KEAP1 mutations has been considered as an 
important molecular event in lung cancer 
progressions [8]. Seminal studies on NRF2 pathway 
revealed its specific role in metabolic reprogramming 
[9], carbon metabolism [10], serine biosynthesis [11] in 
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NSCLC. 
Multi-centered high throughput exome 

sequencing data of TCGA-LUAD tumors revealed the 
mutation landscape of several genes including KEAP1 
mutations [4]. In our previous studies, we discovered 
the gene signatures which are regulated by NRF2 
pathway in NSCLC [12] and TCGA-head and neck 
squamous cell cancer (HNSCC) [13] and identified the 
prognostic effect of these genes in both cancers. In the 
current study, we utilized the genomics, and 
transcriptomics data of a LUAD cohort from TCGA 
study. Finally, we comprehensively identified the 
KEAP1 mutation specific prognostic biomarkers and 
validated using qRT-PCR. These analyses allowed us 
to compile comprehensive transcriptomic profiling of 
mutational landscape associated with KEAP1 gene.  

Materials and Methods  
Overall LinkedOmics database analysis 

To specifically address the relationships between 
KEAP1 somatic mutations and clinical outcomes in 
LUAD, we utilized multi-omics TCGA studies based 
database - ‘LinkedOmics’ [14] and analyzed the 
mutation, mRNA expression data of the KEAP1 
mutated TCGA-LUAD tumors. The entire patient’s 
omics data was used in linkedomics was obtained 
from the pre-processed data of the Broad Institute- 
Firehose Pipeline.  

RNA-Seq data analysis 
Primarily, we focused on the identification of the 

KEAP1 mutation associated differentially expressed 
genes (DEG’s) from the RNA-Seq data of LUAD 
patients. Briefly, we selected TCGA-LUAD as our 
interested ‘cancer cohort’ followed by the selection of 
dataset (Exome sequencing data: n=533), search 
dataset attribute/gene (our gene of interest-KEAP1) 
and target dataset attribute (RNAseq: n=515-Illumina 
HiSeq platform) respectively. 478 samples were 
overlapped between search dataset attribute and 
target dataset attribute, of which 83 were KEAP1 
mutated and 395 were wild type (other than KEAP1 
mutated). We applied t-test and Wilcoxon tests to 
obtain KEAP1 associated DEG’s. DEG’s expression 
fold change (FC) cut off >1.5 were considered for the 
identification of KEAP1 mutation-specific gene cluster 
(KMSGC). P<0.001 was used as the cutoff for 
significance. All the genes that have expression values 
in 478 samples were only considered for the DEG 
analysis. Heat map of KMSGC was created using 
‘Heatmapper’ tool [15]. 

We also retrieved the publicly available 
RNA-Seq results of NRF2 knockdown (NRF2 KD) 
LUAD cell lines such as A549 from Olagnier et al, 2018 
(GSE113519) [16] and H2122 from Bar-Peled et al, 2017 

(GSE89569) [17] to cross check the expression pattern 
of KMSGC. To visualize the heat maps of KMSGC in 
both cell lines, we used the web-based RNA-Seq 
analysis tool- START App [18]. 

Functional annotation analysis 
WebGestalt (WEB-based Gene SeT AnaLysis 

Toolkit) web tool [19] was used to annotate the 
functional enrichment analysis of KMSGC obtained 
from the upregulated DEG’s list. Among the different 
functional annotation types present in WebGestalt, 
the analysis was specifically focused on the GO 
biological processes and KEGG pathways. 

Position Weight Matrix (PWM) genome-wide 
NRF2 binding sites identification 

In silico analysis of KMSGC was carried out by 
using the data retrieved from both PWM Scan [20] 
and ChIPSeek web tools [21]. Firstly, we downloaded 
the matrix (Matrix ID: MA0150.1) encoding the 
NRF2-ARE from the transcription factor binding 
profiles database named JASPAR [22]. Secondly, we 
generated the BED file using PWM Scan web tool for 
hg 19 version of the human genome. Finally, the 
generated BED file was uploaded for gene annotation 
using ChIP-Seq analysis tool known as ChIPSeek [21]. 
In addition, we used the Encyclopedia of DNA 
Elements (ENCODE) consortium’s NRF2 ChIP-Seq 
binding sites data from A549 cells [23] and publicly 
available NRF2-A549 cells ChIP-Seq data from 
Olagnier et al, 2018 [19] (GSE113497) for comparative 
analysis. 

