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Purpose: The aim of this study was to investigate the physiological and perceptional
responses to forward, forward-backward, and lateral shuttle running.

Methods: Twenty-four eligible male subjects performed a maximal oxygen uptake
(VO2max) test and three directional modes (i.e., forward, forward-backward, and lateral)
of 5-m shuttle running at the speed of 6 km·h−1 for 5 min on separate days. Heart
rate (HR) and oxygen uptake (VO2) were continuously measured during the whole tests.
Rating of perceived exertion (RPE) was inquired and recorded immediately after the
test. Capillary blood samples were collected from the earlobe during the recovery to
determine the peak value of blood lactate concentration ([La−]peak).

Results: Running directional mode had significant effects on HR (F = 72.761,
P < 0.001, η2

p = 0.760), %HRmax (F = 75.896, P < 0.001, η2
p =0.767), VO2

(F = 110.320, P < 0.001, η2
p = 0.827), %VO2max (F = 108.883, P < 0.001,

η2
p = 0.826), [La−]peak (F = 55.529, P < 0.001, η2

p = 0.707), and RPE (F = 26.268,
P < 0.001, η2

p = 0.533). All variables were significantly different between conditions
(P ≤ 0.026), with the variables highest in lateral shuttle running and lowest in forward
shuttle running. The effect sizes indicated large magnitude in the differences of all
variables between conditions (ES = 0.86–2.83, large) except the difference of RPE
between forward and forward-backward shuttle running (ES = 0.62, moderate).

Conclusion: These findings suggest that the physiological and perceptional responses
in shuttle running at the same speed depend on the directional mode, with the
responses highest in lateral shuttle running, and lowest in forward shuttle running.
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INTRODUCTION

Shuttle running, in which acceleration, deceleration, and
180◦change of direction (COD) are performed successively at
a given distance, is often used in either sport training (Zadro
et al., 2011) or fitness evaluations (Léger et al., 1988; Stewart
et al., 2014). It can be not only performed at submaximal speed
(Hatamoto et al., 2014; Stevens et al., 2015) but also be applied
in high-intensity interval training (Bravo et al., 2008; Haydar
et al., 2011; Zadro et al., 2011). Due to the speed fluctuation
and directional change (Dellal et al., 2010), shuttle running may
produce additional physical load when compared with constant
straight-forward running at the same average speed (Osgnach
et al., 2010; Zago et al., 2018). It has been widely proved that the
inclusion of COD during running could elicit greater heart rate
(HR), oxygen uptake (VO2), rating of perceived exertion (RPE),
and blood lactate concentration ([La−]) than linear running
for both submaximal (Buchheit et al., 2011) and high intensity
(Dellal et al., 2010).

Shuttle running can be manipulated by the distance between
each turning, mean speed, and directional mode. Previous
studies focused primarily on the distance and speed of shuttle
running. The distance usually used in shuttle running was 5 m,
10 m, or 20 m. For the same mean speed of shuttle runs,
shorter distance indicates higher COD frequency and larger
speed fluctuation. The peak value of blood lactate concentration
([La−]peak) could reach 3.8 ± 2.6 mmol·L−1 (Buchheit et al.,
2011) and 9.78 ± 3.05 mmol·L−1 (Zago et al., 2018) after 20-m
and 5-m shuttle running with 75% maximal aerobic speed for
5 min. Hatamoto et al. (2014) explored the effect of COD
frequency on the energy cost of shuttle running at different
speeds. The results indicated that VO2, HR, and RPE rose almost
linearly as the COD frequency increased from 13 to 18 times per
minute at different velocities (3, 4, 5, 6, and 7 km·h−1). Ashton
and Twist (2015) demonstrated that more directional changes
during intermittent shuttle running increased the physiological
load on female athletes. With regard to the same distance shuttle
runs, there was a consensus that the HR, RPE, and VO2 per unit
time was significantly higher at greater speed (Buchheit et al.,
2011; Hatamoto et al., 2013) while the results of VO2 per unit
distance in different researches didn’t come to an agreement.
Buchheit et al. (2011) reported that there was no significant
difference in VO2 per meter between different speeds (45, 60,
and 75% of maximal aerobic speed), whereas Stevens et al. (2015)
and Zago et al. (2018) claimed that it would be significantly
higher when the speed increased. However, researchers mainly
focused on forward running, which has been widely studied in
either the physiological demands or the acute biomechanical
determinants (Ishii et al., 2011; Zamparo et al., 2015; Zago
et al., 2019, 2021). Although forward running has received
much attention, other directional modes of shuttle running have
been less concerned.

