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Abstract
Dengue virus (DENV) infection is a major emerging disease widely distributed throughout

the tropical and subtropical regions of the world affecting several millions of people. Despite

constants efforts, no specific treatment or effective vaccine is yet available. Here we show a

novel design of a DNA immunisation strategy that resulted in the induction of strong anti-

body responses with high neutralisation titres in mice against all four viral serotypes. The

immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein

fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences

were also codon-optimised for expression in mammalian cells. While DIII alone is very

poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and

secreted at high levels, thus inducing strong antibody responses. Mice were immunised

using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA,

and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all

sera showed reactivity to a recombinant DIII version and the recombinant E protein pro-

duced and secreted from mammalian cells in a mono-biotinylated form when tested in a

conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-

capture ELISA and specific for each serotype as revealed by the low cross-reactive and

cross-neutralising activities. The serotype specific sera did not induce antibody dependent

enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immuni-

sation protocol in mice showed induction of neutralising antibodies against all four dengue

serotypes as well.

Author Summary

Dengue disease is a mosquito-borne viral infection caused by Dengue virus (DENV), one
of the most important human pathogens worldwide. DENV infection produces a systemic
disease with a broad symptomatic spectrum ranging from mild febrile illness (Dengue
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Fever, DF) to severe haemorrhagic manifestations (Dengue Haemorrhagic fever and Den-
gue Shock Syndrome, DHF and DSS respectively). To date there is no vaccine available to
prevent dengue disease. We show here a strategy of immunisation, tested in mice, that elic-
its a strong immune response against the four different DENV serotypes. The novelties
presented in our work open the way to the development of an efficient vaccine accessible
to developing countries.

Introduction
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), one of the most
important human pathogens worldwide [1]. The infection produces a systemic disease with a
broad spectrum of outcomes, ranging from non-symptomatic/mild febrile illness (Dengue
Fever, DF) to severe plasma leakage and haemorrhagic manifestations (Dengue Haemorrhagic
Fever, DHF) that can further evolve into potentially fatal conditions (Dengue Shock Syndrome,
DSS) [2, 3]. DENV, which is spread by Aedes spp. mosquitoes, is widely distributed throughout
the tropical and subtropical regions of the world [2]. About 3 billion people, in over 100 coun-
tries, are estimated to be at risk of infection, with over 300 million infections, 500,000 episodes
of DHF manifestations and 20,000 deaths reported each year [1, 4]. The remarkable spread and
impact of the disease led the World Health Organization to classify it as the “most important
mosquito-borne viral disease in the world” [5].

Four different serotypes of dengue viruses (DENV1, DENV2, DENV3 and DENV4) have
been identified, all of which are pathogenic in humans [6]. Infection with any one serotype
induces lifelong immunity against that specific serotype, with only transient cross-protection
against the three other serotypes [7–9]. In fact, severe manifestations of dengue infection are
generally associated with secondary infections involving different viral serotypes; this happens
through a mechanism known as antibody-dependent enhancement of infection (ADE) [8, 10].
In ADE, recognition of viral particles by cross-reacting, but weakly or non-neutralising antibod-
ies, leads to an increased Fc receptor-mediated uptake of immature or incompletely neutralised
viruses by monocytes, macrophages, and dendritic cells, which represent the primary targets of
dengue virus infections in humans, resulting in increased infectivity and deterioration of the
patient’s clinical condition [11]. This is critical in dengue vaccine development, since an immu-
nogen that does not elicit fully neutralising antibodies to all four serotypes may contribute to
disease, rather than prevent infection [12]. Given the lack of efficient treatment against the
infection and the risk to human health, in particular (but not only) in developing countries,
research to develop an efficient vaccine has become an increasing but yet unsuccessful task.

DENV is an enveloped virus of the Flaviviridae family, with a single-stranded, positive-
sense RNA genome of around 11 Kb that encodes 10 mature viral proteins [13, 14]. Among
these, the envelope glycoprotein (E) is the major constituent of the viral membrane envelope,
which plays essential roles during the endosomal-mediated virus internalisation, by promoting
attachment to the host cell and fusion to the cellular membranes [15–17]. The E protein is
formed by three structural domains (DI, DII and DIII), separated by a stem region from the
two trans-membrane domains that anchor the protein to the virus membrane envelope [16,
18]. While DII plays a major role in E dimerisation and harbours the hydrophobic fusion loop,
DIII is an Ig-like domain that has been implicated in binding to cellular receptors [16, 19, 20].
The mature infective viral particle has a relatively round, smooth surface with a highly ordered
icosahedral scaffold formed by 180 E molecules, that are distributed in 30 rafts of 3 parallel
dimers organized in a herringbone pattern [19, 21]. Additionally, E is the most important
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target of the antibody immune response during infection [8, 22]. Antibodies against the upper
lateral surface of DIII have been described as the ones with high neutralising capacity; coinci-
dently, this region shows also the highest variability among serotypes, which accounts for the
high specificity of these antibodies [12, 23, 24]. Thus, DIII of protein E has been widely consid-
ered as the antigen of choice for vaccine development.

Genetic vaccination, based on the delivery into cells of the host of DNA or RNA constructs
capable of expressing and secreting the encoded selected protein [25, 26], has been extensively
tested and found to be highly effective in inducing immune responses against a wide range of
pathogens and conditions [27]. It offers the possibility to raise virus-neutralising activity in a
simple and effective way due to the very low costs of production and excellent stability, which
can be critical when dealing with the conditions found in some developing countries [27, 28].

In this study we present four DNA constructs, each one encoding the DIII of a different
DENV serotype that were engineered to enhance expression and secretion in mammalian cells
and tested as genetic vaccines in mice. Our results indicate that they were able to drive strong
neutralising responses against all four serotypes, with the potential of further development.

Materials and Methods

Cell lines and viruses
HEK293 and HEK293T/17 cells (ATCC, Rockville, MD, USA, numbers CRL-1573 and CRL-
11268, respectively) were cultured in Dulbecco's modified Eagle's medium (DMEM, Life Tech-
nologies, Paisley, UK) supplemented with 10% heat-inactivated foetal calf serum (FCS) (Life
Technologies), 50 μg/ml gentamycin and 2 mM L-glutamine. To select HEK293 stable clones,
0.4 mg/ml Geneticin (G418, Life Technologies) was added. Mouse myeloma Sp2/0-Ag14 cells
(ATCC CRL-1581) were cultured in RPMI 1640 medium (Life Technologies) supplemented
with 10% heat inactivated FCS, 50 μg/ml gentamycin, 2 mM L-glutamine, 1 mM sodium pyru-
vate. Sp2/0 stable clones were grown in selective media containing 0.4 mg/ml Geneticin. BHK-
21 (ATCC CCL-10) and Vero (ATCC-CCL-81) cells were grown in DMEMmedium supple-
mented with 10% heat inactivated FCS, 50 μg/ml gentamycin and 2 mM L-glutamine. Vero
FM cells (Vero E6 derivate, kindly provided by Dr. Toni Rieger, BNI, Hamburg, Germany)
were maintained in the same conditions with 1% non-essential amino acids. Aedes albopictus
C6/36 cells (ATCC CRL-1660) were grown at 28°C in RPMI medium supplemented with 10%
heat inactivated FCS, 50 μg/ml gentamycin, 2 mM L-glutamine, 1 mM sodium pyruvate and
1% non-essential amino acids. THP-1 human monocytic cells were grown in RPMI 1640
medium (Life Technologies) supplemented with 10% heat inactivated FCS.

DENV1 Hawaii A strain, DENV2 NGC strain, DENV3 3140/09 isolate and DENV4 TC25
strain (kindly provided by Dr. Alessandro Marcello, ICGEB, Trieste, Italy) were used for plaque
reduction neutralisation test (PRNT). All DENV strains were propagated in Vero (DENV3 in
Vero FM), BHK-21 and C6/36 cells in complete medium containing 2% heat inactivated FCS.
Viral neutralisation titres were determined by plaque assay on Vero cells. Unless indicated dif-
ferently, all cell cultures were grown at 37°C with 5% of CO2.

Plasmid DNA constructs
Sequences coding for the envelope ectodomains were obtained from DENV1 Nauru Island
strain (GenBank accession number U88535.1), DENV2 New Guinea C strain (GenBank acces-
sion number AF038403), DENV3 3H87 strain (GenBank accession number M93130), and
DENV4 Dominica strain (GenBank accession numbers AF326573.1).

The original and codon optimised DIII sequences of all DENV serotypes were obtained as
synthetic fragments in pUC57 vectors from GenScript (Piscataway, NJ, USA). Each DIII
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sequence was fused to an immunoglobulin leader sequence (sec) at the N-terminus [29] and to
the SV5 tag (GKPIPNPLLGLD) [30] at the C-terminus. DIII-CH3 constructs contained, in
addition, the human IgG heavy chain constant domain 3 (γCH3) downstream of the SV5 tag.
Both DIII-SV5 and DIII-SV5-γCH3 were cloned into a pcDNA3 vector in which the neomycin
resistance gene was deleted and in vector pVAX (Life Technologies). DENV3 sE (3sE) coding
region was also obtained as a synthetic gene and cloned in the same vectors. The DIII aminoa-
cidic sequences from all DENV serotypes are shown in S1 Fig.

The DIII-εCH4 constructs were obtained by replacing SV5-CH3 with the human εCH4
[31], followed by either the biotin acceptor peptide (BAP) sequence (GLNDIFEAQKIEWHE)
[32, 33] to obtain the secretory biotinylated DIII-εCH4 molecule, or a glycosyl-phosphatidyli-
nositol (GPI) anchor signal [34] to obtain the membrane-bound DIII-εCH4-GPI.

3sE was also engineered, fused to BAP and roTag [35] at the C-terminus and cloned into a
bigenic vector containing the gene for a secretory E. coli biotin ligase [33]. From this construct,
3DI/DII-BAP-roTag was derived after deletion of the DIII domain.

An additional DIII-SV5-γCH3 construct for DENV4 TC25 strain, which contains 3 ami-
noacid changes with respect to the DENV4 Dominica strain DIII sequence (L357F, N360Y and
N384D), was obtained by site-directed mutagenesis (QuikChange XL Site-Directed Mutagene-
sis Kit, Agilent Technologies, La Jolla, CA, USA) on the Dominica strain construct following
the instructions of the manufacturer.

Expression of recombinant dengue molecules
Transient transfections of HEK293T/17 cells and stable transfections of HEK293 cells were
performed essentially as described by Sambrook et al. [36], using circular or linearized plas-
mids respectively.

HEK293T/17 cells were seeded in 6-well plates at 5x105 cells/well density and transfected
using standard calcium phosphate method with 0.5–5 μg of plasmids. 24 h after transfection
the culture medium was replaced with a serum-free medium, when required supplemented
with 100 μM biotin (Sigma-Aldrich, St. Louis, MO, USA), and after 24 more hours cellular
extracts and supernatants from transiently transfected cells were collected. To remove free bio-
tin, the supernatants of samples containing biotinylated molecules were extensively dialyzed
against PBS. Cellular extracts were prepared in 100 μl of TNN lysis buffer (100 mM Tris-HCl,
pH 8, 250 mMNaCl, 0.5% NP-40) at 4°C, supplemented with Protease Inhibitor Cocktail
(Sigma) according to manufacturer's instructions. The expression and secretion of the recom-
binant dengue molecules was confirmed by western blot.