Cell cultures 
A549 NSCLC cell line was from the American Type 

Culture Collection (ATCC, Beijing, China). A549-derived 
stable siRNA knockdown for NRF2 (siNrf2-C27) and, 
control cell line (siGFP-C5) were generated as 
described previously [24]. The cells were maintained 
in a growth medium containing Dulbecco's MEM with 
Glutamax supplemented with 10% fetal bovine serum 
(FBS) and antibiotics. All cells were cultured at 37oC, 
in 95% air and 5% CO2, and passaged every 3 to 4 
days. All medium supplements for cell culture were 
from Invitrogen (Shanghai, China). 

RNA isolation and qRT-PCR 
Total RNA was prepared using TRIzol reagent 

(Invitrogen) and the qRT-PCR procedure was 
performed described previously [24]. The primers 
used for the validation were obtained from primer 
bank [25] except AKR1C1, NQO1 [24], and listed in 
Table S6. p values <0.05 were considered statistically 
significant. 
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Survival analysis 
For the identification of prognostic biomarkers, 

Kaplan–Meier curves were calculated and generated 
by using web-based patients survival analysis tool 
SurvExpress [26] for upregulated genes P<0.05 was 
used as the cutoff for significance. The method of 
analysis was discussed in our previous studies [12, 
13]. 

Results 
Identification of differentially expressed genes 
(DEG’s) among KEAP1 mutated and wild type 
(WT) TCGA LUAD patients 

RNA-Seq gene expression data (Illumina HiSeq 
2000 platform) of the TCGA-LUAD patients (478 
samples) was examined to identify the genes and 
pathways associated with KEAP1 mutations. Patient’s 
barcodes were stratified into KEAP1 mutant and wild 
type (WT) based on the mutational status (Table S1). 
Differentially expressed genes were identified using 
Linkedomics web tool [14] with a fold change of > 1.5 
between KEAP1 mutated and WT tumors by using 
both statistical tests such as t-test and Wilcoxon test 

with a stringent p-value cut off < 0.005 and considered 
the overlapping genes obtained from both tests to 
avoid false positive results. We then integrated the list 
of DEGs in both tests to obtain the overlapping genes 
by using ‘venny’ (Figure S1). As a result, we found 33 
up and 18 downregulated overlapping genes (Table 
S2) in KEAP1 mutated LUAD tumors. The differential 
expression analysis results in KEAP1 mutated and WT 
tumors by using two statistical tests were displayed as 
a heatmap in Figure 1A. The upregulated genes list 
include several bonafide NRF2 target genes such as 
NQO1, AKR1C1, AKR1C2 (Figure 1B). Thus, the 
DEGs analysis results clearly show that the KEAP1 
mutations lead to the higher expression of NRF2 
regulated genes in LUAD. Therefore, we focused on 
the 33 upregulated genes for further analysis and 
named these genes as KEAP1 mutation specific gene 
cluster (KMSGC) (Figure 2A).  

In silico analysis identified the known and 
putative NRF2 binding sites in KMSGC  

Previous studies including ChIP-Seq data 
revealed that NRF2 not only binds at the promoter 
regions of its target genes but also in the other 

 