Running can be briefly divided into forward, backward,
lateral based on the direction, and these running modes exist
in daily activities and sports. Since backward running and
lateral running are not habitual exercise for humans, they

are expected to induce higher physiological and perceptional
responses than forward locomotion. A few studies compared
the differences of physiological and perceptional responses
between backward and forward running on the treadmill (Flynn
et al., 1994; Masumoto et al., 2009), yet lateral running was
seldom incorporated in the experiment design. Indeed, moving
backwards or laterally is often integrated with COD in many
sports, such as basketball, soccer, handball, badminton, and
tennis (Williford et al., 1998; Maurus et al., 2019). Nevertheless,
until now, there has been no published research on the
comparison of physiological and perceptional responses to
shuttle running with different directional modes. Moreover,
knowledge about the physiological demands of exercise is useful
to assess training/exercise load and to formulate training plans,
exercise prescription, fatigue prevention strategies, and nutrition
management (Zago et al., 2018).

Therefore, the present study was designed to investigate the
physiological and perceptional responses to shuttle running with
three directional modes (i.e., forward, forward-backward, and
lateral running). We hypothesized that: (1) directional mode had
significant effects on the physiological and perceptional responses
to shuttle running, and (2) the physiological and perceptional
responses to shuttle running were highest in lateral shuttle
running, and lowest in forward shuttling running.

MATERIALS AND METHODS

Participants
Twenty-eight male college students volunteered to participate
in this study. All participants had more than 2 years (up to 10
years) soccer training experience and spent more than 6 h on
physical exercises every week in the last 4 weeks. A Physical
Activity Readiness Questionnaire (PAR-Q) was used to exclude
subjects with cardiovascular or musculoskeletal problems. Four
of them were not included in the final analysis because of
data loss or injury problems during the whole procedures.
Twenty-four eligible subjects had the following characteristics
(mean ± SD): age = 19.6 ± 0.8 years, height = 175.4 ± 6.2 cm,
weight = 67.1 ± 5.9 kg, VO2max = 60.3 ± 4.1 ml·kg−1

·min−1. All
the subjects included were in good health, not taking medications
known to influence metabolic or cognitive functions.

Experimental Design
The experiment consisted of a maximal oxygen uptake
(VO2max) test and three shuttle running tests, including
forward shuttle running, forward-backward shuttle running,
and lateral shuttle running. HR, VO2, [La−]peak, and RPE
were recorded to reflect the physiological and perceptional
responses of the exercises. Subjects were also instructed to
refrain from high intensity and strenuous exercises during
the last 24 h ahead of each test, to standardize their food
and drink intake (no caffeine), as well as to have a regular
sleep on test days. The purpose, procedures and risks of this
study were explained to the participants both verbally and
in written format. Prior to the formal tests, all participants
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provided informed consent document after understanding the
whole tests and got familiar with the test protocols and
experimental instruments. This study was approved by the
Research Ethical Committee of Shanghai University of Sport
(approval number: 102772020RT085).

Procedures
Maximal Oxygen Uptake Test
The subject’s VO2max was determined with an incremental test
on a treadmill (Saturn R© 300/100 r, H/P/Cosmos, Nussdorf-
Traunstein, Germany) in a laboratory with the ambient
temperature ranged from 20.3 to 23.5◦C and the atmosphere
pressure ranged from 100.8 to 102.7 kPa. The speed was
increased by 1 km·h−1 every minute from an initial intensity
of 8 km·h−1 and 1% gradient (Bravo et al., 2008; Kramer
et al., 2018). HR and respiratory gas exchange were under
real-time supervision with a HR monitor (T31, Polar-Electro,
Kempele, Finland) and a portable gas analyzer (MetaMax 3B,
Cortex, Leipzig, Germany). The gas analyzer was calibrated with
ambient air (assumed concentration of 20.94% O2 and 0.03%
CO2) and a standard gas of known composition (O2: 15.00%,
CO2: 5.00%) for gas calibration, as well as a 3-L syringe for
volume calibration according to the manufacturer’s instructions
before the test. The subject’s rating of perceived exertion was
assessed using Borg 6–20 scale (Borg, 1998) when the test was
stopped. A capillary blood sample was collected from subject’s
earlobe at the beginning of the 1st, 3rd, 5th, 7th, and 10th
minute during the recovery. [La−] was analyzed with EKF
lactate analyzer (Biosen C_line, EKF Diagnostic, Magdeburg,
Germany). The test was immediately terminated if the subject
waved hand to the researcher that indicated exhaustion. Other
standards for termination were: (1) touching the handrail, (2)
unsteady gait, and (3) failed to keep himself in the first half
of the treadmill. Heart rate was recorded simultaneously with
the respiratory data, which was collected continuously (mobile
mean value of three consecutive breaths) using the breath-by-
breath method. HRmax was the maximal value obtained during
the test. VO2max was defined as the maximum moving average
value in 30-s window (Stevens et al., 2015) and expressed in
milliliters of oxygen per kilogram per minute (ml·kg−1

