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Abstract: Cardiovascular diseases are considered one of the worldwide causes of death, with
atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood
vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby,
tissue-engineered blood vessels (TEBVs) are emerging as a potential alternative source. In terms
of composition, collagen has been selected in many occasions to develop TEBVs as it is one of the
main extracellular matrix components of arteries. However, it requires specific support or additional
processing to maintain the tubular structure and appropriate mechanical properties. Here, we present
a method to develop support-free collagen TEBVs with co-axial extrusion in a one-step procedure
with high concentrated collagen. The highest concentration of collagen of 20 mg/mL presented
a burst pressure of 619.55 ± 48.77 mmHg, being able to withstand perfusion of 10 dynes/cm2. Viabil-
ity results showed a high percentage of viability (86.1 and 85.8% with 10 and 20 mg/mL, respectively)
of human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVEC)
after 24 h extrusion. Additionally, HUVEC and HASMCs were mainly localized in their respective
layers, mimicking the native distribution. All in all, this approach allows the direct extrusion of
collagen TEBVs in a one-step procedure with enough mechanical properties to be perfused.

Keywords: tissue-engineered blood vessels; collagen; co-axial extrusion; vascular construct;
cell-laden hydrogels

1. Introduction

Cardiovascular diseases (CVDs) are one of the leading causes of death according to the
World Health Organization (WHO), representing 32% of all global deaths [1]. One of the
main causes of CVDs is atherosclerosis, consisting of a buildup of fatty plaque in the inner
wall of blood vessels which eventually narrows the blood flow leading to tissue ischemia [2].
Nowadays, the gold standard treatment for atherosclerosis consists of the use of stents
or blood vessel replacement by bypass surgery. However, the use of the stents in clinical
practice still has some in-stent restenosis concerns [3], and continues to be a problem in
clinical practice [4]. The use of autologous grafts such as the saphenous vein or mammary
artery is also another strategy used in clinics [5,6], but their use for blood vessel replacement
is not always possible due to the previous harvest or the inherent illness of the patient.
In this regard, the development of tissue-engineered blood vessels (TEBVs) as alternative
grafts for bypass surgery is an area of extensive research [7]. Different methods have been
described for the development of TEBVs, such as sheet rolling, direct scaffolding using
electrospinning, matrix molding or even decellularization [8]. However, these approaches
involve multiple steps in order to obtain a vascular construct seeded with vascular cells.

An ideal TEBV should provide cells with an extracellular matrix (ECM) similar to that
of native tissue, mainly collagen, while allowing cells to spread throughout the structure
in low periods of time to provide the required functionality to the TEBV [9]. Generally,
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when collagen is used for TEBV manufacturing, some support or additional processing
is necessary to avoid its spreading and to maintain tubular shape while being gelled.
In this regard, matrix molding (also known as casting) is the method of choice [10–12].
However, additional steps are required to increase the mechanical stability of these TEBVs,
for instance, drying the vascular conduit overnight at 37 ◦C to increase collagen density and
subsequently cross-link it with genipin [11], or by plastic compression [12]. In the last few
years, direct co-axial extrusion using core-shell nozzles has gained special attention due to
the ability to develop a multiple layer construct, considerably reducing the manufacturing
process in a single fabrication step [13]. At the same time, this method proved to be
successful for the extrusion of cells without compromising their viability and proliferative
capacity. In order to develop collagen TEBVs with co-axial extrusion, there is the need
to combine it with other biomaterials with instantly crosslinking properties to provide
structural support when being extruded, as collagen itself is not self-supportive [14,15].
In this regard, the most used is alginate due to its instant gelling ability when in contact
with divalent ions [16]. In this sense, we developed a core shell TEBV presenting alginate
in the outer layer to provide structural support, together with collagen in the inner layer.
Our results showed that we could extrude endothelial cells in the inner layer and smooth
muscle cells in the outer layer, with a parallel and concentric alignment, respectively,
similar to native vascular cell organization [17]. Nevertheless, the higher amounts of
alginate compared to collagen limited the adhesion, proliferation and initial cell stretching
of the smooth muscle cells (SMC) [17].

Here, we aim to develop tissue-engineered blood vessel (TEBV)-like structures by
using high concentrations of collagen both in the inner and outer layer through co-axial
extrusion method to allow encapsulating SMC and human umbilical vein endothelial cells
(HUVEC) in two distinct layers, both being collagen-based. To this purpose, we will assess
the ability of the collagen concentrations to provide a self-supporting structure. The cell
survival ability of both cell types after extrusion will be tested in their respective vascular
layers while maintaining the initial allocation. To the best of our knowledge, the direct
extrusion of solely collagen with vascular cells for TEBV development has not been reported
before with the co-axial extrusion method.

2. Results
2.1. Optimal Conditions for High Concentration Collagen TEBV Extrusion

Both 10 and 20 mg/mL of collagen could be dissolved, obtaining a homogenous
viscous solution with a gelling time of 10–15 min at 37 ◦C. As a first step, the choice of
the extrusion bath for the extrusion of collagen TEBV was studied. Then, the effect of
the injection speed on the size of TEBVS and which one facilitated the extrusion process
was investigated.

On the one hand, regarding the extrusion baths, gelatin microparticles size was around
100 µm, as illustrated in Supplementary Figure S1. The gelatin microparticle slurry allowed
the extrusion of TEBVs maintaining their tubular structure (Figure 1A). More interestingly,
both concentrations of collagen provided self-stability to allow the extrusion of TEBV in
cell culture media while preserving the tubular structure without spreading, as observed in
Figure 1B. Taking into account that vascular cells would be incorporated within the TEBV structure,
the use of cell culture media as the extrusion bath was selected for the subsequent assays.