 
Figure 1. Identification of the differential expression of genes (DEG’s) in KEAP1 mutated versus wild type TCGA-LUAD tumors. Heatmap showing the differential 
expression pattern of genes between KEAP1 mutated (KEAP1_MUT) and wild type (WT) TCGA-LUAD tumors, (B) box plots showing the higher expression of 
bonafide NRF2 target genes in KEAP1 mutated tumors as compared with WT tumors. 
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regulatory regions of the genome [27]. For instance, a 
recent study showed that NRF2 binds at the eighth 
intron of ABCC3 gene and regulates its gene 
expression [28]. Among the 33 KMSGC, the majority 
of the genes possess well-characterized antioxidant 
responsive elements (AREs) in their promoter regions. 
However, the AREs which are located other than 
promoter regions of these genes remain unknown. To 
identify the putative and known AREs in the KMSGC, 
we utilized PWM Scan [20] and ChIPseek [21] web 
tools. Apart from in silico analysis, we employed The 
Encyclopedia of DNA elements (ENCODE) 
consortium NRF2-ChIP-Seq data in A549 cells [29] 
and publicly available NRF2-A549 ChIP-Seq data for 
the comparative analysis [16].  

Using PWM Scan [20] and ChIPSeek web tool 
[21], a total of 89858 peaks encoding NRF2-binding 
sites (Figure 2B) were identified in the whole human 
genome (UCSC-hg 19 version). The genomic locations 
of total 89858 NRF2 binding sites which encode 19789 
genes were annotated using ChIPSeek web tool (Table 
S3). The annotated genes showed a wide distribution 
pattern in which 15797 binding sites are present 
within 10 kb of TSS (Figure 2C). In total, 965 sites were 

present at proximal to the transcription start site (TSS) 
region, 39698 binding sites were in introns , 46164 
were in intergenic, 827 were in exon , 82 were in 5' 
UTR, 993 were in TTS and 629 were found in 3' UTR 
region respectively (Figure 2D). This result shows that 
the majority of NRF2 binding sites were present in 
intergenic, followed by introns, exon, promoter-TSS 
and to a lesser degree in 3' UTR, TTS, non-coding and 
5' UTR regions. 

In the case of KMSGC binding patterns, we 
identified several NRF2 binding sites in the 28 genes 
among 33 KMSGC (Table S4). However, our in silico 
analysis didn’t identify the NRF2 binding sites in the 
genomic sequences of 5 genes such as CBR1, CBR3, 
G6PD, PANX2, and S100P. Notably, our comparative 
transcription factor binding site (TFBS) analysis by 
using ENCODE [23] and Olagnier et al, 2018 [16] 
NRF2-A549 ChIP-Seq data identified ARE’s in the 
promoter regions of CBR1, CBR3, PANX2 genes 
except G6PD and S100P. Altogether, our in silico and 
comparative TFBS analysis suggesting that the 
majority of genes identified in KMSGC contain NRF2 
binding sites and most of them are functionally active.

 

 
Figure 2. Identification and in silico analysis of KEAP1 Mutation Specific Gene Cluster (KMSGC) in TCGA-LUAD. (A) Heat map showing the overexpression of 
KMSGC in KEAP1 mutated LUAD tumors as compared with the WT counterparts. (B) Description of the NRF2-ARE JASPAR database matrix used for the 
PWM-Scan in silico analysis. (C) Distribution of the number of NRF2 binding sites within the 10 kb upstream and downstream of the promoter Transcription Starting 
Site (TSS). (D) Bar chart of the genomic location distribution of NRF2 binding sites obtained from ChIPseek tool. The X-axis shows the genomic location and Y-axis 
shows the number of NRF2 binding sites. 
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Figure 3. qRT-PCR analysis shows significantly decreased mRNA expression level in NRF2 KD cells as compared with control A549 cells. (*p < 0.05; ** p < 0.01, *** 
p < 0.001). 