To produce large amounts of biotinylated antigens, recombinant biotinylated DIII-εCH4--
BAP of all four serotypes, 3sE-BAP-roTag, 4sE-BAP-roTag and 3DIDII-BAP-roTag proteins
were expressed in stably-transfected HEK293 cells. HEK293 cells were transfected with 15 μg
of BglII-linearized DNA using calcium phosphate technique. Stably-transfected clones were
screened by ELISA and secretion of biotinylated proteins confirmed by western blot. Superna-
tants from the selected clones were collected after 72 h of culture in serum-free medium sup-
plemented with biotin and dialyzed against PBS. In experiments involving the use of denatured
biotinylated DIII-εCH4-BAP, the dialyzed supernatants were denatured in presence of 0.5%
SDS (Sigma-Aldrich) and 2.5% 2-Mercaptoethanol (Sigma-Aldrich) and boiled for 10 min.
N-Ethylmaleimide (NEM, Sigma-Aldrich) was then added and samples were extensively dia-
lyzed against PBS before using.

To generate cell lines expressing membrane-bound DIII, Sp2/0 cells were stably-transfected
with recombinant DIII-εCH4-GPI proteins. Transfections were performed by electroporation
as previously described [37]. Clones were analysed after staining with FITC-labelled anti-
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human IgE antibodies (KPL, Gaithersburg, MD, USA, 1:500 in PBS with 3% BSA) in a FACS-
Calibur flow cytometer (BD Biosciences, San Jose, CA, USA).

Western blot
Samples of cell lysates and supernatants were separated by 10% SDS-PAGE gels in reducing
conditions and then transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore,
Temecula, CA, USA). Membranes were blocked for 1 h with PBS with 5%Milk and 0.1%
Tween-20, probed for 1h with an anti-SV5 monoclonal antibody (1:10,000 dilution) and incu-
bated for 1h with HRP-linked goat antibodies anti-mouse IgG, (Jackson ImmunoResearch,
Newmarket, UK, 1:5000). As loading controls mouse mAb anti-tubulin (clone DM1A, Milli-
pore) and rabbit antibodies anti-actin (Sigma) were used. Signals were visualized by ECL
(ThermoFisher-Pierce, Rockford, IL, USA).

Animal immunisations
5–6 weeks old, female Balb/c mice were purchased from Harlan (Milan, Italy). All mice were
immunised three times at fifteen days intervals (Days 1, 15 and 30) by biolistic delivery of 1 μm
gold particles coated with 1 μg of DNA using Gene Gun technology (Bio-Rad, Hercules, CA,
USA); blood samples were collected at days 45 and 60 by sub-mandibular puncture. In the case
of the tetravalent formulation, each animal was vaccinated with 2 μg of DNA (two 1 μg shots
applied at different body sites) following the same vaccination protocol. Serum samples were
collected and stored at -20°C until use.

ELISA
Mouse sera were tested on mono-biotinylated DIII-εCH4-BAP and sE-BAP-roTag proteins. The
relative concentrations of biotinylated proteins collected from the stably transfected clones were
normalized by western blot and comparable amounts of biotinylated protein were used in coat-
ing the ELISA plates. Nunc Maxi Sorp Immuno-Plates (ThermoFisher-Nunc, Roskilde, Den-
mark) were pre-coated with 100 μl/well of 5 μg/ml avidin (Sigma) in 50mMNa2CO3/NaHCO3

buffer pH 9.5 and incubated overnight at 4°C. Plates were washed in PBST buffer (0.05% Tween
20 in PBS pH 7.4), blocked with 1% BSA in PBST for 1 h 30 min. at RT, and second-coated with
the dialyzed biotinylated-antigen diluted in PBS (100 μl/well), at 4°C overnight. After washing,
different 100 μl dilutions of sera from immunised mice were added to plates and incubated for
2h at RT. After washing, 100 μl/well of HRP-linked goat antibodies anti-mouse IgG γ-chain
(Jackson ImmunoResearch, 1:50000) were added and incubated for 1h at RT. The bound conju-
gate was detected using TMB substrate (Sigma) for 10 min. The reaction was stopped with
H2SO4 1M and measured at 450 nm (OD450) on a Bio-Rad iMark microplate reader. The anti-
dengue IgG titres were determined as the reciprocal of the dilution at which the OD450 was 3
times higher than that of the negative control serum. Negative control sera obtained from ani-
mals immunised with a construct containing an irrelevant protein fused to γCH3 showed the
same performance as pre-immune sera or sera from animals immunised with empty vector.

Evaluation of anti-DIII specific antibody concentration
The concentration of anti-DIII specific antibodies in sera from vaccinated animals was deter-
mined by creating a calibration curve obtained by plotting the OD450 values from an ELISA on
biotinylated 3sE with different amounts of a previously quantified and purified sample of anti-
dengue envelope mAb 4G2 (Millipore). mAb 4G2 recognises a conformational epitope on the
fusion loop of all DENV serotypes [38, 39]; in our case, the antibody reacts strongly against the
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3sE protein with almost 100% avidity, and was therefore used to generate the calibration curve.
OD450 resulting from different dilutions of each pool of sera on its homologous DIII were inter-
polated into this calibration curve to obtain approximate concentrations of specific anti-DIII
antibodies in sera. The concentrations are reported as the arithmetic means ± standard devia-
tions of all the dilutions with OD450 included within the calibration curve.

Dengue virus-capture ELISA
Plates were coated with the immunoglobulin fraction from a human serum cross-reactive with
all 4 serotypes (15 mg/ml in 50mMNa2CO3/NaHCO3 buffer pH 9.5) (kindly provided by Dr.
Vivian Huerta, Centre for Genetic Engineering and Biotechnology (CIGB), Habana, Cuba) and
incubated overnight at 4°C. Plates were washed, blocked and second-coated with 4x104 PFUs/
well of each viral serotype for 2h at RT. After washing, plates were incubated for 1h at 36°C
with 100 μl/well of the different anti-DIII sera (diluted to a concentration of 100 ng/ml) or neg-
ative control sera at an equivalent dilution. mAb dengue 1–11 (AbD Serotec, Kidlington, U.K.),
specific for DENV1 envelope protein (used at 1 μg/ml) and a DENV panreactive serum (a kind
gift of Dr. Vivian Huerta, Centre for Genetic Engineering and Biotechnology (CIGB), Habana,
Cuba) were used as positive controls. For detection, HRP-conjugated goat anti-mouse IgG γ-
chain (Jackson ImmunoResearch) was used.

Avidity assay
Serum avidity index was measured by a modified ELISA protocol with urea washes [40, 41].
Briefly, the different sera were tested at dilutions corresponding to an OD450 value of 0.6–0.8.
After incubation with serum, plates were washed two times (3 min each) in PBST, with or with-
out 6M urea, and incubated with secondary antibody as described above. The avidity index was
calculated as the ratio between the OD450 obtained after the urea treatment and the OD450

without urea, multiplied by 100.

Cytofluorimetry
Serotype-specific immune sera (diluted 1:1000 in PBS with 3% BSA) were incubated with the
stable Sp2/0 DIII-εCH4-GPI transfectants followed by Alexa488-conjugated goat antibodies
anti-mouse IgG (Jackson ImmunoResearch, 1:1000) and analysed in a FACSCalibur (BD
Biosciences).

Immunofluorescence
Vero cells were infected with DENV1, DENV2, DENV3 and DENV4 at multiplicity of infec-
tion (MOI) of 0.1. 36 h post-infection cells were fixed with 3.7% paraformaldehyde (PFA) in
PBS for 20 min and quenched with 100 mM PBS glycine. After washing with PBS, cells were
permeabilized with 1% Triton in PBS for 15 min and blocked with 0.1% BSA PBS-Tween 0.1%
for 1h. Viruses in infected cells were detected using serotype specific mouse anti-DIII sera
(dilution 1:50), mAb 4G2 (dilution 1:400) and mouse control sera followed by Alexa488-conju-
gated goat anti-mouse IgG (diluted 1:1000). Images were acquired using a Zeiss (Goettingen,
Germany) LSM510 META microscope.

Plaque reduction neutralisation test (PRNT)
PRNT was carried out on Vero cells seeded at a density of 160,000 cells/ well 24h before infec-
tion in 24 multi-well plates. De-complemented mouse sera samples (30 min. at 56°C) were 2
fold serially diluted from 1:12.5 to 1:400 in DMEM serum-free medium. Then an equal volume
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of DMEM-diluted dengue virus containing 50 PFU was added and incubated for 1.5h at 36°C
in a final volume of 60 μl. Vero cells were then washed with DMEM serum-free media, infected
in duplicate with 25 μl of the neutralisation mixture and incubated for 1h at 36°C. Afterwards,
the viral inoculum was removed and cells were overlaid with 1 ml of DMEM with 2% FCS and
3% carboxymethylcellulose (Sigma). Plates were incubated at 36°C for 7–8 days depending on
serotype (7 days for DENV2 and DENV3, 8 days for DENV1 and DENV4). After this period,
cells were washed twice with PBS, fixed for 20 min. with PFA 3.7% and stained with 1% crystal
violet for 30 min. Plaques were counted and percentage of plaque reduction against control
serum was calculated. Neutralising antibody titres were expressed as the serum dilution yield-
ing a 50% plaque number reduction (PRNT50).

Antibody-dependent DENV infection in THP-1 cells
The ADE method used was as previously described [42]. Briefly, serial two-fold dilutions of
each serotype-specific anti-DIII sera were incubated with the virus for 1 hour at 37°C before
added to THP-1 cells at a MOI of 10. At 72 h after infection, the culture was clarified by centri-
fugation, and the infectious titer of dengue virus in the culture supernatant was quantified with
plaque assay.

Statistical analysis
All data shown were calculated from at least four independent experiments done in duplicate
or triplicate. Except for the avidity data (showed in boxplots), all data are represented as arith-
metic means ± standard deviations and were analysed using GraphPad Prism (version 6.0)
software. Unpaired two-tailed t test was used to analyse sets of data between two groups. P val-
ues of<0.05 were considered significant.

Ethics statement
All animal procedures were approved by the Italian Ministry of Health (Ministero della Salute)
and the ICGEB Animal Welfare Board (protocol DGSAF0024706) in compliance to laws and
policies established in the legislation D. L.vo 26/2014 of the Italian Government.

Results

1. Secretion of an engineered DIII version
Activation of B cells for effective induction of antibody responses in the framework of DNA-
based immunisations requires optimal antigen expression and secretion from the cells of the
mammalian host [43].

DIII from all four serotypes, initially derived from viral cDNAs (from amino acid 298 to
416 for DENV1 and DENV2, 296 to 415 for DENV3 and 298 to 416 for DENV4), were engi-
neered adding a secretion leader peptide (sec) at the N-terminus (to allow translocation into
the endoplasmic reticulum (ER) and the secretory pathway), and with or without the dimeris-
ing CH3 domain from the human IgG H-chain (γCH3) at the C-terminus (Fig 1A). To facili-
tate detection, the 11 aminoacid-long SV5-tag was also included. Expression and secretion of
the proteins encoded in the different constructs were then tested in transiently transfected
HEK 293 T cells. As shown in Fig 1B, DIIIs from the four serotypes were produced very poorly
or not secreted and mostly retained intracellularly. In contrast, when fused to the γCH3
domain enhanced production and active secretion was obtained in all cases. We therefore
adopted the DIII-CH3 format as the antigenic design to be used in plasmid-DNA immunisa-
tions. However, large differences in the efficiency of DIII-CH3 secretion were observed among
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the four serotypes (Fig 1C). With the exception of DIII from serotype 1 (1DIII), which was
secreted at an acceptable level (1 μg/ml), all other serotypes showed much reduced secretion.
In order to increase expression, DIII nucleotide sequences corresponding to serotypes 2, 3 and
4 were codon-optimised for expression in mammalian cells. Improved and comparable secre-
tion levels for all serotypes were thus obtained (Fig 1D). As expected, improved antigen secre-
tion resulted in a higher induction of antibody levels (S2 Fig).