On the other hand, the results of TEBVs sizes (outer diameter, inner diameter and wall
thickness) depending on the injection speed and collagen concentration are represented in
Figure 1C. In general, the effect of injection speed on the size depended on the collagen
concentration. The results showed that as the injection speed was increased, the size of
the TEBV (outer diameter) was reduced with the 10 mg/mL concentration, while it was
increased with the 20 mg/mL collagen concentration, although the differences were not
significant. Nonetheless, the inner diameter remained the same with 10 mg/mL for all
injection speeds tested, whereas it was increased with 20 mg/mL. It is worth highlighting
that the wall thickness was significantly higher with the 10 mg/mL collagen concentration,
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especially for the injection speeds of 10 and 25 mL/h, with a thickness around 500 µm,
whereas it was around 200 µm for the collagen concentration of 20 mg/mL. Additionally,
the coefficient of variation (CV) for the wall thickness with the 10 mg/mL for the injection
speeds of 10, 25 and 50 mL/h were 34.5, 36.8 and 25.7%, respectively. With the 20 mg/mL,
the CV were 10.8, 17.1 and 17.9% for 10, 25 and 50 mL/h, respectively, suggesting a more
homogenous wall thickness with the highest collagen concentration.

Figure 1. Tissue-engineered blood vessel (TEBV) support bath extrusion optimization and TEBV
sizes. TEBVs extruded with collagen concentration of 10 mg/mL in (A) gelatin microparticles or
(B) in cell culture media, with 25 mL/h as the injection speed. (C) Size of outer diameter, inner
diameter and wall thickness depending on the injection speed with collagen at 10 mg/mL and
20 mg/mL. Data represented as mean with standard deviation (n = 8 per condition). * Statistically
significant differences between the two collagen concentrations for the same injection speed (p < 0.05).

As the triple co-axial nozzle had to be moved manually along the petri dish during
extrusion, the 25 mL/h injection speed was selected for subsequent experiments. This
injection speed allowed more uniform control of the movement of the triple co-axial nozzle,
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facilitating the formation of straight TEBVs, whereas with 50 mL/h, this fact was not possible,
and for the 10 mL/h, the time needed to extrude the TEBV was significantly increased.

2.2. Mechanical Properties and Preliminary Results of Tissue-Engineered Blood Vessels (TEBVs) Perfusion

Burst pressure was measured, as previously described, by the infusion of PBS inside
acellular TEBV until failure. Results demonstrated that 20 mg/mL collagen TEBVs could
withstand up to 619.55 ± 48.77 mmHg. Moreover, as a proof of concept, we attached these
acellular TEBVs in a perfusion chamber and perfused them with cell culture media at
37 ◦C up to 3 days with a physiological flow rate equivalent to arterial shear stress of
10 dynes/cm2. These TEBVs demonstrated their ability to withstand physiological mechan-
ical stimulation without rupture (Supplementary Video S1).

2.3. Viability of HUVEC and HASMC Extruded within TEBVs

Cell viability was assessed 24 h after the extrusion process, resulting in 86.1 ± 0.02%
and 85.8 ± 0.01% of live cells for 10 and 20 mg/mL of collagen, respectively (Figure 2A). At
this point, as both concentrations presented similar high viability, the highest concentration
(20 mg/mL) of collagen was selected for the subsequent assays, as it would provide higher
mechanical stability, hence allowing more robust manipulation (Supplementary Video S2).
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Figure 2. Viability and images of TEBVs with human umbilical vein endothelial cells (HUVEC)
and human aortic smooth muscle cells (HASMC) in co-culture. (A) Live/dead assay performed on
TEBV containing HUVEC and HASMCs in co-culture at 24 h after extrusion (live cells in green and
dead cells in red). (B) First cells spreading after 2 h of TEBV culture. On the right are presented
magnifications at two different plans with red arrows indicating stretched cells. (C) Practically all
cells were lengthened within 2 days of TEBV culture. On the right are magnifications at two different
plans. (D) TEBVs started to blend from day 5 at different focus, showing cells on top (i) and cells at
the bottom of the TEBV (ii). Images from two different plans.

During cell culture of TEBVs with 20 mg/mL of collagen, some cells started to pro-
liferate within few hours, as shown in Figure 2B. After 2 days, practically all cells were
found stretching (Figure 2C), and from day 5, TEBVs started to fold (Figure 2D) due to cell
stretching. Each cell type could not be distinguished during culture time. However, these
observations were consistent throughout all TEBV 3D structure plans.

2.4. The 3D Reconstruction of Collagen TEBV

HUVEC and HASMCs were stained with specific cell tracker in green and red color,
respectively, in order to visualize their distribution and to assess whether cells were allo-
cated in their respective layers within the TEBV construct. As can be observed in Figure 3,
cells covered the tubular structure within 2 days of culture. It is worth mentioning that
very few cells were localized in locations outside their defined layer.
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Figure 3. TEBV cell tracker reconstruction with confocal microscope at day 2. Each color indicates dif-
ferent cell types: HUVEC in green and HASMCs in red at day 2. On the right there is a magnification
of the TEBV.