 

KMSGC mRNA expression was highly 
downregulated in NRF2 knockdown NSCLC 
RNA-Seq data 

To further confirm whether NRF2 regulates the 
KMSGC gene expression in lung adenocarcinoma, we 
used two publicly available RNA-Seq data of NRF2 
knockdown (KD) NSCLC cells. RNA Seq FPKM 
values of two NRF2 KD lung adenocarcinoma cell 
lines such as A549 from Olagnier et al, 2018 
(GSE113519) [16] and H2122 from Bar-Peled et al, 2017 
(GSE89569) [17] studies were considered respectively. 
Interestingly, among the 33 KMSGC genes, 12 genes 
expression such as AKR1C1, NEIL3, GCLM, 
TRIM16L, OSGIN1, SRXN1, UGDH, TSPAN7, 
ABCB6, TXNRD1, PANX2, ABCC2 was significantly 
downregulated with the fold change (FC) >1.5 in both 
datasets. Whereas, CBR3, UCHL1, CBR1, CABYR, 
CBX2, PIR, GPX2 genes expression was specifically 
downregulated with FC>1.5 in NRF2 KD-H2122 cells. 
Likewise, SLC7A11, G6PD, TRIM16, AKR1C2, GCLC, 
NQO1, AKR1C3, PGD, CES1 were downregulated 
with FC >1.5 in NRF2 KD-A549 cells. Thus, out of 33 
KMSGC, 28 genes were highly downregulated in 
NRF2 KD NSCLC cell lines (Figure S2). However, we 
didn’t find significant gene expression changes of 5 
genes such as CPS1, SLC16A14, SLC7A2, KYNU, and 
S100P in either of RNA-Seq data (Table S5). 
Altogether, our patients-specific KMSGC revealed 
that the majority of the genes are regulated by NRF2 
in LUAD. 

Validation of novel NRF2 target genes in 
NSCLC cell lines 

Given the higher expression of KMSGC in 
KEAP1 mutated patients and NRF2 knockdown 
RNA–Seq data, we hypothesized that NRF2 directly 
transactivates the novel and known genes present in 

KMSGC. To evaluate whether in silico analyzed novel 
genes directly regulated by the NRF2 transactivation, 
we selected the five novel NRF2 regulated genes in 
KMSGC such as NEIL3, TSPAN7, CBX2, UCHL1, and 
TRIM16L along with bonafide NRF2 genes-AKR1C1, 
NQO1, G6PD and performed qRT PCR analysis in 
NRF2 knocked down A549 NSCLC cells as described 
previously [12]. As shown in figure 3, NRF2 
knockdown in A549 NSCLC cells exhibited significant 
downregulation of the selected genes. Thus, the 
putative in silico identified genes are regulated by 
NRF2 in lung adenocarcinoma. 

KMSGC is enriched in different metabolic 
pathways  

We next utilized the WebGestalt [19] tool to 
perform functional annotation analysis of KMSGC. 
Interestingly, Gene Ontology results (GO slim 
classification) – Biological process identified the genes 
involved in the metabolic process, response to 
stimulus, multicellular organismal process, 
developmental process and others (Figure S3). In 
detailed, majority of the genes present in the 
biological processes such as response to oxidative 
stress, quinone metabolic process, response to toxic 
substance, cofactor metabolic process, response to 
acid chemical, cellular ketone metabolic process, 
detoxification, cellular response to acid chemical, 
secondary metabolic process, and response to nutrient 
levels (Table 1). We then carried out the KEGG 
pathway analysis by using the same tool to know the 
important pathways associated with KMSGC (Table 
2). As anticipated, KEGG pathway analysis identified 
well-known NRF2 regulated pathways such as 
Glutathione metabolism, Arachidonic acid 
metabolism, Steroid hormone biosynthesis, 
Metabolism of xenobiotics by cytochrome P450, 
Pentose phosphate pathway, Carbon metabolism, 
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Cysteine and methionine metabolism, ABC 
transporters, and Chemical carcinogenesis. Thus 
functional annotation results revealed that the genes 
listed in the KMSGC functionally related to NRF2 
mediated drug metabolism and metabolic 
reprogramming in LUAD. 