·min−1).
To ensure the VO2max was reached, the participant should
meet at least 3 of the 5 following criteria (Howley et al., 1995;
Midgley et al., 2007; Hatamoto et al., 2014; Ázara et al., 2017):
(1) a VO2 plateau despite increasing speed (1VO2 between
two consecutive stages < 2.1 ml·kg−1

·min−1), (2) HR ≥ 95%
individual age-predicted maximal HR (HRmax = 220 –age),
(3) RER (respiratory exchange ratio, the ratio between the
expired CO2 and the amount of O2 being consumed) ≥ 1.10,
(4) RPE ≥ 18, and (5) [La−] ≥ 8 mmol·L−1. If not, the
subject should take another VO2max test with same procedures
after at least 48 h.

Shuttle Running Tests
Forward, forward-backward, and lateral shuttle running tests
were conducted by each subject in a random order on separate
days. For each trial, participants performed a 180◦COD after

covering 5 m at a mean speed of 6 km·h−1 and repeated this
continuously for 5 min in order to reach a metabolic steady
state (Ciprandi et al., 2018; Zago et al., 2018). The selection
of 6 km·h−1 was because participants could hardly complete
the lateral shuttle running at higher speeds for 5 min, as we
have investigated in pilot study. Conditions took place at the
same time (± 0.5 h) of day. Each participant was required to
wear the same running shoes and similar suits for the tests.
All protocols were conducted on the same flat synthetic rubber
indoor course where ambient temperature ranged from 19 to
23◦C and atmosphere pressure ranged from 101.7 to 103.2 kPa
during the shuttle running tests.

Prior to starting each test, participant performed a 10-min
warm-up including 5-min jogging and 5-min dynamic stretches
as dictated by the researcher. Then, instruments which had
been calibrated according to the manufacturers’ instructions were
assembled and checked. During all the tests, running pace was
governed by a metronomic device. The audio signal beeped
every 3 s and indicated the moment that the participants needed
to change direction and the supporting foot should pass over
the turning line. Right foot and left foot were alternatively
used to change direction in order to avoid unilateral fatigue
(Ciprandi et al., 2018; Zago et al., 2018). Each participant
chose his own preferred stride length and stride frequency
because it has been demonstrated that naturally selected stride
length-frequency combination resulted in the lowest oxygen
consumption (Hogberg, 1952; Cavanagh and Williams, 1982;
Mercer et al., 2008). In forward shuttle running, subjects were
instructed to change direction with a sidestep technique. Body
was accelerated toward the direction opposite of the push-off
leg (Schot et al., 1995; Cochrane et al., 2007; Potter et al.,
2014) and the pivoting foot should land perpendicularly to the
running direction (Zago et al., 2018). Since participants faced
the same direction without any body rotation throughout the
forward-backward or lateral shuttle running, there was no special
technical requirement in these two conditions. A researcher
supervised the whole tests and provided oral instruction if the
participant failed to pass over the turning line or follow the pace.

Heart rate and respiratory gas exchange were continuously
measured with a HR monitor (T31, Polar-Electro, Kempele,
Finland) and a portable gas analyzer (MetaMax 3B, Cortex,
Leipzig, Germany). HR was determined as the mean of HR in
the last 2 min (Hatamoto et al., 2013). The average value of
VO2 (ml·kg−1

·min−1) in the last 2 min (representing a steady
state) was calculated to represent the VO2 of this condition
(Buchheit et al., 2011; Hatamoto et al., 2013; Zamparo et al.,
2014, 2015, 2016). Relative HRmax and relative VO2max were
represented as %HRmax and %VO2max, which meant the ratio
(in percentage form) of HR to individual HRmax and VO2 to
individual VO2max, respectively. When the test was completed,
the participant’s RPE [according to 6–20 Borg’s scale, Borg
(1998)] was immediately inquired and recorded. During the
recovery in sitting position, a capillary blood sample (10 µL)
was collected from the participant’s earlobe in the 1st, 3rd, 5th,
and 7th minute after each test (Li et al., 2018) and [La−]peak
was used to analyze in this study. Since the data were compared
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within subject and we assumed that the resting metabolic rate
fluctuated within a very narrow range during the test days, the
pre-test values were not considered (Buglione and di Prampero,
2013; Zamparo et al., 2014).