2. Gene-gun immunisations induce DIII-specific antibody responses
Groups of 10 animals for each serotype were immunised by intradermal gene-gun delivery of
the DIII-CH3 plasmid DNA construct, with a total of three shots with 1μg of DNA each, at 15
days intervals. Mouse sera were then tested for anti-DIII antibodies in a conformational ELISA
(Fig 2A) using in vivomono-biotinylated recombinant proteins secreted from mammalian
cells, containing either DIII (for all four serotypes) or the full soluble E ectodomain (sE, E
sequence without the C-terminal amino acids from the last half of the stem and anchor
regions), of the best secreted serotypes 3 and 4 (3sE and 4sE, respectively). DIII were fused to
the CH4 domain of human IgE H-chain (εCH4), which also supports secretion, but is not
cross-reactive with anti-γCH3 antibodies. Both, DIII-εCH4 and sE proteins were fused at the
C-terminus to the biotin acceptor peptide (BAP [32]). sE molecules contained at the C-termi-
nus also a tag for detection (roTag [35]) (S3(A) Fig). These proteins were expressed and
secreted by stably transfected clones (in HEK293 cells) co-expressing the biotin ligase sec-BirA,
which catalyses the covalent ligation of biotin into the single Lys residue within BAP, as

Fig 1. Optimised expression and secretion of DIII. (A) Scheme of constructs encoding DIII or DIII fused to the dimerising γCH3 domain. In both cases, sec
indicates a signal leader peptide. The SV5 tag was included to facilitate detection. (B)Western blot (anti-SV5) of total cellular extracts (E) and supernatants
(S) of HEK293T/17 cells transfected with the indicated constructs. (C)Western blot of supernatants (SN) of HEK293T/17 cells transfected with the same
amounts of plasmid DNA, showing different secretion levels of the four DIII-CH3 proteins. (D) As in C, supernatants of HEK293T/17 cells transfected with DIII
constructs with viral (V) or codon-optimised (CO) nucleotide sequences.

doi:10.1371/journal.pntd.0003947.g001
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Fig 2. Antibody responses by conformational ELISA. (A) ELISA reactivity of pooled sera performed on plates coated with the distinct DIII serotypes (left
panels) and individual sera of gene-gun immunised mice (OD450 at a 1:2700 dilution) compared to the pool (right panels). Ctrl.: negative control sera.
Reactivity against 3sE and 4sE proteins, coated at the same molar concentration as DIII, is also shown in anti-3DIII and anti-4DIII left panels. (B) Plot of titres
of the four different serotypes pools, determined on DIII and sE (for serotypes 3 and 4).

doi:10.1371/journal.pntd.0003947.g002
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previously reported [33]. The biotinylated proteins were captured on avidin-coated plates
(schematically shown in S3(B) Fig). Sera were tested in plates containing comparable amounts
of recombinant DIII.

Anti-DIII antibodies from all serotype groups were elicited at high titres (expressed as the
dilution producing an optical density at 450nm (OD450) threefold higher than the negative con-
trol serum), with values ranging from 1:19500 (for anti-1DIII) to 1:41300 (for anti-2DIII) (Fig
2B), corresponding to a range of antigen-specific antibody concentrations between 16–35 μg/
ml, respectively (Table 1). This was true for sera collected at both time points (days 45 and 60).
These antibodies were also able to recognise DIII in the full-length sE protein in ELISA (shown
in Fig 2A for 3sE and 4sE). In addition, immunofluorescence microscopy revealed that all four
different serotype-specific sera recognised E protein in virus-infected Vero cells (Fig 3A). Fur-
ther confirmation of reactivity with protein E was obtained by ELISA on infective viral particles
that were captured on plates coated with a serum reacting against the four different viral sero-
types. All sera were used at an antibody concentration of 100 ng/ml (Fig 3B). These results indi-
cate that a substantial antibody response was directed against DIII epitopes exposed in the
complete envelope ectodomain. The different pools of sera were also able to bind to DIII
domains displayed on the cell surface membrane through a glycosyl-phosphatidylinositol (GPI)
anchor in Sp2/0 stably transfected clones, detected by cytofluorimetry (S4 Fig).

These results suggested a conformational nature of the induced antibodies. In fact, all four
sera lost most of their reactivity towards the denatured antigen, as compared to the native one,
when tested by ELISA with the same amount of coating proteins (Fig 4A). The comparative
antibody titres determined on native and denatured antigens are shown in Fig 4B. The avidity
index of each serum was also determined performing ELISA in stringent dissociating condi-
tions with 6M urea. All four sera showed an avidity index close or well above 30, indicating the
presence of a substantial concentration of high affinity antibodies [41] (Fig 4C). The avidity
index of the control anti-dengue mAb 4G2 was also determined on 3sE and 4sE proteins which
resulted in indexes close to 100 in both cases.

3. Cross-reactivity of serotype-specific sera
In order to determine the capacity of each serotype in inducing cross-reactive antibody
responses against other serotypes, sera from each group were tested against all serotypes by
conformational ELISA on DIII or the 3sE and 4sE ectodomains. As shown in Fig 5A, each pool
of serotype-specific anti-DIII showed some degree of cross-reactivity against the different sero-
types. As expected, all sera showed the highest reactivity against the homologous antigen. Yet,
the cross-reactivity profiles were not the same. While serotype 1 antibodies were mostly cross-
reactive with serotype 4 DIII, they reacted much less with serotypes 2 and 3. Serotype 2 anti-
bodies instead, showed lower cross-reactivity (the most significant with 4DIII). A similar low
cross-reactivity was observed for serotype 4 sera. In contrast, serotype 3 antibodies were highly
cross-reactive with 4DIII and 2DIII and somehow less with 1DIII. The antibody titres of each

Table 1. Anti-DIII specific concentration in sera from vaccinatedmice. Anti-DIII ELISA titres expressed
as antibody concentrations, obtained from dilution curves compared to mAb 4G2.

Immunogen Coating [Antibody] (mg/ml)

1DIII-CH3 1DIII (1,6 ± 0,3) x 10−2

2DIII-CH3 2DIII (3,5 ± 0,9) x 10−2

3DIII-CH3 3DIII (2,1 ± 0,3) x 10−2

4DIII-CH3 4DIII (2,0 ± 0,1) x 10−2

doi:10.1371/journal.pntd.0003947.t001
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pool of serotype-specific sera determined on all four different DIII are plotted in Fig 5B. The
data in Table 2 summarises the reactivity of each serum relative to the value of the homologous
serum. For instance, anti-3DIII serum showed a titre against 1DIII of around 43% of the corre-
sponding homologous serum, while it showed a higher value for 4DIII (94%), suggesting that
immunisation with 3DIII could significantly contribute to increase the anti-4DIII response.

4. Anti-DIII antibodies have virus neutralising activity
Neutralising activity of the serotype specific sera was tested implementing the plaque reduction
neutralisation test (PRNT) for each virus serotype in Vero cells. Fig 6A shows a representative
set of plates with plaques for DENV2, not treated or treated with mouse anti-2DIII serum or a
mouse negative control serum. Neutralisation titres (taken as fold dilution producing 50%

Fig 3. Anti-DIII sera recognise viral E protein. (A) Immunofluorescence of Vero cells infected with DENV of each serotype, reacted with the serotype-
specific anti-DIII pools of sera (top row), the negative control sera (ctrl., middle row) and mAb 4G2 (bottom row). In each case, non-infected cells (n.i.,
rightmost column) were also used as controls. Bars represent 50 μm. (B) ELISA on whole infective viral particles. Anti-DIII serotype-specific pools diluted to
100 ng/ml and sera frommock-immunised animals were used onto virus particles captured on plates coated with a human serum reactive against all four
serotypes. mAb Dengue 1–11 reactive against DENV1 E (at 1 μg/ml) and a Dengue pan-reactive serum against all four serotypes were used as positive
controls.

doi:10.1371/journal.pntd.0003947.g003
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reduction of plaques, PRNT50) of each group of animal sera were first determined against the
homologous DENV serotype.

All animals within each group showed neutralisation titres (Fig 6B right panels), albeit with
some differences. The neutralisation curves for the four different pools (Fig 6B, left panels)
indicated high titres for serotypes 1 (300), 2 (1600) and 3 (300) and a lower value for serotype 4
(65). Antibody titres are summarised in Fig 6C. Thus, all four DIII-CH3 constructs were

Fig 4. Anti-DIII sera recognise conformational epitopes with high avidity. (A) Equal amounts of native or
denatured biotinylated DIII-εCH4 were captured on avidin-coated plates and reacted with the corresponding
homologous anti-DIII sera. (B) Plot of the titres from the curves shown in A. (C) Avidity index of each anti-DIII
sera determined on the native homologous DIII-εCH4. Avidity index of mAb 4G2 on 3sE and 4sE is shown as
a control.

doi:10.1371/journal.pntd.0003947.g004
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Fig 5. Cross-reactivity of anti-DIII sera. (A) ELISA reactivity of the different serotype specific anti-DIII sera on the four DIII-εCH4 (left panels) and on the two
secreted sE (3sE and 4sE), (right panels). (B) Cross-reactive titres from the curves shown in A. * indicates titre below control (absence of cross-reacting
antibodies).

doi:10.1371/journal.pntd.0003947.g005
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efficient in inducing neutralising responses against the homologous DENV serotype. This high
efficiency was mostly due to the level of secretion of the DIII domain, as constructs that were
not codon-optimised, and therefore produced and secreted at much lower levels, induced
lower immune responses (S2 Fig).

5. Secretion and immune response
We then set out to compare the immune responses elicited by four different constructs encod-
ing DIII from serotype 3 in distinct contexts: the preferred codon-optimised 3DIII-CH3, the
same one with non codon-optimised DIII (3DIIINOp-CH3), the non codon-optimised DIII
alone (3DIIINOp) and the 3sE. The secretory phenotype, tested in transfected HEK293T/17
cells, showed that 3DIII-CH3 was clearly the one secreted at highest levels (Fig 7A). Sera from
groups of 5 animals vaccinated with each construct were tested by ELISA, determining anti-
DIII antibodies (plates coated with biotinylated 3DIII-εCH4), anti-E antibodies (plates coated
with biotinylated 3sE) and anti-DI/DII antibodies (plates coated with 3DI/DII, an sE version
with DIII deleted). As shown in Fig 7B, the responses of animals vaccinated with DIII-CH3
were higher than those obtained with DIIINOp-CH3, DIIINop alone or with sE when tested on
DIII (topmost panel) and on the sE protein (middle panel). As expected, only sE induced anti-
bodies strongly reacting with DI/DII protein (bottommost panel). Antibody titres are summa-
rised in Fig 7C. As shown in Fig 7D the reactivity of the anti-sE antibodies towards DI/DII was
higher than to DIII and comparable to sE (Fig 7D, insert). Conversely, despite its focused reac-
tivity towards DIII, the neutralisation titre (on DENV3) of sera induced with DIII-CH3 was
significantly higher than the one obtained with sE, further highlighting the crucial role of DIII
as a target for neutralising responses (Fig 7E). Moreover, the avidity indexes of anti-DIII anti-
bodies induced with DIII-CH3 and DIIINOp-CH3 were significantly higher (60) than the one
induced with DIIINOp alone, thus indicating the importance of the CH3 domain (Fig 7F) (24).
To normalize conditions, these assays were all performed with equal amounts of coated
proteins.