3. Discussion

An important consideration to take into account for TEBV development is the mimick-
ing of the extracellular matrix composition [18]. In this study, we aimed to extrude TEBVs
with high concentration of collagen type I as the unique biomaterial composition, to assess
if vascular cells were able to survive within them and if they had enough mechanical prop-
erties to withstand perfusion equivalent to arterial shear stress. To this purpose, we first
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tested two different support baths for their extrusion, to determine if they required struc-
tural support to maintain their tubular structure once extruded. One of them was gelatin
microparticles, based on a previous study [19], to avoid its spreading after its extrusion.
The gelatin microparticle size reported in this study was approximately 25 µm, whereas we
obtained a microparticle size around 100 µm (Supplementary Figure S1). Nonetheless, the
size we obtained allowed us to extrude collagen TEBVs, while maintaining their tubular
structure (Figure 1A). Remarkably, the high concentrations of collagen tested also allowed
the tubular structure to be maintained when directly extruded in cell culture media solution
without spreading (Figure 1B), demonstrating that no structural support was needed to ex-
trude TEBVs. Previous studies developing TEBVs made of solely collagen required the use
of a structural support to maintain the collagen tubular structure while gelling, generally
using the matrix molding or casting approach [10–12]. Here, we demonstrated that TEBVs
could be directly extruded in cell culture media by just increasing the concentration of
collagen type I, requiring a unique one-step procedure for their development, avoiding the
need to previously fabricate a support bath. Additionally, we considered that the presence
of nutrients and growth factors within cell culture media would ameliorate cell survival for
future vascular cell encapsulation.

Regarding the sizes of TEBVs, interesting results were obtained when using different
collagen concentrations. More specifically, wall thickness was in general higher when
10 mg/mL was used compared to 20 mg/mL (Figure 1C). Lower collagen concentration
tested had lower consistency, and therefore, during the transition from liquid to gel state,
possible spreading could take place resulting in a higher wall thickness. This reason
might also explain thinner wall thickness of TEBVs when 20 mg/mL was used, presenting
a lower coefficient of variation, which was indicative of more homogeneous wall size. In
general, there were no big differences in outer and inner diameter TEBV size with the
different injection speeds for each collagen concentration. However, between the three
injection speeds tested, 25 mL/h was the one which facilitated the most uniform movement
of the triple co-axial nozzle while extruding. The sizes of these TEBVs were similar to
TEBVs developed in a previous study using the same triple co-axial nozzle but using
different biomaterials (alginate and collagen) [17], with the outer and inner diameters
being around 1600 and 1400 µm, which corresponds to the range of arteries, as described,
to be within 100 µm and 10 mm [20]. However, only the 20 mg/mL had a similar wall
thickness of approximately 200 µm, described to be the limit to allow nutrient and oxygen
diffusion [21,22].

Another important characteristic for the development of TEBV is to possess enough
mechanical properties to be perfused [23]. In this study, we obtained a burst pressure of
approximately 620 mmHg for the 20 mg/mL collagen TEBVs. One of the first studies
developing TEBVs made of collagen reported a burst pressure of 120–180 mmHg, needing
a Dacron mesh support to perfuse them [10]. Other studies improved the mechanical
properties by drying and crosslinking the collagen with genipin [11], or with plastic com-
pression [12], achieving burst pressures of 1300 and 1600 mmHg, respectively. However,
they could not incorporate vascular cell types at the same time as TEBV development,
therefore requiring additional steps. Although we obtained low mechanical properties
compared to native arteries and veins [24], they were enough to withstand physiological
flow rate with shear stress of 10 dynes/cm2, which is similar to shear stress used in pre-
vious studies with similar TEBVs sizes [25,26]. Moreover, it is described in the literature
that mechanical properties of collagen TEBVs are improved during perfusion time due to
extracellular matrix deposition by cells [12,27]. These positive results present the possibility
to perfuse vascular cell loaded TEBV and perform mechanical and functional assays.

Regarding HUVEC and HASMCs encapsulation, there was the concern whether these
cells would be able to survive and lengthen within the high concentrations of collagen in
the ECM, and also whether they would be able to withstand the shear stress produced
by the extrusion method. Interestingly, after 24 h of extrusion and culture, viability was
86.1% and 85.8% for 10 and 20 mg/mL, respectively (Figure 2A). These are positive results,
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as it has been previously described that, generally, viability of cells using microextrusion
bioprinting is between 40 and 86% [28,29]. Other studies reported higher viability of other
cell types using high collagen concentrations for other purposes. For instance, Lee et al.
obtained a viability of approximately 96% using 24 mg/mL of collagen, although the study
used cardiomyocytes, assessing the viability only after 1 h of printing [19]. Another study
reported viability of approximately 90% using ECs and liver cells (HepG2), up to day 5 of
culture [30]. More recently, other authors reported cell viability of NIH 3T3 to be 97, 95 and
87% with 20, 30 and 40 mg/mL after 7 days culture [31]. Nonetheless, our results indicate
that the extrusion method is not harmful for these cells and cells could survive in both
collagen concentrations. Moreover, when 20 mg/mL of collagen was used, spreading of
cells was observed as early as 2 h (Figure 2B), and practically all cells were stretched within
2 days (Figure 2C). Furthermore, TEBV folding was observed at day 5 (Figure 2D), probably
due to the strength of cells when adhering and spreading, suggesting a proper environment
for their adhesion and proliferation. Therefore, 20 mg/mL of collagen demonstrated to
be appropriate for cell viability, and was subsequently used for the next experiments as
it would provide more mechanical stability due to the presence of more collagen fibers
compared to 10 mg/mL.