Statistics
Data analyses were conducted with an academic statistics
software (SPSS 25.0, IBM, Armonk, New York, NY,
United States). Descriptive statistics were presented as
mean ± SD within 95% confidence interval (95% CI) for
all variables. The normality of each dependent variable was
examined by Shapiro-Wilk test. When the normality distribution
was rejected, the data were transformed by taking the natural
logarithm to allow statistical comparisons that assume a normal
distribution (Buchheit et al., 2011). Back-transformed values
were presented in the text. The effect of running modes on
the variables investigated in this study was assessed using a
one-way analysis of variance (ANOVA) for repeated measures.
Greenhouse–Geisser correction was performed if the sphericity
assumption was violated. When significant effects were found,
Bonferroni post hoc tests were applied to determine the
differences between running modes. Effect sizes (Cohen’s
d) of post hoc tests were calculated for the magnitude of
differences. Threshold values were ≤ 0.20 (trivial), > 0.20–0.50
(small), > 0.50–0.80 (moderate), and > 0.80 (large), respectively.
The level of statistical significance was set at p < 0.05.

RESULTS

Physiological and perceptional responses to three modes of
shuttle running are shown in Table 1. Statistical results revealed
that running mode had significant effects on HR (F = 72.761,
P < 0.001, η2

p = 0.760), %HRmax (F = 75.896, P < 0.001,
η2

p = 0.767), VO2 (F = 110.320, P < 0.001, η2
p = 0.827),

%VO2max (F = 108.883, P < 0.001, η2
p = 0.826), [La−]peak

(F = 55.529, P < 0.001, η2
p = 0.707), and RPE (F = 26.268,

P < 0.001, η2
p = 0.533).

Bonferroni post hoc tests showed that all variables investigated
in this study were significantly different between conditions.
HR, %HRmax, VO2, %VO2max, [La−]peak, and RPE in forward-
backward shuttle running were higher than in forward exercise.

Lateral shuttle running yielded the highest responses. The
effect sizes indicated large magnitude in the differences of
all variables between conditions except the difference of RPE
between forward and forward-backward shuttle running. The
individual physiological and perceptional responses to the same
condition varied much between subjects (see Figure 1).

DISCUSSION

The present study evaluated the HR, %HRmax, VO2, %VO2max,
[La−]peak, and RPE of 5-m forward, forward-backward, and
lateral shuttle running at the speed of 6 km·h−1. To our
knowledge, it is probably the first study to investigate the
physiological and perceptional responses to different directional
modes of shuttle running. The results of this study showed
that both lateral and forward-backward shuttle running elicited
greater physiological and perceptional responses than forward
shuttle running at the selected speed. All variables investigated
in this study (HR, %HRmax, VO2, %VO2max, [La−]peak, and
RPE) were significantly higher in forward-backward shuttle
running than in forward shuttle running and the values in lateral
shuttle running were significantly higher than the other two
conditions. The findings verified our hypothesis that both lateral
and forward-backward shuttle running could produce greater
physiological demands compared with forward shuttle running.
It indicated that to complete the same distance shuttle running
at the same speed, running forwards was more efficient than
running backwards or running sideways. The outcome was not
surprising. Generally, humans are used to running or walking
in the forward direction. Backward and lateral movements are
applied in daily activities or sport exercises at times. With the
alterations of visual field and neuromuscular activation, running
backwards and running laterally are considered as unaccustomed
tasks for humans compared with running forwards (Oyeyemi
et al., 2017), especially performed continuously. As pointed by
Schwane et al. (Schwane et al., 1983; Flynn et al., 1994), to
complete a unfamiliar activity may require greater motor unit
recruitments, resulting in increased energy cost.

Plenty of evidence has shown that forward shuttle running
required higher physiological demands than constant straight-
forward running at the same speed (Osgnach et al., 2010;

TABLE 1 | Physiological and perceptional responses to three modes of 5-m shuttle running at 6 km·h−1.