The prognostic power of top KEAP1 Mutation 
Associated Gene Signature (KMAGS) in LUAD 

In an effort to identify the prognostic biomarkers 
of KMSGC in LUAD, the survival analysis web 
tool-SurvExpress [26] was employed as described 
previously [12]. It is important to consider a relatively 
small number of genes than the more number of genes 
for prognosis analysis [30, 31]. For this analysis, we 
minimized the number of genes and strictly 
considered the 12 KMSGC genes among 33 genes 
which showed >2.5 fold higher expression in KEAP1 
altered patients as compared with Wild type patients 
data. This high expression of rank-based survival 
analysis would perfectly predict the NRF2 activation 
status in LUAD patients. We named these 12 genes as 
a KEAP1 Mutation Associated Gene Signature 
(KMAGS) in LUAD. The 12 KMAGS include genes 
such as AKR1C2, AKR1C1, GPX2, ABCC2, AKR1C3, 
CABYR, UCHL1, TRIM16L, S100P, CPS1, SLC7A11, 
and NQO1 (Table S2). We first selected the parent 
cohort TCGA-LUAD (n=475) for the overall survival 
analysis by using SurvExpress [26]. Notably, elevated 
expression of KMAGS associated with significantly 
poor survival in LUAD patients (Figure 4A). In 
addition to the parent cohort, we also performed 

overall survival analysis in other individual LUAD 
cohorts such as Bild et al. (GSE3141)[32], Okayama et 
al. (GSE31210) [33, 34], Tang et al. (GSE42127) [35], 
and Rousseaux et al. (GSE30219) [36]. As a result, we 
also found that higher expression of KMAGS leads to 
poor survival in LUAD patients (Figure 4 B-E). This 
result further supports the robust prognostic power of 
the KMAGS in LUAD. 

Discussion 
Utilization of the different TCGA datasets to 

identify the molecular changes associated with 
specific gene mutations which are linked with the 
clinical outcomes has been demonstrated in many 
studies including lung cancer [12]. Majority of the 
TCGA based studies have been focused on the 
identification of new prognostic markers and novel 
therapeutic targets in different cancers [13]. 
Stratification of LUAD patients with KEAP1 
mutations provides us the clues to identify the 
discovery of personalized/precision medicine for the 
treatment. In the present study, we stratified the 
LUAD patient’s samples as two groups named KEAP1 
mutant and WT and identified KEAP1 
mutation-specific prognostic gene signature which is 
associated with poor survival in LUAD patients. One 
of the major advantages of our study is that we 
performed the systematic analysis of TCGA-LUAD 
dataset which contains 478 patient’s transcriptomics 
data and is by far the largest dataset for LUAD 
survival prediction. 

 

Table 1. List of GO-biological processes associated with KMAGS 

Gene set Description Overlap Gene ID P-value FDR 
GO:0006979 Response to oxidative stress ABCC2;SRXN1;NQO1;SLC7A11;G6PD;GCLC;GCLM;GPX2;TXNRD1;AKR1C3 1.55E-09 5.82E-06 
GO:1901661 Quinone metabolic process AKR1C1;AKR1C2;AKR1C3;CBR1;CBR3 3.49E-09 5.82E-06 
GO:0009636 Response to toxic substance CES1;ABCC2;CPS1;SRXN1;NQO1;SLC7A11;GPX2;TXNRD1 4.30E-09 5.82E-06 
GO:0051186 Cofactor metabolic process ABCB6;AKR1C1;AKR1C2;G6PD;PGD;AKR1C3;CBR1;CBR3;KYNU 1.88E-08 1.91E-05 
GO:0001101 Response to acid chemical TRIM16;ABCC2;CPS1;AKR1C1;AKR1C2;GCLC;GCLM;AKR1C3 9.26E-08 7.51E-05 
GO:0042180 Cellular ketone metabolic process AKR1C1;AKR1C2;NQO1;AKR1C3;CBR1;CBR3;KYNU 1.76E-07 0.000118657 
GO:0098754 Detoxification ABCC2;SRXN1;NQO1;GPX2;TXNRD1 9.72E-07 0.00056323 
GO:0071229 Cellular response to acid chemical CPS1;AKR1C1;AKR1C2;GCLC;GCLM;AKR1C3 1.32E-06 0.000668037 
GO:0019748 Secondary metabolic process ABCC2;AKR1C1;AKR1C2;AKR1C3 3.71E-06 0.001669786 
GO:0031667 Response to nutrient levels CPS1;NQO1;G6PD;GCLC;GCLM;AKR1C3;KYNU 7.53E-06 0.003052302 