Remarkably, with specific HUVEC and HASMC staining with cell trackers, we could
confirm that cells were distributed along the entire tubular structure (Figure 3). We also
observed the presence of some HASMCs in HUVEC’s inner layer, and vice versa, few
HASMCs in HUVEC’s layer. Just after TEBV extrusion, there is the possibility that during
the transition of collagen containing cells from a liquid to gel state (around 10 to 15 min),
some cells might have moved due to gravity, but not all of them due to the high collagen
viscosity. Therefore, some HASMCs and HUVEC might have been in contact with its
adjacent layer. Although some cells could not be allocated in their respective layers, that
might not be considered a bad outcome. Evidence of cells’ self-organization ability has
been previously published [32–34]. More specifically, in the vascular field, a previous study
reported the extrusion of endothelial cells (ECs) and smooth muscle cells (SMCs) in the
same layer, demonstrating that these cells were able to self-organize when perfused [35].
In more detail, ECs could form an endothelium with the presence of tight junctions in
the inner lumen core, whereas SMCs were allocated in the adjacent layer. Taking into
account these previous reports, with the perfusion of our TEBVs, we would also expect
self-organization triggered by flow rate and shear stress stimulus.

4. Conclusions

In this study, we were able to directly extrude collagen TEBV structure without
structural support, previously reported to be necessary to print collagen structures with
lower or similar concentrations. Moreover, vascular cells were able to survive through
the manufacturing process and even with high concentrations. Strikingly, 20 mg/mL
collagen TEBV possessed enough mechanical properties to withstand physiological flow
rates equivalent to arterial shear stress, presenting the possibility to perfuse them to induce
their maturation and functionality.

5. Materials and Methods
5.1. Concentrated Collagen Solution

High concentrated collagen solution is needed in order to obtain a high viscous
solution with less probability of spreading when being extruded. Based on previous well-
established protocols [36], collagen type I was isolated from bovine tendons obtained
from an abattoir. Briefly, tendon was cut to small pieces after being separated from the
surrounding fascia. After three washes with phosphate buffered saline (PBS), the small
tendon pieces were dissolved with 1M acetic acid for 72 h on agitation. Thereafter, the
addition of porcine gastric mucosa pepsin (Sigma-Aldrich, Darmstadt, Germany) was
performed for tendon enzymatic digestion at 40 U/mg of tendon under stirring for 2 h at
room temperature (<20 ◦C) and 72 h at 4 ◦C. To obtain pepsin soluble collagen, the resultant
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digestion was filtered and purified using 0.9 M NaCl (salt precipitation) for 24 h. Next, 1 M
acetic acid was added under constant stirring to the precipitated collagen for 5 days. As
a final step, collagen solution was repeatedly dialyzed (MW 8.000 cut off) against 1 mM
acetic acid, and finally stored at 4 ◦C. Collagen purity was assessed using sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Coomassie staining
and densitometry analysis with ImageJ software.

Once collagen was isolated and its purity was assessed, it was then frozen at −20 ◦C for at
least 24 h, followed by lyophilization (Cryodos-80, Telstar, Andover, ME, USA). Afterwards,
lyophilized collagen was cut into small pieces and dissolved to the desired concentration with
ice cold 50 mM acetic acid. The concentrations used were 10 and 20 mg/mL.

5.2. Support Bath Preparation

For the extrusion of TEBV, we aimed to test two different support baths: (1) gelatin
microparticles, and (2) cell culture media alone (endothelial growth medium-2 bulletkit
(EGM-2) (Lonza, Basel, Switzerland)). The purpose of testing gelatin microparticles slurry
as a support bath was to ensure structural support to the extruded collagen, allowing
its gelification without spreading. We also wanted to test if collagen could maintain its
structure once extruded into EGM-2 medium without the need for structural support, as
there is previous evidence that this might be possible [30].

Gelatin microparticle formation was developed following a previously published
method [14]. First, a solution containing a final concentration of 2% (w/v) gelatin Type B
(Sigma-Aldrich, Darmstadt, Germany), 0.25% (w/v) Pluronic F-127 (Sigma-Aldrich, Darm-
stadt, Germany) and 0.1% (w/v) gum arabic (Sigma-Aldrich, Darmstadt, Germany) in
1 L of 50% (v/v) ethanol (PanReac AppliChem, Schaffhausen, Switzerland) was heated to
45 ◦C. The pH was adjusted to 6.25 with 1 M hydrochloric acid (HCl). Then, the beaker
was placed on stirrer (MS-H-S, Dlab), sealed with parafilm to avoid solution evaporation
and cooled at room temperature while stirring overnight for microparticle formation. To
compact the gelatin microparticles, the slurry was divided with 50 mL conical tubes and
centrifuged at 300 g for 5 min. After removing the supernatant, the microparticles were
resuspended with 1x phosphate buffered saline (1x PBS) at pH 7.4 (washing solution), and
centrifuged at 1000 g for 2 min. This washing step was repeated three times. Then, the
gelatin microparticle slurry was kept at 4 ◦C with 1x PBS in its uncompacted state. Prior to
TEBV extrusion, gelatin microparticles were compacted by centrifuging them at 2000 g for
5 min. Supernatant was removed and gelatin slurry was transferred into a petri dish.