HR (bpm) %HRmax (%) VO2 (ml·kg−1·min−1) %VO2max (%) [La−]peak (mmol·L−1) RPE

Forward 136.1 ± 13.0 69.8 ± 5.56 34.4 ± 2.47 57.3 ± 5.29 1.73 ± 0.53 8.83 ± 1.49
(109.1, 163.1) (58.2, 81.4) (29.3, 39.6) (46.3, 68.3) (0.62, 2.83) (5.72, 12.0)

Forward-backward 147.8 ± 14.7∗ 75.8 ± 6.19∗ 38.7 ± 3.69∗ 64.4 ± 7.04∗ 2.66 ± 1.00∗ 9.75 ± 1.59∗

(117.1, 178.5) (62.9, 88.7) (31.0, 46.4) (49.7, 79.2) (0.58, 4.74) (6.42, 13.1)
Lateral 158.7 ± 16.7∗† 81.4 ± 7.32∗† 43.3 ± 3.89∗† 72.1 ± 7.62∗† 4.73 ± 2.25∗† 11.3 ± 1.33∗†

(123.9, 193.5) (66.1, 96.7) (35.2, 51.4) (56.2, 88.0) (0.03, 9.43) (8.48, 14.0)

Values are mean ± SD.
Italics in brackets are the 95% confidence interval (95% CI) for each parameter.
HR, heart rate; HRmax, maximal heart rate; %HRmax, the ratio of HR to HRmax in percentage; VO2, oxygen uptake; VO2max, maximal oxygen uptake; %VO2max, the ratio
of VO2 to VO2max in percentage; [La−]peak, the peak value of blood lactate concentration; RPE, rating of perceived exertion.
*Statistically significant difference vs. forward mode (p < 0.05).
†Statistically significant difference vs. forward-backward mode (p < 0.05).
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FIGURE 1 | Physiological and perceptional responses to three modes of shuttle running: HR (A), %HRmax (B), VO2 (C), %VO2max (D), [La−]peak (E), RPE (F). HR,
heart rate; HRmax, maximal heart rate; %HRmax, the ratio of HR to HRmax in percentage; VO2, oxygen uptake; VO2max, maximal oxygen uptake; %VO2max, the ratio
of VO2 to VO2max in percentage; [La−]peak, the peak value of blood lactate concentration; RPE, rating of perceived exertion; F, forward shuttle running, F-B,
forward-backward shuttle running; L, lateral shuttle running; ES, effect size. *Statistically significant difference (p < 0.05).

Zago et al., 2018). So far, however, no published study has
investigated the physiological responses of shuttle running
involved backward and lateral locomotion. Despite all this,
several studies concerning the physiological demands and
mechanical characteristics about different directional modes of
straight running could help us to understand the influence of
running mode on the physical responses. In an early study,
Reilly and Bowen (1984) determined the energy expenditure and
perceptual fatigue of three directional modes (forward, backward,
and lateral) of straight running on a treadmill at 5, 7, and
9 km·h−1. The results showed that both backward running and

lateral running produced significantly greater energy demand
and higher RPE than forward running at the investigated speeds.
In another study (Williford et al., 1998), it was observed that
HR and VO2 were significantly higher in lateral running and
backward running than forward running. These findings were
congruent with the results in the present study. However, the
results of comparing backward running and lateral running
were inconsistent. Reilly and Bowen (1984) reported that neither
energy expenditure nor RPE was significantly different between
backward and lateral running. Williford et al. (1998) found
that the differences between backward running and lateral
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running were speed dependent. HR and VO2 were significantly
higher in lateral running at the speed of 3 miles per hour
(mph), while no significant difference was found at 5 mph.
Besides, differences of the HR and VO2 between running modes
appeared to dramatically greater at higher speed in these two
studies. It indicated that speed and running mode may have
an interaction effect on the physiological responses in shuttle
running. In our study, lateral shuttle running elicit significantly
higher physiological responses than forward-backward mode.
Nevertheless, it was difficult to directly compare these findings
because forward-backward shuttle running contained forward
components. Further researches are needed to determine whether
the physiological responses in lateral running is higher than
running backwards.