6. Cross-neutralisation and ADE activity of serotype-specific sera
In order to investigate cross-neutralisation activity towards the non-homologous serotypes,
each pool of sera was also tested against the other DENV serotypes using the classical PRNT50

in Vero cells. The results obtained are summarised in Table 3. Similarly to the data obtained on
the ELISA cross-reactivity, serotype 1, serotype 2 and serotype 4 antibodies did not show sig-
nificant cross-neutralising activity (<10 for serotypes 2 and 4 and<25 for serotype 1 against
all others), while serotype 3 antibodies did show significant neutralisation of DENV4 (titre
�30) and DENV2 (titre�135) but not to DENV1 (titre<25) despite being cross-reactive.

Table 2. Relative cross-reactivity of serotype-specific anti-DIII sera. Reactivity against each serotype
DIII-εCH4 antigen expressed in relation to the reactivity against the homologous antigen, taken as 100%.

Coating Serum

anti-1DIII anti-2DIII anti-3DIII anti-4DIII

1DIII 100 14 43 17

2DIII 8 100 40 6

3DIII 3 ND* 100 ND*

4DIII 27 33 94 100

ND*: ELISA reactivity not detected

doi:10.1371/journal.pntd.0003947.t002
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Fig 6. Virus-neutralising activity of anti-DIII sera. (A) Plaque reduction neutralisation test (PRNT) of DENV2 on Vero cells with sera frommice immunised
with 2DIII-CH3 or mock-immunised. (B) Plaque reduction curves (left panels) using pools of sera from the different groups of animals, relative to negative
control sera with PRNT50 titres of each animal serum (right panels) (* indicates PRNT50 titre is higher than 800). (C) PRNT50 titres from curves shown in B.

doi:10.1371/journal.pntd.0003947.g006
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Fig 7. Comparison of antibody responses of 3DIII and 3sE antigens. (A)Western blot of total cellular extracts (E) and supernatants (S) of HEK293T/17
cells transfected with plasmid constructs encoding 3DIIINOp (~16 kDa), 3DIIINOp-CH3 (~28 kDa), 3DIII-CH3 (~28 kDa) and 3sE (~54 kDa). (B) ELISA of sera
derived frommice gene-gun immunised with 3DIIINOp, 3DIIINOp-CH3, 3DIII-CH3 or 3sE (immunising antigens indicated in parenthesis) tested on plates
coated with biotinylated versions of 3DIII-εCH4 (3DIII), 3sE and 3DI/DII. (C) Antibody titres determined on each of the different coating proteins, from the
curves shown in B (* indicates no reactivity detected). (D) Plot of anti-3sE sera reactivity (from 3sE immunised animals) on the three different coating
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To further assess the functional specificity of the antibody responses and to determine if the
antibody response to our vaccine would cross react with and enhance infection of heterologous
DENV serotypes, we also performed an antibody-dependent infection assay. Each serum sam-
ple was serially diluted and incubated with each of the four DENV serotypes before inoculating
each reaction onto the human monocytic cell line THP-1 that expresses FcγRI and FcγRII [9].
Enhancement of DENV titres was observed only to the homologous but not to the heterolo-
gous serotypes of DENV (Fig 8), indicating functional specificity in antibody binding. As
expected, the control serum samples did not enhance DENV titres in THP-1 cells.

7. Neutralising antibodies of tetravalent formulation
Based on the responses obtained with each of the different immunogens, we then tested a tetra-
valent formulation. The tetravalent vaccine contained a mix of the four serotype-specific
genetic constructs. Using the same vaccination protocol, the total amount of DNA per dose
was increased to 2 μg (two shots of 1 μg per shot, containing a mix of serotypes 1 and 2 and a
mix of serotypes 3 and 4, respectively); thus each construct was present at 50% of what deliv-
ered alone (0.5 μg). After three immunisations, a pool of sera from 5 vaccinated animals was
tested by ELISA and PRNT. As for the individual constructs, the tetravalent vaccine was able to
induce DIII-specific antibody titres (Fig 9A left panels) with high avidity indexes and a bal-
anced neutralising activity (PRNT) against all four serotypes (Fig 9A right panels, and Fig 9C).
Despite the reduction in antibody concentration and neutralisation titres in comparison with
monovalent vaccines (Fig 9A right panels and Fig 9B), this is a first attempt of a tetravalent for-
mulation and represents a proof of principle, with potential for further optimisation.

Discussion
In this paper we show that immunisation with DNA plasmid constructs encoding properly
engineered DIII domains of the four DENV serotypes can induce strong antibody responses in
mice. In the context of the immune response against DENV E protein, the Ig-like DIII has
been shown to be one of the main targets for protective neutralising antibodies. Highly neutral-
ising epitopes have also been found in regions involving DI, DII [24, 44, 45] and, more recently,
dimer-dependent epitopes at the interface between the opposing E monomers [46, 47] were
described. However, antibodies reactive with DI/DII were shown to be more cross-reactive,
with lower neutralisation potency and consequently implicated in enhanced severity of infec-
tion [39, 48]. Recent studies have shown that in virus infected individuals the antibody
response is dominated by highly cross-reactive antibodies, while antibodies directed against the

proteins: 3DIII, 3sE and 3DI/DII. Insert: anti-3sE titres for each coating protein. (E) PRNT50 titres of sera frommice immunised with 3DIIINOp, 3DIIINOp-CH3,
3DIII-CH3 or 3sE (immunising antigens indicated in parenthesis) tested on DENV3. (F) Avidity index of antibodies derived from animals gene-gun immunised
with 3DIIINOp, 3DIIINOp-CH3, 3DIII-CH3 or 3sE (immunising antigens indicated in parenthesis) tested on 3sE-coated plates.

doi:10.1371/journal.pntd.0003947.g007

Table 3. Anti-DIII cross-neutralising activity. PRNT50 titres of each serotype-specific anti-DIII pool determined on all four serotypes.

Serum Viral Serotype

DENV1 DENV2 DENV3 DENV4

anti-1DIII �300 <25 <25 <25

anti-2DIII <10 �1600 <10 <10

anti-3DIII <25 �135 �300 �30

anti-4DIII <10 <10 <10 �65

doi:10.1371/journal.pntd.0003947.t003
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more specific DIII represent only a minor component [24]. Because of the increased risk of
ADE due to the presence of such cross-reactive antibodies, several attempts for an efficient
anti-dengue vaccine have focused on the use of the highly specific DIII as antigen [49].

In designing our DIII DNA-based vaccine we took into consideration the biochemical prop-
erties of the antigen, as it has to be expressed in and secreted from the cells of the host. A good
level of protein expression and secretion is required to induce a strong immune response via
DNA vaccination [25, 26, 43]. A leader signal peptide was fused to the DIII N-terminus to
direct its translocation to the ER lumen and the secretory pathway. However, robust secretion
was only achieved when DIIIs were fused at the C-terminus to the dimerising γCH3 and fur-
ther increased upon codon optimisation for expression in mammalian cells of the encoded
DIIIs. The CH3 domain played a crucial role in allowing intracellular transport of the recombi-
nant proteins leading to their efficient secretion. This was essential for serotypes 2 and 4, which
were otherwise essentially not secreted, and very important for serotypes 1 and 3, whose secre-
tion was strongly increased. Interestingly, by fusing to CH3 the quality of the immune response
(in terms of avidity index) was also improved.

Fig 8. Comparison of antibody-dependent enhancement responses of sera in monocytes. (A-D) Each serotype-specific anti-DIII pool and control sera
were diluted two-fold and incubated with (A) DENV1, (B) DENV2, (C) DENV3 and (D) DENV4 before infecting THP-1 cells for 72h. After which, the culture
supernatant was quantified for DENV using plaque assay. Dashed line indicates DENV infection alone of THP-1 cells without the addition of any serum
sample.

doi:10.1371/journal.pntd.0003947.g008
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Fig 9. Tetravalent formulation. (A) ELISA (left panels) and PRNT50 (right panels) of pools of sera from animals gene-gun immunised with a single DIII-CH3
construct or with the tetravalent formulation. Filled and open symbols indicate monovalent and tetravalent immunisations, respectively. In right panels, curves
correspond to the tetravalent vaccine and the PRNT50 titres from the monovalent immunisations (determined in Fig 6) are shown for comparison. (B) ELISA
titres (expressed as anti-DIII antibody concentrations) frommonovalent and tetravalent immunisations, determined on each serotype. (C) Avidity index of
sera frommonovalent and tetravalent immunisations, determined on the different DIII serotype antigens.

doi:10.1371/journal.pntd.0003947.g009
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We immunised mice with plasmid DNA delivered through gene-gun technology. Our results
confirm that this is a very efficient way to induce, with very low amounts of total DNA, highly
specific antibody responses, which are mainly directed against conformational epitopes exposed
on the infective viral particle. This was indeed shown in experiments where either the virion or
the same amounts of native and denatured coated antigen were used to determine sera reactiv-
ity. This was also reflected, in part, in the relatively low cross-reactivity of each serotype specific
serum. We took special care in the design of the ELISA to test antibody responses. The proteins
used were all exclusively produced and secreted frommammalian cells in a mono-biotinylated
form that did not require any further purification. Dialysed culture supernatants were used as
the source of proteins that were then captured on plates coated with avidin. Thus, antibodies
detected in this assay corresponded to those reacting mainly with conformational epitopes on
the folded antigen. In fact, the anti-DIII sera elicited with each serotype were able to react also
with the whole sE ectodomain (shown for the DENV3 and DENV4) expressed in mammalian
cells and with the whole infective viral particle (for all four serotypes).

Given the impossibility of comparing ELISA data across dengue vaccine-related studies, we
decided to translate our ELISA reactivity data into estimated antibody concentrations, in an
attempt to promote the use of measurements and methodologies that allow the establishment
of parallelisms between different vaccine candidates. All four serotypes induced high antibody
concentrations; in particular serotype 2 was the one producing the highest responses, both in
antibody concentrations as well as in neutralisation titres. This was in part due to the contribu-
tion of the optimised secretion levels, which otherwise induce very low titres, as well as the site
of immunisation. Gene-gun technology delivers DNA intradermally, transfecting mainly kera-
tinocytes that produce and secrete the antigen in an immunologically favourable environment
[50]. Availability of antigen, as reflected by the secretion levels, was important. In fact, opti-
mised DIII-CH3 elicited stronger responses than the one with non-codon optimised DIII,
which was in turn stronger than the DIII alone. This was also reflected in the neutralisation
titres. Additionally, the dimeric structure of the immunogen as a result of its fusion to the
γCH3 domain, could also be in part relevant, as it would favour engagement of the B-cell recep-
tor (BCR) and subsequent activation of naive B cells. In addition, the xenogeneic nature of the
CH3 domain contributes to an increased activation of T helper cells [51]. Thus, when analysing
the contribution of the modifications introduced during the design of the antigen, we con-
firmed that codon optimisation improved antibody titres by increasing antigen secretion, while
fusion to CH3 improved immunogenicity and secretion levels of the antigen as well as the avid-
ity index and neutralising capacity of the induced antibodies.