5.3. Collagen Tissue-Engineered Blood Vessel (TEBV) Development

Schematic representation of the method is shown in Figure 4. To allow the forma-
tion of tricentric fiber, two different materials were injected through a triple concentric
nozzle (23 G inner, 17 G middle and 13 G outer) (NanoNC) with the help of injection
pumps. The inner syringe was loaded with 25% wt Pluronic F-127 (Sigma-Aldrich) aqueous
solution as a sacrificial polymer. The middle and outer syringes were loaded with the
previously extracted collagen type I at a concentration of either 10 or 20 mg/mL. Collagen
was self-assembled by adding 100 µL of 10x DMEM (Sigma-Aldrich) per each 1 mL of
collagen type I solution, and the necessary amount of NaOH, 1 M or 5 M, to neutralize
the pH. The solutions were extruded at the same time in a petri dish containing one of the
two extrusion baths previously described: gelatin microparticles slurry (at room temperature,
approximately 20 ◦C), or endothelial growth medium-2 (EGM-2, Lonza) at 37 ◦C.

Three injection speeds were tested (10, 25 and 50 mL/h) to allow the effect of the
injection speed on the general parameters of the blood vessel-like structure, mainly shell
thickness and inner and outer diameter, to be studied. Besides the effect on the size of
the vessel, speed also played a significant role in allowing the deposition of the TEBV
at an adequate rate that allows manipulation and proper movement (see Figure 4Bi for
the extrusion pattern followed). In this sense, future perspectives aim at allowing the
3D printing of the TEBV, and hence this optimum speed will be required for the printing
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process. Hence, high speeds may limit this processing aspect, together with an increased
shear stress which may ultimately limit cell viability. All the loaded syringes were kept at
4 ◦C. After 10 min of the extrusion, the petri dish was placed at 37 ◦C, which further allowed
collagen gelification. Afterwards, TEBVs were cut to the desired length (Figure 4Bii–iii),
and Pluronic was removed from the inner core by dissolution. To this purpose, TEBVs
made from one or the other method were placed in a petri dish with cell culture media
during 5 min, and then, cell culture media was flushed through it to remove the rest of
the Pluronic, obtaining a hollowed TEBV structure. To assess the feasibility of perfusion
of TEBVs, they were cut to 2.5 cm length, the appropriate size to incorporate them in
the perfusion chamber. For cell viability and 3D reconstruction assays, TEBV were cut to
a length of 1 cm.

Figure 4. Schematic representation of collagen TEBV development through the triple concentric
extrusion method. (A) Pluronic (2) and collagen type I (3 and 4) are injected into a triple concentric
nozzle (5) in the inner, middle and outer layer, respectively. These biomaterials are extruded in
a constant injection speed controlled by an injection pump (1) into a petri dish containing an extrusion
support bath or support-free bath (6). Independently of the extrusion support bath, the fibers are
extruded at room temperature (approximately 20 ◦C) for around 5–10 min, followed by incubation
at 37 ◦C for 10–15 min to allow collagen gelation. Then, Pluronic is removed from the inner core by
dissolution with cell culture media, obtaining a hollowed dual layer tubular structure. (B) (i) Co-axial
nozzle extrudes following a zig-zag pattern, and once TEBVs are gelled (ii–iii) the straight parts are
cut to the desired length.

5.4. Burst Pressure

Burst pressure is defined as the maximum pressure that a TEBV can withstand before
rupture. In order to measure it, TEBVs with the highest concentration (20 mg/mL) of
collagen were attached in the perfusion chambers with one end sealed and the other
connected to a differential pressure gauge (Leo2, Keller, London, UK). PBS was injected
through TEBVs until failure, and the maximum pressure achieved was recorded. Burst
pressure was performed with cell-free TEBVs to record the basal mechanical properties.
A total of three TEBVs were analyzed.
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5.5. Proof of Concept of TEBV Perfusion

After measuring the burst pressure of the TEBVs, we wanted to check if these TEBVs
were able to withstand physiological flow rate with an arterial shear stress of 10 dynes/cm2

to perform functional assays in the future. To this purpose, we calculated the appropriate
flow rate to provide a shear stress of 10 dynes/cm2 according to our TEBVs size with
Poiseuille formula: SS = 4µQ

πr3 , where SS is the shear stress, µ is the viscosity of the fluid, Q
is the fluid rate, and r is the radius of the vessel. As a proof of concept, we tested if they
could withstand physiological arterial shear stress with cell free TEBV containing collagen
at a concentration of 20 mg/mL and perfuse with endothelial cell growth medium-2 (EGM-2,
Lonza). The perfusion system consisted of a closed tubing loop which connected the cell
culture media reservoir with the perfusion chamber containing the TEBVs. The flow rate
was achieved by using a peristaltic pump (Masterflex L/S Standard Digital Drive, Cole
Parmer, Vernon Hills, IL, USA) connected with a head pump (Masterflex L/S easy load
head pump, Cole Parmer).

5.6. Cell Culture

For the encapsulation of vascular cells within TEBV structures, human umbilical vein
endothelial cells (HUVECs) (Lonza) and human aortic smooth muscle cells (HASMCs)
(ATCC) were used. For their expansion, HUVEC were seeded with endothelial growth
medium-2 bulletkit (EGM-2) (Lonza) at a cell density of 2500 cells/cm2. HASMCs were
seeded with vascular cell basal medium (ATCC) supplemented with vascular smooth
muscle cell growth kit (ATCC) at a cell density of 2500 cells/cm2. Both cell types were
passaged using 0.25% Trypsin-EDTA (Gibco, St. Louis, MO, USA) when they reached
70–85% confluence. Both cell types were cultured at 37 ◦C and 5% CO2.