In addition, Mayo et al. (2004) observed that the physiological
responses to forward-motion and backward-motion exercise
were similar while the lateral-motion exercise elicit significant
greater VO2 and HR with the similar RER and RPE relative to
forward and backward exercise at self-selected intensities. The
findings indicated that lateral-motion exercise was performed
with higher metabolism at the perceived similar intensities.
It should be noted that forward and backward exercise were
conducted on a treadmill while lateral-motion exercise was
performed on a slideboard. We supposed that the physiological
responses to running in different directions were similar at the
same perceived intensities. However, the physiological responses
to lateral running at the self-selected intensity may need
further research.

Forward running and backward running are accomplished
in sagittal plane but in opposite direction. In these two kinds
of running, the total lower limb muscle work is similar at
the same speed, but the muscles are activated concentrically
and eccentrically with quite different sequences and extents
of activation, accompanied by different ankle, knee, and hip
joint moment and power output (Flynn et al., 1994). During
forward running, ankle plantar flexors produced more power and
played an important role in propulsion, whereas knee extensors
were the primary source of propulsion in backward running
because of the higher moment and power generation (DeVita
and Stribling, 1991). Hip moment and power patterns of forward
running and backward running were opposite in direction
but similar in magnitude (DeVita and Stribling, 1991). Unlike
forward and backward running, lateral running is performed
in the frontal plane with prominent hip abduction-adduction
and relatively smaller flexion-extension angles of hip, knee,
and ankle. Thus, the groups of muscles activated in lateral
movement and the magnitude of activation must be distinct
from the forward or backward mode. Different neuromuscular
firing patterns may be one of the explanations to the distinct
physiological and perceptional responses in different modes of
shuttle running. The differences of kinetics may be another
reason for the different physical responses. Wright and Weyand
(2001) investigated the application of ground force during
forward running and backward running and noted that metabolic
rates during running were associated with the rates of ground
force application and the volume of muscle activated to produce
support forces against the ground. Unfortunately, few researches

have investigated the kinematic parameters and muscle activities
of lateral running.

The changes in stride length and stride frequency may also
contribute to the different physiological demands. According to
the previous studies, subjects employed shorter stride length and
higher stride frequency during backward running than during
forward running at the same speed. These differences became
larger at higher speeds (Flynn et al., 1994; Williford et al.,
1998; Wright and Weyand, 2001). During lateral running, stride
length was shorter and stride frequency was higher than forward
running and backward running (Williford et al., 1998). Changes
of stride length and stride frequency in different running modes
may be one of reasons that caused distinct physiological and
perceptional responses.

In the present study, there were some limitations should be
discussed. First, the forward-backward shuttle running mode,
other than backward mode, was applied in this study, resulting
in the difficulty to compare the effects of backward and lateral
modes. Nevertheless, backward shuttle running was difficult
to performed and seldom happened in the match. Forward-
backward shuttle running was much closer to the practice
and often used in sport training. Second, the values at rest
were not collected with the assumption of the baseline values
of the same subject fluctuated within a narrow range during
the test days and the random testing order could offset the
variations. In some studies, authors assumed that all participants
had the same baseline values, such as 3.5 ml·kg−1

·min−1

(Buglione and di Prampero, 2013) or 5 ml·kg−1
·min−1 for

resting VO2 and 1 mmol·L−1 for resting [La−] (Buglione
and di Prampero, 2013; Zamparo et al., 2014, 2015), which
were subtracted from the total values to calculate the energy
cost during locomotion. Moreover, the large differences of
the physiological and perceptional responses between running
modes demonstrated that the baseline values could be safely
neglected in this study. Therefore, the absence of baseline values
had little impact on our conclusions. Third, the present study
only examined the physiological and perceptional responses to
three modes of shuttle running at the speed of 6 km·h−1 in 5-m
distance. However, shuttle running could be performed at various
combinations of speed and distance. Other conditions were not
involved in this preliminary study.

CONCLUSION

In conclusion, the physiological and perceptional responses in
5-m shuttle running at a mean speed of 6 km·h−1 depended
on the running directional modes, with the responses highest in
lateral shuttle running, and lowest in forward shuttle running.
When utilized in home-based exercise, shuttle running could
stimulate the cardiorespiratory and musculoskeletal system to
different extents by performing with different directional modes.
This preliminary study only investigated HR, %HRmax, VO2,
%VO2max, [La−]peak, and RPE in forward, forward-backward and
lateral 5-m shuttle running at 6 km·h−1. Further researches can
be designed to explore more physiological and biomechanical
variables at other intensities with various speeds and shuttle
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distances in order to determine the underlying reasons for
these differences.
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