It has been shown that neutralisation of virions in flaviviruses follows a “multi-hit” require-
ment model, in which the number of bound antibodies must surpass a required threshold [10,
12]. This threshold is different for each epitope and is mainly determined by the combination of
two biochemical factors: antibody avidity and accessibility of the epitope on the virus [52]. Anti-
body avidity and in vitro neutralising activity were shown to positively correlate for anti-Flavivi-
rus monoclonal antibodies [10, 53–55], and for antibodies to other viral infections [56, 57].
Recently, this correlation was also demonstrated in sera of DENV-infected patients [58]. Our
results confirm these observations as the DIII-CH3 DNA immunisations induced polyvalent
antibody responses in which the neutralising capacity (determined as PRNT50 titres) correlates
better with the respective avidity indexes than with the sera reactivity measured in ELISA. These
data thus support not only the use of specific avidity indexes, but also the idea of introducing
these measurements into the evaluation of vaccine candidates, especially for DENV [58].

Several DIII-based dengue vaccines have been reported, using different vaccination strate-
gies including recombinant protein subunit vaccines [59–68], DNA vaccines [69–71] or viral-
vectored live vaccines [72, 73]. In our case, we have emphasised the design and evaluation of
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the antigen’s biochemical properties necessary to improve immunogenicity. As shown here,
our DIII-CH3 DNA vaccine was able to induce stronger neutralising responses against all four
serotypes as compared to other DIII-based vaccines [60, 69], even those based on protein
immunisation without or with DNA boosting. In addition, the cross-neutralisation profile
obtained in the PRNT50 in Vero cells was similar to the cross-reactivity profile obtained by
ELISA, suggesting that most of the cross-reacting antibodies were also cross-neutralising. This
is in agreement with recent data showing that cross-reactive antibodies contribute to neutrali-
sation during acute DENV infections [58]. In our case, serotype 3 anti-DIII antibodies were the
most cross-reactive and showed the highest cross-neutralisation towards the other serotypes.
Noteworthy, the ADE assay revealed that each of the DIII-specific sera were not able to
enhance infection of heterologous DENV serotypes in the monocytic cell line THP-1, demon-
strating serotype specificity in our DIII-CH3 DNA vaccine. Without antibodies that enhance
heterologous DENV serotype infection, ADE would hence only occur when homologous anti-
bodies decay to sub-neutralising levels. For clinical administration of the tetravalent formula-
tion, further optimisation should be performed to ensure that the antibodies are produced at
levels that do not result in ADE.

Various studies have proposed that genotype differences within each serotype could affect
vaccine efficacy [54, 55, 74–76]. In a recent phase 2b study conducted in Thailand, failed pro-
tection against DENV2 (9.2%) was hypothesised to be due to differences in the circulating
genotype [77], while in a more recent phase 3 study conducted in Latin America vaccine effi-
cacy for DENV2 was reported to be higher [78]. Interestingly, the neutralisation titres we
obtained for DENV2 were the highest among all four serotypes in the monovalent immunisa-
tions and remained high in the tetravalent one. If genotype differences represent an important
issue to obtain wide protection against defined serotypes, DNA vaccines are particularly
adapted to easily introduce appropriate changes, what represents a significant advantage when
compared to other vaccination strategies.

Despite the fact that antibodies against DIII have greater neutralising capacity, most of the
vaccine candidates for DENV use the whole E protein ectodomain (with or without PrM) as an
antigen [79]. In this regard, recent data indicate that the antibody response against dengue is
dominated by highly cross-reactive antibodies that are mainly focused on antigenic determi-
nants around DII [45, 48]. Specifically, the main neutralising targets in the response against the
E protein, involve epitopes located in or around the fusion loop and the DI/DII hinge region
[39, 44, 48, 80]. Considering this, we compared the immune response elicited by our DIII-CH3
construct with that of the whole E ectodomain. Our data proved that the DIII-CH3 construct
was able to induce a stronger antibody response and also confirmed that, when using the E
ectodomain as antigen, the antibody response was shifted towards DI/DII with a significantly
weaker response against DIII. As a consequence, neutralising responses induced by our
DIII-CH3 were significantly higher than the ones elicited in animals vaccinated with the E
ectodomain (sE). In fact, when compared to other DNA vaccines against dengue that use the
complete E protein as their main antigen [81–85], our DIII-based vaccine, despite delivering
significantly lower amounts of plasmid DNA per immunisation, was able to elicit higher neu-
tralising immune responses in mice. Moreover, the DIII-CH3 candidate still shows higher effi-
ciency when compared to other DNA vaccines where the E protein was further modified to
enhance immunogenicity [86–91]. The only exception was the DENV4 neutralising response,
which was lower than the ones reported by others [82–84, 88].

As a proof of principle we attempted to formulate a tetravalent immunisation protocol. The
results showed an efficient anti-DENV activity elicited against all four virus serotypes, despite
the reduced amount of DNA used for each serotype. As with the monovalent formulation, the
lowest neutralising activity in the tetravalent formulation was against DENV4. This appears to
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be a characteristic of the whole 4DIII domain, as immunisations with 4DIII variants derived
from two different genotypes (strain Dominica from genotype II and strain TC25 from geno-
type I) with three amino acid differences (L357F, N360Y and N384D) produced similar results
and comparable neutralisation titres when tested on strain TC25 (S5 Fig). This indicates that
further development of the tetravalent formulation is needed to reach comparable levels of
neutralisation activities against all four serotypes. Some aspects to consider include the total
amount of DNA, the relative proportion of each plasmid and the sites of administration.

In conclusion, we think that at least four key points in our protocol contributed to the high
responses observed. i) First, the genetic nature (DNA) of the immunisation, which is capable of
inducing long-term humoral and cellular immune responses by effectively surrogating the viral
infection process. ii) Second, engineering of the antigen molecule to make it available to the
immune system in significant amounts, since our DIII-CH3 codon-optimised version is actu-
ally secreted at much higher levels as a dimeric molecule. iii) Third, the use of DIII as immuno-
gen instead of the whole E ectodomain, thus reducing the level of cross-reactive non-
neutralising antibodies and consequently, the risk of ADE; and iv) Fourth, the intradermal
delivery of the plasmid DNA that elicits a balanced Th1/Th2 response, as opposed to intramus-
cular delivery which mainly activates the Th1 pathway [92].

As live vaccines candidates against dengue remain disappointing in clinical trials, next-gen-
eration vaccines have emerged as new alternatives with the potential to succeed where the clas-
sical strategies have failed. Since the first clinical trial for a DNA vaccine against HIV-1 virus in
1998 [93], several other DNA vaccine candidates developed against infectious diseases have
been tested in Phase 1 studies [94–98]. To date there has been only one published dengue DNA
vaccine clinical trial involving a Phase 1 study of a plasmid expressing the PrM and E proteins
of DENV1 (D1ME100, [99]). In all cases, the studies showed that the vaccines were well-toler-
ated and safe in humans [100], although low immunogenicity remains a main concern associ-
ated with DNA vaccines [100, 101].

Compared to other vaccination strategies, genetic vaccines are safer, more stable, easier to
manipulate and have a relatively low production cost. These represent important aspects to con-
sider when designing vaccines for developing countries [100, 102]. We believe that accurate
design of the antigen and the ability to induce the right antibody response avoiding the undesir-
able non-neutralising cross-reactive ones are key points to develop for a successful DNA vaccine.

Supporting Information
S1 Fig. Amino acid sequences for the four different DIII DENV serotypes. Amino acids
conserved across the four serotypes are highlighted.
(TIF)

S2 Fig. Effect of codon-optimization on the immune response elicited by DIII-CH3 anti-
gens. (A-C) ELISA of sera from animals gene-gun immunised with DIII-CH3 constructs from
serotypes 2 (A), 3 (B) and 4 (C), with viral (DIIINOp-CH3) or codon-optimised (DIII-CH3)
nucleotidic sequences. (D) Plot of the titres from the curves shown in A, B and C.
(TIF)

S3 Fig. Conformational ELISA for detection of anti-DIII and anti-sE antibodies. (A)
Scheme of constructs DIII-BAP (DIII-εCH4-BAP) and sE-BAP-roTag that are secreted from
mammalian cells as mono-biotinylated molecules and used in the conformational ELISA. (B)
Scheme of the ELISA, with avidin-coated plates to capture biotinylated DIII-BAP or sE-BAP-
roTag.
(TIF)

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 22 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003947.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003947.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003947.s003


S4 Fig. Detection of anti-DIII antibodies by cytofluorimetry. (A) Scheme of constructs
DIII-GPI (DIII-εCH4-GPI) expressed on cell surface membranes. (B) Cytofluorimetry of Sp2/
0 stably transfected clones displaying the different GPI anchored DIII, detected with the corre-
sponding anti-DIII sera. Ctrl: negative control sera.
(TIF)

S5 Fig. DENV4 genotype effect on 4DIII neutralising response. (A) Plaque reduction curves
on DENV4 TC25 strain using pools of sera from animals vaccinated with 4DIII-CH3 derived
from DENV4 Dominica strain (open symbols) or TC25 strain (filled symbols). (B) PRNT50

titres from curves shown in A
(TIF)

Acknowledgments
We would like to thank Dr. Alessandro Marcello (ICGEB, Trieste, Italy), Dr. Toni Rieger (BNI,
Hamburg, Germany) and Dr. Vivian Huerta (CIGB, Habana, Cuba) for kindly providing us
valuable materials and reagents. We are grateful to Dr. Lisa Miorin (Mount Sinai School of
Medicine, New York, USA) for invaluable advice on virus handling. We would also like to
remember Mauro Sturnega and thank Stefano Artico and the personnel of ICGEB Animal
Experimentation Facility for their excellent technical assistance throughout the project.

Author Contributions
Conceived and designed the experiments: MP JLSC KRC HCT EEO ORB. Performed the
experiments: MP JLSC KRC HCTMB. Analyzed the data: MP JLSC KRC HCT EEO ORB.
Wrote the paper: MP JLSC MB KRC EEO HCT ORB.

References
1. Murray NE, QuamMB,Wilder-Smith A. Epidemiology of dengue: past, present and future prospects.

Clinical epidemiology. 2013; 5:299–309. Epub 2013/08/31. doi: 10.2147/CLEP.S34440 PMID:
23990732

2. WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control Geneva: World Health
Organization Press; 2009 [cited 2014 November 13]. http://www.who.int/tdr/publications/documents/
dengue-diagnosis.pdf.

3. Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a crit-
ical and systematic review of quantitative modelling approaches. BMC infectious diseases. 2014;
14:167. Epub 2014/03/29. doi: 10.1186/1471-2334-14-167 PMID: 24669859

4. Gulland A. Burden of dengue fever is higher than previously thought. BMJ (Clinical research ed).
2013; 347:f6280. Epub 2013/10/18.

5. WHO. Global Strategy for Dengue Prevention and Control, 2012–2020. Geneva: World Health Orga-
nization Press; 2012 [cited 2014 November 13]. http://reliefweb.int/sites/reliefweb.int/files/resources/
9789241504034_eng.pdf.

6. Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to
understanding the history and epidemiology of the preeminent arboviral disease. Infection, genetics
and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases.
2009; 9(4):523–40. Epub 2009/05/23. doi: 10.1016/j.meegid.2009.02.003 PMID: 19460319

7. Back AT, Lundkvist A. Dengue viruses—an overview. Infection ecology & epidemiology. 2013; 3.
Epub 2013/09/05.

8. Wahala WM, Silva AM. The human antibody response to dengue virus infection. Viruses. 2011; 3
(12):2374–95. Epub 2012/02/23. doi: 10.3390/v3122374 PMID: 22355444

9. Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, Lim AP, et al. Ligation of Fc gamma receptor IIB
inhibits antibody-dependent enhancement of dengue virus infection. Proceedings of the National
Academy of Sciences of the United States of America. 2011; 108(30):12479–84. Epub 2011/07/13.
doi: 10.1073/pnas.1106568108 PMID: 21746897

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 23 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003947.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003947.s005
http://dx.doi.org/10.2147/CLEP.S34440
http://www.ncbi.nlm.nih.gov/pubmed/23990732
http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf
http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf
http://dx.doi.org/10.1186/1471-2334-14-167
http://www.ncbi.nlm.nih.gov/pubmed/24669859
http://reliefweb.int/sites/reliefweb.int/files/resources/9789241504034_eng.pdf
http://reliefweb.int/sites/reliefweb.int/files/resources/9789241504034_eng.pdf
http://dx.doi.org/10.1016/j.meegid.2009.02.003
http://www.ncbi.nlm.nih.gov/pubmed/19460319
http://dx.doi.org/10.3390/v3122374
http://www.ncbi.nlm.nih.gov/pubmed/22355444
http://dx.doi.org/10.1073/pnas.1106568108
http://www.ncbi.nlm.nih.gov/pubmed/21746897


10. Dowd KA, Pierson TC. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology.
2011; 411(2):306–15. Epub 2011/01/25. doi: 10.1016/j.virol.2010.12.020 PMID: 21255816

11. Flipse J, Wilschut J, Smit JM. Molecular mechanisms involved in antibody-dependent enhancement of
dengue virus infection in humans. Traffic (Copenhagen, Denmark). 2013; 14(1):25–35. Epub 2012/09/
25.

12. Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of anti-
body-mediated neutralization of flavivirus infection: implications for vaccine development. Cell host &
microbe. 2008; 4(3):229–38. Epub 2008/09/10.

13. Simmons CP, Farrar JJ, Nguyen v V, Wills B. Dengue. The New England journal of medicine. 2012;
366(15):1423–32. Epub 2012/04/13. doi: 10.1056/NEJMra1110265 PMID: 22494122

14. King AMQ, Lefkowitz E, AdamsMJ, Carstens EB. Virus Taxonomy: Ninth Report of the International
Committee on Taxonomy of Viruses: Elsevier Science; 2011.

15. Lindenbach BD, Heinz-Jurgen T, Rice CM. Flaviviridae: The Viruses and Their Replication. In: Knipe
DM, Howley PM, editors. Fields' Virology. 5th ed: Lippincott-Raven; 2007.

16. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne enceph-
alitis virus at 2 A resolution. Nature. 1995; 375(6529):291–8. Epub 1995/05/25. PMID: 7753193

17. Butrapet S, Childers T, Moss KJ, Erb SM, Luy BE, Calvert AE, et al. Amino acid changes within the E
protein hinge region that affect dengue virus type 2 infectivity and fusion. Virology. 2011; 413(1):118–
27. Epub 2011/03/01. doi: 10.1016/j.virol.2011.01.030 PMID: 21353281

18. Allison SL, Stiasny K, Stadler K, Mandl CW, Heinz FX. Mapping of functional elements in the stem-
anchor region of tick-borne encephalitis virus envelope protein E. Journal of virology. 1999; 73
(7):5605–12. Epub 1999/06/11. PMID: 10364309

19. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nature
reviews Microbiology. 2005; 3(1):13–22. Epub 2004/12/21. PMID: 15608696

20. Erb SM, Butrapet S, Moss KJ, Luy BE, Childers T, Calvert AE, et al. Domain-III FG loop of the dengue
virus type 2 envelope protein is important for infection of mammalian cells and Aedes aegypti mosqui-
toes. Virology. 2010; 406(2):328–35. Epub 2010/08/17. doi: 10.1016/j.virol.2010.07.024 PMID:
20708768

21. ZhangW, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, et al. Visualization of
membrane protein domains by cryo-electron microscopy of dengue virus. Nature structural biology.
2003; 10(11):907–12. Epub 2003/10/07. PMID: 14528291

22. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms.
Nature reviews Immunology. 2011; 11(8):532–43. Epub 2011/07/16. doi: 10.1038/nri3014 PMID:
21760609

23. Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are
the most efficient blockers of virus adsorption to Vero cells. Journal of virology. 2001; 75(16):7769–
73. Epub 2001/07/20. PMID: 11462053

24. Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. Dengue virus neutralization
by human immune sera: role of envelope protein domain III-reactive antibody. Virology. 2009; 392
(1):103–13. Epub 2009/07/28. doi: 10.1016/j.virol.2009.06.037 PMID: 19631955

25. Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. Jour-
nal of leukocyte biology. 2000; 68(6):793–806. Epub 2000/12/29. PMID: 11129646

26. Li L, Saade F, Petrovsky N. The future of human DNA vaccines. Journal of biotechnology. 2012; 162
(2–3):171–82. Epub 2012/09/18. doi: 10.1016/j.jbiotec.2012.08.012 PMID: 22981627

27. Khan KH. DNA vaccines: roles against diseases. Germs. 2013; 3(1):26–35. Epub 2014/01/17. doi:
10.11599/germs.2013.1034 PMID: 24432284

28. Vaughn DW, Scherer JM, SunW. Resistance to infection. In: Halstead SB, editor. Dengue. 1st ed:
Imperial College Press; 2008.

29. Li E, Pedraza A, Bestagno M, Mancardi S, Sanchez R, Burrone O. Mammalian cell expression of
dimeric small immune proteins (SIP). Protein engineering. 1997; 10(6):731–6. Epub 1997/06/01.
PMID: 9278288

30. Hanke T, Szawlowski P, Randall RE. Construction of solid matrix-antibody-antigen complexes con-
taining simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked anti-
gen. The Journal of general virology. 1992; 73 (Pt 3):653–60. Epub 1992/03/01. PMID: 1372038

31. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, et al. Selective targeting of tumoral
vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin.
International journal of cancer Journal international du cancer. 2002; 102(1):75–85. Epub 2002/09/28.
PMID: 12353237

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 24 / 28

http://dx.doi.org/10.1016/j.virol.2010.12.020
http://www.ncbi.nlm.nih.gov/pubmed/21255816
http://dx.doi.org/10.1056/NEJMra1110265
http://www.ncbi.nlm.nih.gov/pubmed/22494122
http://www.ncbi.nlm.nih.gov/pubmed/7753193
http://dx.doi.org/10.1016/j.virol.2011.01.030
http://www.ncbi.nlm.nih.gov/pubmed/21353281
http://www.ncbi.nlm.nih.gov/pubmed/10364309
http://www.ncbi.nlm.nih.gov/pubmed/15608696
http://dx.doi.org/10.1016/j.virol.2010.07.024
http://www.ncbi.nlm.nih.gov/pubmed/20708768
http://www.ncbi.nlm.nih.gov/pubmed/14528291
http://dx.doi.org/10.1038/nri3014
http://www.ncbi.nlm.nih.gov/pubmed/21760609
http://www.ncbi.nlm.nih.gov/pubmed/11462053
http://dx.doi.org/10.1016/j.virol.2009.06.037
http://www.ncbi.nlm.nih.gov/pubmed/19631955
http://www.ncbi.nlm.nih.gov/pubmed/11129646
http://dx.doi.org/10.1016/j.jbiotec.2012.08.012
http://www.ncbi.nlm.nih.gov/pubmed/22981627
http://dx.doi.org/10.11599/germs.2013.1034
http://www.ncbi.nlm.nih.gov/pubmed/24432284
http://www.ncbi.nlm.nih.gov/pubmed/9278288
http://www.ncbi.nlm.nih.gov/pubmed/1372038
http://www.ncbi.nlm.nih.gov/pubmed/12353237


32. Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetase-cata-
lyzed biotinylation. Protein science: a publication of the Protein Society. 1999; 8(4):921–9. Epub
1999/04/22.

33. Predonzani A, Arnoldi F, Lopez-Requena A, Burrone OR. In vivo site-specific biotinylation of proteins
within the secretory pathway using a single vector system. BMC biotechnology. 2008; 8:41. Epub
2008/04/22. doi: 10.1186/1472-6750-8-41 PMID: 18423015

34. Coyne KE, Crisci A, Lublin DM. Construction of synthetic signals for glycosyl-phosphatidylinositol
anchor attachment. Analysis of amino acid sequence requirements for anchoring. The Journal of bio-
logical chemistry. 1993; 268(9):6689–93. Epub 1993/03/25. PMID: 8454641

35. Petris G, Bestagno M, Arnoldi F, Burrone OR. New tags for recombinant protein detection and O-gly-
cosylation reporters. PloS one. 2014; 9(5):e96700. Epub 2014/05/08. doi: 10.1371/journal.pone.
0096700 PMID: 24802141

36. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Sambrook J, edi-
tor. New York: Cold Spring Harbor Laboratory Press; 1989.

37. Bestagno M, Vangelista L, Mandiola PA, Mukherjee S, Sepulveda J, Burrone OR. Membrane immu-
noglobulins are stabilized by interchain disulfide bonds occurring within the extracellular membrane-
proximal domain. Biochemistry. 2001; 40(35):10686–92. Epub 2001/08/29. PMID: 11524014

38. Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE. Epitopic analysis of antigenic determi-
nants on the surface of dengue-2 virions using monoclonal antibodies. The American journal of tropi-
cal medicine and hygiene. 1985; 34(1):162–9. Epub 1985/01/01. PMID: 2578750

39. Costin JM, Zaitseva E, Kahle KM, Nicholson CO, Rowe DK, Graham AS, et al. Mechanistic study of
broadly neutralizing humanmonoclonal antibodies against dengue virus that target the fusion loop.
Journal of virology. 2013; 87(1):52–66. Epub 2012/10/19. doi: 10.1128/JVI.02273-12 PMID:
23077306

40. Zompi S, Santich BH, Beatty PR, Harris E. Protection from secondary dengue virus infection in a
mouse model reveals the role of serotype cross-reactive B and T cells. Journal of immunology (Balti-
more, Md: 1950). 2012; 188(1):404–16. Epub 2011/12/02.

41. de Souza VA, Fernandes S, Araujo ES, Tateno AF, Oliveira OM, Oliveira RR, et al. Use of an immuno-
globulin G avidity test to discriminate between primary and secondary dengue virus infections. Journal
of clinical microbiology. 2004; 42(4):1782–4. Epub 2004/04/09. PMID: 15071049

42. Chan KR, Ong EZ, Tan HC, Zhang SL, Zhang Q, Tang KF, et al. Leukocyte immunoglobulin-like
receptor B1 is critical for antibody-dependent dengue. Proceedings of the National Academy of Sci-
ences of the United States of America. 2014; 111(7):2722–7. doi: 10.1073/pnas.1317454111 PMID:
24550301

43. Hon H, Oran A, Brocker T, Jacob J. B lymphocytes participate in cross-presentation of antigen follow-
ing gene gun vaccination. Journal of immunology (Baltimore, Md: 1950). 2005; 174(9):5233–42. Epub
2005/04/22.