For cell encapsulation, the procedure described in Section 2.3 was followed, incorpo-
rating HUVEC cells at a concentration of 15 × 106 cells/mL in the middle collagen syringe,
and HASMCs at a concentration of 10 × 106 cells/mL in the outer collagen syringe.

5.7. Cell Viability Assay

Our initial hypothesis is that the increase of collagen concentration increases the
stability of the TEBV. However, there is uncertainty whether encapsulated cells would
be able to survive with higher concentrations and the effect of the shear stress pro-
duced by the extrusion method. For this reason, we aimed to assess the viability of
HUVEC and HASMCs when encapsulated within TEBVs with two collagen concentrations:
10 and 20 mg/mL. To this purpose, a LIVE/DEAD cell imaging kit was used following
the manufacturer’s instructions (Invitrogen). Briefly, live cells were stained with a non-
fluorescent cell-permeant component (Calcein AM) that was converted by intracellular
enzymes to fluorescence Calcein AM, giving a green fluorescence signal at 488/515 nm
(excitation/emission wavelengths), and dead cells were stained with a cell-impermeant
component (BOBO-3 iodide) as it enters within cells with a compromised cell membrane,
producing a red nuclear fluorescence at 570/602 nm (excitation/emission wavelengths).
Both components were added at equal volumes in the cell culture medium with TEBVs,
with a final concentration of 1x. Cells were imaged with a laser scanning confocal micro-
scope (Leica SP8, LAS X software version 3.5.5.19976) after 15 min of incubation in the dark.
For the viability analysis, three samples per time point were analyzed, and three captures
at different plans per sample were acquired. Live and dead cells were counted from each
image using ImageJ software (ImageJ 1.52 a). Viability was calculated as a percentage, as
the number of live cells divided per total number of live and dead cells. The viability results
determined which concentration of collagen was used for the subsequent experiments.

5.8. Reconstruction of TEBV with Fluorescent Labeled HUVECs and HASMCs

In order to check if HUVEC and HASMCs could remain in their respective layers once
extruded, inner and outer layers, respectively, each cell type was stained with different
colored cell tracker fluorescence probes prior to the development of TEBV structures.
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HUVEC cells were stained with Green CMFDA (Invitrogen, Waltham, MA, USA) and
HASMC were stained with Red CMTPX (Invitrogen), emitting a green and red signal,
respectively. The final concentration in the cell culture media of both cell trackers was
10 µM. After adding each cell tracker into its respective cell culture media, cells were
incubated with them for 45 min at 37 ◦C, while protected from light. For blood vessel
formation, cells were added at each specific syringe, as explained in Sections 5.3 and 5.6.
TEBVs were imaged at day 2 using a confocal laser microscope (Leica SP8, LAS X software
version 3.5.5.19976). The excitation/emission wavelengths were 492/517 for Green CMFDA
and 577/602 for Red CMTPX. Images were processed and 3D reconstruction was performed
with the same confocal software.

5.9. Statistical Analysis

Statistical analysis was performed using SPSS software (SPSS v21, IBM). Kruskal–
Wallis and Mann–Whitney U non-parametric tests were used to compare if there were
differences between the outer diameter, inner diameter and wall thickness of TEBVs ex-
truded with two different collagen concentrations for each injection speed. Data was
represented as mean ± standard deviation; n = 8. A p-value of less than 0.05 was consid-
ered statistically significant.
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Nat. Rev. Dis. Prim. 2019, 5, 1–18. [CrossRef] [PubMed]
3. McKavanagh, P.; Zawadowski, G.; Ahmed, N.; Kutryk, M. The evolution of coronary stents. Expert Rev. Cardiovasc. Ther. 2018,

16, 219–228. [CrossRef] [PubMed]
4. Kokkinidis, D.G.; Waldo, S.W.; Armstrong, E.J. Treatment of coronary artery in-stent restenosis. Expert Rev. Cardiovasc. Ther. 2017,

15, 191–202. [CrossRef] [PubMed]
5. Sabik, J.F. Understanding saphenous vein graft patency. Circulation 2011, 124, 273–275. [CrossRef]
6. Gu, C.X.; Yang, J.F.; Zhang, H.C.; Wei, H.; Li, L.K. Off-pump coronary artery bypass grafting using a bilateral internal mammary

artery Y graft. J. Geriatr. Cardiol. 2012, 9, 247–251. [PubMed]
7. Matsuzaki, Y.; John, K.; Shoji, T.; Shinoka, T. The evolution of tissue engineered vascular graft technologies: From preclinical trials

to advancing patient care. Appl. Sci. 2019, 9, 1274. [CrossRef] [PubMed]
8. Zhang, Q.; Bosch-Rué, È.; Pérez, R.A.; Truskey, G.A. Biofabrication of tissue engineering vascular systems. APL Bioeng. 2021,

5, 021507. [CrossRef]
9. Song, H.G.; Rumma, R.T.; Ozaki, C.K.; Edelman, E.R.; Chen, C.S. Vascular Tissue Engineering: Progress, Challenges, and Clinical

Promise. Cell Stem Cell 2018, 22, 340–354. [CrossRef]
10. Weinberg, C.B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986, 231, 397–400.