 

Table 2. List of KEGG pathways associated with KMAGS 

KEGG pathway Overlap Gene ID P-Value FDR 
    
hsa00480-Glutathione metabolism G6PD;GCLC;GCLM;GPX2;PGD 3.26E-07 9.06E-05 
hsa00590-Arachidonic acid metabolism  GPX2;AKR1C3;CBR1;CBR3 2.46E-05 0.003419094 
hsa00140-Steroid hormone biosynthesis  AKR1C1;AKR1C2;AKR1C3 0.000561716 0.052052368 
hsa00980-Metabolism of xenobiotics by cytochrome P450  AKR1C1;CBR1;CBR3 0.001146066 0.079651589 
hsa00030-Pentose phosphate pathway  G6PD;PGD 0.003234795 0.179854598 
hsa01200-Carbon metabolism  CPS1;G6PD;PGD 0.003951649 0.183093065 
hsa00270-Cysteine and methionine metabolism  GCLC;GCLM 0.007175004 0.249331393 
hsa02010-ABC transporters  ABCB6;ABCC2 0.007175004 0.249331393 
hsa05204-Chemical carcinogenesis  AKR1C2;CBR1 0.022593593 0.697890973 
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Figure 4. Prognosis prediction of KMAGS TCGA-LUAD. Kaplan-Meier plot shows that KMAGS overexpressed high-risk group of patients’ shows the poor survival 
(p < 0.05) in TCGA-LUAD cohort. The high (red) and low (green) risk group of TCGA-LUAD patients was stratified based on the expression pattern. 

 
 
Based on the DEG analysis of KEAP1 mutated 

versus WT LUAD tumors, we identified 33 
upregulated genes cluster whose expression is highly 
correlated with the KEAP1 mutated patients. KEAP1 
Mutation Specific Gene Cluster (KMSGC) functional 
enrichment of genes in LUAD patient’s shows highly 
activated metabolic pathways such as Glutathione 
metabolism, Pentose phosphate pathway (PPP) and 
Carbon metabolism. It has been well established that, 
NRF2 regulates the carbon metabolism and metabolic 
reprogramming in NSCLC [9]. Transcriptomics 

analysis clearly shows that the KEAP1 mutations in 
LUAD lead to the loss of function of KEAP1 and gain 
of function of NRF2. For instance, mRNA and protein 
levels of key metabolic NRF2 regulated gene-GDPD 
highly upregulated in KEAP1 mutant patients and 
elevated expression of G6PD could be used as a 
biomarker for the detection of NRF2 overexpression 
in LUAD. Further in silico study on NRF2 binding 
sites in our study revealed that the majority of the 
genes upregulated in KEAP1 mutated tumors are 
regulated by the NRF2 through transactivation 
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mechanism except for 2 genes such as G6PD and 
S100P. However, our literature survey found that 
G6PD is a direct target of NRF2 in NSCLC and 
possess functional ARE within 1kb to TSS [9]. 
Interestingly, Chien et al. 2015 found that S100P was 
highly downregulated in both KEAP1 overexpressing 
and NRF2 KD NSCLC cells and promotes cell 
migration in NSCLC. Apart from known NRF2 target 
genes in KMSGC, we found novel NRF2 target genes 
such as TRIM16L, NEIL3, CBX2, and UCHL1 which 
contains ARE sequences in different genomic 
locations. Notably, our recent study on TCGA- head 
and neck cancer also identified the overexpression of 
TRIM16L and UCHL1 in KEAP1-NRF2-CUL3 axis 
altered patients. Altogether, our study suggests that 
genes present in the KMSGC could be important 
therapeutic targets for KEAP1 mutated LUAD 
patient’s treatment. In conclusion, by utilizing a large 
TCGA-LUAD patient cohort, our study identified a 
KEAP1 mutation-specific gene signature, prognostic 
genes, which can be used as potential prognostic 
biomarkers for LUAD and also potential therapeutic 
targets. 
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