44. Messer WB, de Alwis R, Yount BL, Royal SR, Huynh JP, Smith SA, et al. Dengue virus envelope pro-
tein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proceedings of the
National Academy of Sciences of the United States of America. 2014; 111(5):1939–44. Epub 2014/
01/05. doi: 10.1073/pnas.1317350111 PMID: 24385585

45. Williams KL, WahalaWM, Orozco S, de Silva AM, Harris E. Antibodies targeting dengue virus enve-
lope domain III are not required for serotype-specific protection or prevention of enhancement in vivo.
Virology. 2012; 429(1):12–20. Epub 2012/04/28. doi: 10.1016/j.virol.2012.03.003 PMID: 22537810

46. Rouvinski A, Guardado-Calvo P, Barba-Spaeth G, Duquerroy S, Vaney MC, Kikuti CM, et al. Recogni-
tion determinants of broadly neutralizing human antibodies against dengue viruses. Nature. 2015.
Epub 2015/01/13.

47. Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinsky A, et al. A new class of highly
potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus.
Nature immunology. 2015; 16(2):170–7. Epub 2014/12/17. doi: 10.1038/ni.3058 PMID: 25501631

48. Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, et al. Antibodies to envelope glycoprotein of den-
gue virus during the natural course of infection are predominantly cross-reactive and recognize epi-
topes containing highly conserved residues at the fusion loop of domain II. Journal of virology. 2008;
82(13):6631–43. Epub 2008/05/02. doi: 10.1128/JVI.00316-08 PMID: 18448542

49. Chavez JH, Silva JR, Amarilla AA, Moraes Figueiredo LT. Domain III peptides from flavivirus envelope
protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals: journal of
the International Association of Biological Standardization. 2010; 38(6):613–8. Epub 2010/09/08.

50. Christensen R, Jensen UB, Jensen TG. Cutaneous gene therapy—an update. Histochemistry and
cell biology. 2001; 115(1):73–82. Epub 2001/02/24. PMID: 11219611

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 25 / 28

http://dx.doi.org/10.1186/1472-6750-8-41
http://www.ncbi.nlm.nih.gov/pubmed/18423015
http://www.ncbi.nlm.nih.gov/pubmed/8454641
http://dx.doi.org/10.1371/journal.pone.0096700
http://dx.doi.org/10.1371/journal.pone.0096700
http://www.ncbi.nlm.nih.gov/pubmed/24802141
http://www.ncbi.nlm.nih.gov/pubmed/11524014
http://www.ncbi.nlm.nih.gov/pubmed/2578750
http://dx.doi.org/10.1128/JVI.02273-12
http://www.ncbi.nlm.nih.gov/pubmed/23077306
http://www.ncbi.nlm.nih.gov/pubmed/15071049
http://dx.doi.org/10.1073/pnas.1317454111
http://www.ncbi.nlm.nih.gov/pubmed/24550301
http://dx.doi.org/10.1073/pnas.1317350111
http://www.ncbi.nlm.nih.gov/pubmed/24385585
http://dx.doi.org/10.1016/j.virol.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22537810
http://dx.doi.org/10.1038/ni.3058
http://www.ncbi.nlm.nih.gov/pubmed/25501631
http://dx.doi.org/10.1128/JVI.00316-08
http://www.ncbi.nlm.nih.gov/pubmed/18448542
http://www.ncbi.nlm.nih.gov/pubmed/11219611


51. Cesco-Gaspere M, Benvenuti F, Burrone OR. BCL1 lymphoma protection induced by idiotype DNA
vaccination is entirely dependent on anti-idiotypic antibodies. Cancer immunology, immunotherapy:
CII. 2005; 54(4):351–8. Epub 2005/02/05. PMID: 15692846

52. Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus
infection. Expert reviews in molecular medicine. 2008; 10:e12. Epub 2008/05/13. doi: 10.1017/
S1462399408000665 PMID: 18471342

53. Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont Daved H, et al. The Stoichiometry of
Antibody-Mediated Neutralization and Enhancement of West Nile Virus Infection. Cell host & microbe.
2007; 1(2):135–45.

54. Brien JD, Austin SK, Sukupolvi-Petty S, O'Brien KM, Johnson S, Fremont DH, et al. Genotype-specific
neutralization and protection by antibodies against dengue virus type 3. Journal of virology. 2010; 84
(20):10630–43. Epub 2010/08/13. doi: 10.1128/JVI.01190-10 PMID: 20702644

55. Wahala WM, Donaldson EF, de Alwis R, Accavitti-Loper MA, Baric RS, de Silva AM. Natural strain
variation and antibody neutralization of dengue serotype 3 viruses. PLoS pathogens. 2010; 6(3):
e1000821. Epub 2010/03/25. doi: 10.1371/journal.ppat.1000821 PMID: 20333252

56. Nair N, MossWJ, Scott S, Mugala N, Ndhlovu ZM, Lilo K, et al. HIV-1 infection in Zambian children
impairs the development and avidity maturation of measles virus-specific immunoglobulin G after vac-
cination and infection. The Journal of infectious diseases. 2009; 200(7):1031–8. Epub 2009/08/26.
doi: 10.1086/605648 PMID: 19702505

57. Nozawa N, Fang-Hoover J, Tabata T, Maidji E, Pereira L. Cytomegalovirus-specific, high-avidity IgG
with neutralizing activity in maternal circulation enriched in the fetal bloodstream. Journal of clinical
virology: the official publication of the Pan American Society for Clinical Virology. 2009; 46 Suppl 4:
S58–63. Epub 2009/10/27.

58. Puschnik A, Lau L, Cromwell EA, Balmaseda A, Zompi S, Harris E. Correlation between dengue-spe-
cific neutralizing antibodies and serum avidity in primary and secondary dengue virus 3 natural infec-
tions in humans. PLoS neglected tropical diseases. 2013; 7(6):e2274. Epub 2013/06/21. doi: 10.
1371/journal.pntd.0002274 PMID: 23785536

59. Babu JP, Pattnaik P, Gupta N, Shrivastava A, Khan M, Rao PV. Immunogenicity of a recombinant
envelope domain III protein of dengue virus type-4 with various adjuvants in mice. Vaccine. 2008; 26
(36):4655–63. Epub 2008/07/22. doi: 10.1016/j.vaccine.2008.07.006 PMID: 18640168

60. Block OK, RodrigoWW, Quinn M, Jin X, Rose RC, Schlesinger JJ. A tetravalent recombinant dengue
domain III protein vaccine stimulates neutralizing and enhancing antibodies in mice. Vaccine. 2010;
28(51):8085–94. Epub 2010/10/21. doi: 10.1016/j.vaccine.2010.10.004 PMID: 20959154

61. Arora U, Tyagi P, Swaminathan S, Khanna N. Chimeric Hepatitis B core antigen virus-like particles
displaying the envelope domain III of dengue virus type 2. Journal of nanobiotechnology. 2012; 10:30.
Epub 2012/07/17. doi: 10.1186/1477-3155-10-30 PMID: 22794664

62. Etemad B, Batra G, Raut R, Dahiya S, Khanam S, Swaminathan S, et al. An envelope domain III-
based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four den-
gue virus serotypes. The American journal of tropical medicine and hygiene. 2008; 79(3):353–63.
Epub 2008/09/12. PMID: 18784226

63. Leng CH, Liu SJ, Tsai JP, Li YS, Chen MY, Liu HH, et al. A novel dengue vaccine candidate that
induces cross-neutralizing antibodies and memory immunity. Microbes and infection / Institut Pasteur.
2009; 11(2):288–95. Epub 2008/12/31. doi: 10.1016/j.micinf.2008.12.004 PMID: 19114121

64. Zhang ZS, Yan YS, Weng YW, Huang HL, Li SQ, He S, et al. High-level expression of recombinant
dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C
mice. Journal of virological methods. 2007; 143(2):125–31. Epub 2007/05/29. PMID: 17532481

65. Chiang CY, Hsieh CH, Chen MY, Tsai JP, Liu HH, Liu SJ, et al. Recombinant lipidated dengue-4
envelope protein domain III elicits protective immunity. Vaccine. 2014; 32(12):1346–53. Epub 2014/
02/04. doi: 10.1016/j.vaccine.2014.01.041 PMID: 24486311

66. Zhang ZS, Weng YW, Huang HL, Zhang JM, Yan YS. Neutralizing antibodies respond to a bivalent
dengue DNA vaccine or/and a recombinant bivalent antigen. Molecular medicine reports. 2015; 11
(2):1009–16. Epub 2014/11/06. doi: 10.3892/mmr.2014.2850 PMID: 25371092

67. Chua AJ, Vituret C, Tan ML, Gonzalez G, Boulanger P, Ng ML, et al. A novel platform for virus-like
particle-display of flaviviral envelope domain III: induction of Dengue andWest Nile virus neutralizing
antibodies. Virology journal. 2013; 10:129. Epub 2013/04/27. doi: 10.1186/1743-422X-10-129 PMID:
23617954

68. Chen S, Yu M, Jiang T, Deng Y, Qin C, Qin E. Induction of tetravalent protective immunity against four
dengue serotypes by the tandem domain III of the envelope protein. DNA and cell biology. 2007; 26
(6):361–7. Epub 2007/06/16. PMID: 17570760

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 26 / 28

http://www.ncbi.nlm.nih.gov/pubmed/15692846
http://dx.doi.org/10.1017/S1462399408000665
http://dx.doi.org/10.1017/S1462399408000665
http://www.ncbi.nlm.nih.gov/pubmed/18471342
http://dx.doi.org/10.1128/JVI.01190-10
http://www.ncbi.nlm.nih.gov/pubmed/20702644
http://dx.doi.org/10.1371/journal.ppat.1000821
http://www.ncbi.nlm.nih.gov/pubmed/20333252
http://dx.doi.org/10.1086/605648
http://www.ncbi.nlm.nih.gov/pubmed/19702505
http://dx.doi.org/10.1371/journal.pntd.0002274
http://dx.doi.org/10.1371/journal.pntd.0002274
http://www.ncbi.nlm.nih.gov/pubmed/23785536
http://dx.doi.org/10.1016/j.vaccine.2008.07.006
http://www.ncbi.nlm.nih.gov/pubmed/18640168
http://dx.doi.org/10.1016/j.vaccine.2010.10.004
http://www.ncbi.nlm.nih.gov/pubmed/20959154
http://dx.doi.org/10.1186/1477-3155-10-30
http://www.ncbi.nlm.nih.gov/pubmed/22794664
http://www.ncbi.nlm.nih.gov/pubmed/18784226
http://dx.doi.org/10.1016/j.micinf.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19114121
http://www.ncbi.nlm.nih.gov/pubmed/17532481
http://dx.doi.org/10.1016/j.vaccine.2014.01.041
http://www.ncbi.nlm.nih.gov/pubmed/24486311
http://dx.doi.org/10.3892/mmr.2014.2850
http://www.ncbi.nlm.nih.gov/pubmed/25371092
http://dx.doi.org/10.1186/1743-422X-10-129
http://www.ncbi.nlm.nih.gov/pubmed/23617954
http://www.ncbi.nlm.nih.gov/pubmed/17570760


69. Azevedo AS, Yamamura AM, Freire MS, Trindade GF, Bonaldo M, Galler R, et al. DNA vaccines
against dengue virus type 2 based on truncate envelope protein or its domain III. PloS one. 2011; 6
(7):e20528. Epub 2011/07/23. doi: 10.1371/journal.pone.0020528 PMID: 21779317

70. Mota J, Acosta M, Argotte R, Figueroa R, Mendez A, Ramos C. Induction of protective antibodies
against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein.
Vaccine. 2005; 23(26):3469–76. Epub 2005/04/20. PMID: 15837370

71. Ramanathan MP, Kuo YC, Selling BH, Li Q, Sardesai NY, Kim JJ, et al. Development of a novel DNA
SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes. Vaccine.
2009; 27(46):6444–53. Epub 2009/07/08. doi: 10.1016/j.vaccine.2009.06.061 PMID: 19580892