[CrossRef]
11. Li, X.; Xu, J.; Nicolescu, C.T.; Marinelli, J.T.; Tien, J. Generation, Endothelialization, and Microsurgical Suture Anastomosis of

Strong 1-mm-Diameter Collagen Tubes. Tissue Eng. Part A 2017, 23, 335–344. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23105618/s1
https://www.mdpi.com/article/10.3390/ijms23105618/s1
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://doi.org/10.1038/s41572-019-0106-z
http://www.ncbi.nlm.nih.gov/pubmed/31420554
http://doi.org/10.1080/14779072.2018.1435274
http://www.ncbi.nlm.nih.gov/pubmed/29381087
http://doi.org/10.1080/14779072.2017.1284588
http://www.ncbi.nlm.nih.gov/pubmed/28116914
http://doi.org/10.1161/CIRCULATIONAHA.111.039842
http://www.ncbi.nlm.nih.gov/pubmed/23097654
http://doi.org/10.3390/app9071274
http://www.ncbi.nlm.nih.gov/pubmed/31890320
http://doi.org/10.1063/5.0039628
http://doi.org/10.1016/j.stem.2018.02.009
http://doi.org/10.1126/science.2934816
http://doi.org/10.1089/ten.tea.2016.0339


Int. J. Mol. Sci. 2022, 23, 5618 12 of 12

12. Fernandez, C.E.; Yen, R.W.; Perez, S.M.; Bedell, H.W.; Povsic, T.J.; Reichert, W.M.; Truskey, G.A. Human vascular microphysiologi-
cal system for in vitro drug screening. Sci. Rep. 2016, 6, 21579. [CrossRef] [PubMed]

13. Kjar, A.; McFarland, B.; Mecham, K.; Harward, N.; Huang, Y. Engineering of tissue constructs using coaxial bioprinting. Bioact. Mater.
2021, 6, 460–471. [CrossRef] [PubMed]

14. Tarassoli, S.P.; Jessop, Z.M.; Jovic, T.; Hawkins, K.; Whitaker, I.S. Candidate Bioinks for Extrusion 3D Bioprinting—A Systematic
Review of the Literature. Front. Bioeng. Biotechnol. 2021, 13, 616753. [CrossRef] [PubMed]

15. Naghieh, S.; Chen, X. Printability–A key issue in extrusion-based bioprinting. J. Pharm. Anal. 2021, 11, 564–579. [CrossRef]
16. Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [CrossRef]
17. Bosch-Rué, E.; Delgado, L.M.; Gil, F.J.; Perez, R.A. Direct extrusion of individually encapsulated endothelial and smooth muscle

cells mimicking blood vessel structures and vascular native cell alignment. Biofabrication 2020, 13, 015003. [CrossRef]
18. Khanna, A.; Zamani, M.; Huang, N.F. Extracellular matrix-based biomaterials for cardiovascular tissue engineering. J. Cardiovasc.

Dev. Dis. 2021, 8, 137. [CrossRef]
19. Lee, A.; Hudson, A.R.; Shiwarski, D.J.; Tashman, J.W.; Hinton, T.J.; Yerneni, S.; Bliley, J.M.; Campbell, P.G.; Feinberg, A.W. 3D

bioprinting of collagen to rebuild components of the human heart. Science 2019, 365, 482–487. [CrossRef]
20. Tortora, G.J.; Derrickson, B.H. The cardiovascular system: Blood Vessels and Hemodynamics. In Principles of Anatomy & Physiology;

Chapter 21; JSTOR: New York, NY, USA, 2011; pp. 740–807.
21. Jain, R.K.; Au, P.; Tam, J.; Duda, D.G.; Fukumura, D. Engineering vascularized tissue. Nat. Biotechnol. 2005, 23, 821–823. [CrossRef]
22. Rademakers, T.; Horvath, J.M.; van Blitterswijk, C.A.; LaPointe, V.L.S. Oxygen and nutrient delivery in tissue engineering:

Approaches to graft vascularization. J. Tissue Eng. Regen. Med. 2019, 13, 1815–1829. [CrossRef]
23. Camasão, D.B.; Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for

physiological-relevant performances. A critical review. Mater. Today Bio. 2021, 10, 100106. [CrossRef] [PubMed]
24. Konig, G.; Mcallister, T.N.; Dusserre, N.; Garrido, S.A.; Iyican, C.; Marini, A.; Fiorillo, A.; Avila, H.; Wystrychowski, W.;

Zagalski, K.; et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human
saphenous vein and mammary artery. Biomaterials 2009, 30, 1542–1550. [CrossRef] [PubMed]

25. Han, H.C.; Ku, D.N. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann. Biomed. Eng.
2001, 29, 467–475. [CrossRef] [PubMed]

26. Strobel, H.A.; Hookway, T.A.; Piola, M.; Fiore, G.B.; Soncini, M.; Alsberg, E.; Rolle, M. Assembly of Tissue-Engineered Blood
Vessels with Spatially Controlled Heterogeneities. Tissue Eng. Part A 2018, 24, 1492–1503. [CrossRef] [PubMed]

27. Zhang, W.J.; Liu, W.; Cui, L.; Cao, Y. Tissue engineering of blood vessel. J. Cell Mol. Med. 2007, 11, 945–957. [CrossRef] [PubMed]
28. Bishop, E.S.; Mostafa, S.; Pakvasa, M.; Luu, H.H.; Lee, M.J.; Wolf, J.M.; Ameer, G.A.; He, T.-C.; Reid, R.R. 3-D bioprinting

technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 2017, 4, 185–195. [CrossRef]
[PubMed]

29. Chang, R.; Nam, J.A.E.; Sun, W.E.I. Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform
Fabrication—Based Direct Cell Writing. Tissue Eng. Part A 2008, 14, 41–48. [CrossRef] [PubMed]

30. Kang, D.; Ahn, G.; Kim, D.; Kang, H.W.; Yun, S.; Yun, W.S.; Shim, J.-H.; Jin, S. Pre-set extrusion bioprinting for multiscale
heterogeneous tissue structure fabrication. Biofabrication 2018, 10, 35008. [CrossRef]

31. Osidak, E.O.; Karalkin, P.A.; Osidak, M.S.; Parfenov, V.A.; Sivogrivov, D.E.; Pereira, F.D.A.S.; Gryadunova, A.A.; Koudan, E.V.;
Khesuani, Y.D. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J. Mater. Sci. Mater. Med. 2019, 30, 1–12.
[CrossRef]

32. Jakab, K.; Norotte, C.; Marga, F.; Murphy, K.; Vunjak-Novakovic, G.; Forgacs, G. Tissue engineering by self-assembly and
bio-printing of living cells. Biofabrication 2010, 2, 22001. [CrossRef]

33. Sthijns, M.M.; LaPointe, V.L.; van Blitterswijk, C.A. Building Complex Life through Self-Organization. Tissue Eng. Part A 2019, 25,
1341–1346. [CrossRef] [PubMed]

34. Athanasiou, K.A.; Eswaramoorthy, R.; Hadidi, P.; Hu, J.C. Self-organization and self-assembling process in tissue engineering.
Anu. Rev. Biomed. Eng. 2013, 15, 115–136. [CrossRef] [PubMed]

35. Andrique, L.; Recher, G.; Alessandri, K.; Pujol, N.; Feyeux, M.; Bon, P.; Cognet, L.; Nassoy, P.; Bikfalvi, A. A model of guided cell
self-organization for rapid and spontaneous formation of functional vessels. Sci. Adv. 2019, 5, 1–12. [CrossRef] [PubMed]

36. Delgado, L.M.; Shologu, N.; Fuller, K.; Zeugolis, D.I. Acetic acid and pepsin result in high yield, high purity and low macrophage
response collagen for biomedical applications. Biomed. Mater. 2017, 12, 65009. [CrossRef] [PubMed]

http://doi.org/10.1038/srep21579
http://www.ncbi.nlm.nih.gov/pubmed/26888719
http://doi.org/10.1016/j.bioactmat.2020.08.020
http://www.ncbi.nlm.nih.gov/pubmed/32995673
http://doi.org/10.3389/fbioe.2021.616753
http://www.ncbi.nlm.nih.gov/pubmed/34722473
http://doi.org/10.1016/j.jpha.2021.02.001
http://doi.org/10.1016/j.progpolymsci.2011.06.003
http://doi.org/10.1088/1758-5090/abbd27
http://doi.org/10.3390/jcdd8110137
http://doi.org/10.1126/science.aav9051
http://doi.org/10.1038/nbt0705-821
http://doi.org/10.1002/term.2932
http://doi.org/10.1016/j.mtbio.2021.100106
http://www.ncbi.nlm.nih.gov/pubmed/33889837
http://doi.org/10.1016/j.biomaterials.2008.11.011
http://www.ncbi.nlm.nih.gov/pubmed/19111338
http://doi.org/10.1114/1.1376391
http://www.ncbi.nlm.nih.gov/pubmed/11459340
http://doi.org/10.1089/ten.tea.2017.0492
http://www.ncbi.nlm.nih.gov/pubmed/29724157
http://doi.org/10.1111/j.1582-4934.2007.00099.x
http://www.ncbi.nlm.nih.gov/pubmed/17979876
http://doi.org/10.1016/j.gendis.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29911158
http://doi.org/10.1089/ten.a.2007.0004
http://www.ncbi.nlm.nih.gov/pubmed/18333803
http://doi.org/10.1088/1758-5090/aac70b
http://doi.org/10.1007/s10856-019-6233-y
http://doi.org/10.1088/1758-5082/2/2/022001
http://doi.org/10.1089/ten.tea.2019.0208
http://www.ncbi.nlm.nih.gov/pubmed/31411111
http://doi.org/10.1146/annurev-bioeng-071812-152423
http://www.ncbi.nlm.nih.gov/pubmed/23701238
http://doi.org/10.1126/sciadv.aau6562
http://www.ncbi.nlm.nih.gov/pubmed/31206014
http://doi.org/10.1088/1748-605X/aa838d
http://www.ncbi.nlm.nih.gov/pubmed/28767045

	Introduction 
	Results 
	Optimal Conditions for High Concentration Collagen TEBV Extrusion 
	Mechanical Properties and Preliminary Results of Tissue-Engineered Blood Vessels (TEBVs) Perfusion 
	Viability of HUVEC and HASMC Extruded within TEBVs 
	The 3D Reconstruction of Collagen TEBV 

	Discussion 
	Conclusions 
	Materials and Methods 
	Concentrated Collagen Solution 
	Support Bath Preparation 
	Collagen Tissue-Engineered Blood Vessel (TEBV) Development 
	Burst Pressure 
	Proof of Concept of TEBV Perfusion 
	Cell Culture 
	Cell Viability Assay 
	Reconstruction of TEBV with Fluorescent Labeled HUVECs and HASMCs 
	Statistical Analysis 

	References