72. Khanam S, Khanna N, Swaminathan S. Induction of neutralizing antibodies and T cell responses by
dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine. 2006;
24(42–43):6513–25. Epub 2006/07/25. PMID: 16860446

73. Khanam S, Pilankatta R, Khanna N, Swaminathan S. An adenovirus type 5 (AdV5) vector encoding
an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue
viruses in the presence of prior AdV5 immunity. Vaccine. 2009; 27(43):6011–21. Epub 2009/08/12.
doi: 10.1016/j.vaccine.2009.07.073 PMID: 19665609

74. Galula JU, ShenWF, Chuang ST, Chang GJ, Chao DY. Virus-like particle secretion and genotype-
dependent immunogenicity of dengue virus serotype 2 DNA vaccine. Journal of virology. 2014; 88
(18):10813–30. Epub 2014/07/11. doi: 10.1128/JVI.00810-14 PMID: 25008922

75. Sukupolvi-Petty S, Brien JD, Austin SK, Shrestha B, Swayne S, Kahle K, et al. Functional analysis of
antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neu-
tralization and protection. Journal of virology. 2013; 87(16):8826–42. Epub 2013/06/21. doi: 10.1128/
JVI.01314-13 PMID: 23785205

76. Bernardo L, Yndart A, Vazquez S, Morier L, GuzmanMG. Antibody responses to Asian and American
genotypes of dengue 2 virus in immunized mice. Clinical and diagnostic laboratory immunology.
2005; 12(2):361–2. Epub 2005/02/09. PMID: 15699435

77. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al.
Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai
schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012; 380(9853):1559–67. Epub
2012/09/15. doi: 10.1016/S0140-6736(12)61428-7 PMID: 22975340

78. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, et al. Efficacy of a Tetrava-
lent Dengue Vaccine in Children in Latin America. The New England journal of medicine. 2014. Epub
2014/11/05.

79. Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, et al. Current progress in dengue vaccines.
Journal of biomedical science. 2013; 20:37. Epub 2013/06/14. doi: 10.1186/1423-0127-20-37 PMID:
23758699

80. Lai CY, Williams KL, Wu YC, Knight S, Balmaseda A, Harris E, et al. Analysis of cross-reactive anti-
bodies recognizing the fusion loop of envelope protein and correlation with neutralizing antibody titers
in Nicaraguan dengue cases. PLoS neglected tropical diseases. 2013; 7(9):e2451. Epub 2013/09/27.
doi: 10.1371/journal.pntd.0002451 PMID: 24069496

81. Raviprakash K, Kochel TJ, Ewing D, Simmons M, Phillips I, Hayes CG, et al. Immunogenicity of den-
gue virus type 1 DNA vaccines expressing truncated and full length envelope protein. Vaccine. 2000;
18(22):2426–34. Epub 2000/03/30. PMID: 10738100

82. De Paula SO, Lima DM, de Oliveira Franca RF, Gomes-Ruiz AC, da Fonseca BA. A DNA vaccine
candidate expressing dengue-3 virus prM and E proteins elicits neutralizing antibodies and protects
mice against lethal challenge. Archives of virology. 2008; 153(12):2215–23. Epub 2008/11/13. doi:
10.1007/s00705-008-0250-3 PMID: 19002647

83. Lima DM, de Paula SO, Franca RF, Palma PV, Morais FR, Gomes-Ruiz AC, et al. A DNA vaccine can-
didate encoding the structural prM/E proteins elicits a strong immune response and protects mice
against dengue-4 virus infection. Vaccine. 2011; 29(4):831–8. Epub 2010/12/01. doi: 10.1016/j.
vaccine.2010.10.078 PMID: 21115054

84. Prompetchara E, Ketloy C, Keelapang P, Sittisombut N, Ruxrungtham K. Induction of neutralizing
antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent
DNA vaccines. PloS one. 2014; 9(6):e92643. Epub 2014/06/03. doi: 10.1371/journal.pone.0092643
PMID: 24887426

85. Konishi E, Kosugi S, Imoto J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and
anamnestic responses to four serotypes in mice. Vaccine. 2006; 24(12):2200–7. Epub 2005/12/01.
PMID: 16316713

86. Raviprakash K, Marques E, Ewing D, Lu Y, Phillips I, Porter KR, et al. Synergistic neutralizing anti-
body response to a dengue virus type 2 DNA vaccine by incorporation of lysosome-associated

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 27 / 28

http://dx.doi.org/10.1371/journal.pone.0020528
http://www.ncbi.nlm.nih.gov/pubmed/21779317
http://www.ncbi.nlm.nih.gov/pubmed/15837370
http://dx.doi.org/10.1016/j.vaccine.2009.06.061
http://www.ncbi.nlm.nih.gov/pubmed/19580892
http://www.ncbi.nlm.nih.gov/pubmed/16860446
http://dx.doi.org/10.1016/j.vaccine.2009.07.073
http://www.ncbi.nlm.nih.gov/pubmed/19665609
http://dx.doi.org/10.1128/JVI.00810-14
http://www.ncbi.nlm.nih.gov/pubmed/25008922
http://dx.doi.org/10.1128/JVI.01314-13
http://dx.doi.org/10.1128/JVI.01314-13
http://www.ncbi.nlm.nih.gov/pubmed/23785205
http://www.ncbi.nlm.nih.gov/pubmed/15699435
http://dx.doi.org/10.1016/S0140-6736(12)61428-7
http://www.ncbi.nlm.nih.gov/pubmed/22975340
http://dx.doi.org/10.1186/1423-0127-20-37
http://www.ncbi.nlm.nih.gov/pubmed/23758699
http://dx.doi.org/10.1371/journal.pntd.0002451
http://www.ncbi.nlm.nih.gov/pubmed/24069496
http://www.ncbi.nlm.nih.gov/pubmed/10738100
http://dx.doi.org/10.1007/s00705-008-0250-3
http://www.ncbi.nlm.nih.gov/pubmed/19002647
http://dx.doi.org/10.1016/j.vaccine.2010.10.078
http://dx.doi.org/10.1016/j.vaccine.2010.10.078
http://www.ncbi.nlm.nih.gov/pubmed/21115054
http://dx.doi.org/10.1371/journal.pone.0092643
http://www.ncbi.nlm.nih.gov/pubmed/24887426
http://www.ncbi.nlm.nih.gov/pubmed/16316713


membrane protein sequences and use of plasmid expressing GM-CSF. Virology. 2001; 290(1):74–
82. Epub 2002/03/09. PMID: 11883007

87. Raviprakash K, Apt D, Brinkman A, Skinner C, Yang S, Dawes G, et al. A chimeric tetravalent dengue
DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology.
2006; 353(1):166–73. Epub 2006/07/04. PMID: 16814355

88. Apt D, Raviprakash K, Brinkman A, Semyonov A, Yang S, Skinner C, et al. Tetravalent neutralizing
antibody response against four dengue serotypes by a single chimeric dengue envelope antigen. Vac-
cine. 2006; 24(3):335–44. Epub 2005/08/30. PMID: 16125280

89. Perez-Velez ME, Garcia-Nieves T, Colon-Sanchez C, Martinez I. Induction of neutralization antibod-
ies in mice by Dengue-2 envelope DNA vaccines. Puerto Rico health sciences journal. 2009; 28
(3):239–50. Epub 2009/09/01. PMID: 19715116

90. Zheng Q, Fan D, Gao N, Chen H, Wang J, Ming Y, et al. Evaluation of a DNA vaccine candidate
expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage
colony-stimulating factor (GM-CSF) in immunogenicity and protection. Vaccine. 2011; 29(4):763–71.
Epub 2010/11/26. doi: 10.1016/j.vaccine.2010.11.014 PMID: 21095256

91. Lu Y, Raviprakash K, Leao IC, Chikhlikar PR, Ewing D, Anwar A, et al. Dengue 2 PreM-E/LAMP chi-
mera targeted to the MHC class II compartment elicits long-lasting neutralizing antibodies. Vaccine.
2003; 21(17–18):2178–89. Epub 2003/04/23. PMID: 12706709

92. Oliveira SC, Rosinha GM, de-Brito CF, Fonseca CT, Afonso RR, Costa MC, et al. Immunological
properties of gene vaccines delivered by different routes. Brazilian journal of medical and biological
research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica
[et al]. 1999; 32(2):207–14. Epub 1999/05/29.

93. MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, et al. First human trial of
a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and
host response. The Journal of infectious diseases. 1998; 178(1):92–100. Epub 1998/07/04. PMID:
9652427

94. Graham BS, Koup RA, Roederer M, Bailer RT, EnamaME, Moodie Z, et al. Phase 1 safety and immu-
nogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. The Journal of infectious dis-
eases. 2006; 194(12):1650–60. Epub 2006/11/17. PMID: 17109336

95. Martin JE, Sullivan NJ, EnamaME, Gordon IJ, Roederer M, Koup RA, et al. A DNA vaccine for Ebola
virus is safe and immunogenic in a phase I clinical trial. Clinical and vaccine immunology: CVI. 2006;
13(11):1267–77. Epub 2006/09/22. PMID: 16988008

96. Sarwar UN, Costner P, EnamaME, Berkowitz N, Hu Z, Hendel CS, et al. Safety and immunogenicity
of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type glycoproteins in a phase I clinical
trial. The Journal of infectious diseases. 2015; 211(4):549–57. Epub 2014/09/17. doi: 10.1093/infdis/
jiu511 PMID: 25225676

97. Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, et al. A West Nile virus DNA vac-
cine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. The Journal of infec-
tious diseases. 2007; 196(12):1732–40. Epub 2008/01/15. doi: 10.1086/523650 PMID: 18190252

98. Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, et al. A West Nile virus DNA
vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy
adults in a phase I clinical trial. The Journal of infectious diseases. 2011; 203(10):1396–404. Epub
2011/03/15. doi: 10.1093/infdis/jir054 PMID: 21398392

99. Beckett CG, Tjaden J, Burgess T, Danko JR, Tamminga C, Simmons M, et al. Evaluation of a proto-
type dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine. 2011; 29(5):960–8. Epub 2010/11/30.
doi: 10.1016/j.vaccine.2010.11.050 PMID: 21111785

100. Danko JR, Beckett CG, Porter KR. Development of dengue DNA vaccines. Vaccine. 2011; 29
(42):7261–6. Epub 2011/07/23. doi: 10.1016/j.vaccine.2011.07.019 PMID: 21777640

101. Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, et al. Novel strategies to improve DNA
vaccine immunogenicity. Current gene therapy. 2011; 11(6):479–84. Epub 2011/10/26. PMID:
22023477

102. Coller BA, Clements DE, Bett AJ, Sagar SL, Ter Meulen JH. The development of recombinant subunit
envelope-based vaccines to protect against dengue virus induced disease. Vaccine. 2011; 29
(42):7267–75. Epub 2011/07/23. doi: 10.1016/j.vaccine.2011.07.021 PMID: 21777637

DNA Immunisation with Dengue Virus E Protein Domain III-Based Vaccine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003947 July 28, 2015 28 / 28

http://www.ncbi.nlm.nih.gov/pubmed/11883007
http://www.ncbi.nlm.nih.gov/pubmed/16814355
http://www.ncbi.nlm.nih.gov/pubmed/16125280
http://www.ncbi.nlm.nih.gov/pubmed/19715116
http://dx.doi.org/10.1016/j.vaccine.2010.11.014
http://www.ncbi.nlm.nih.gov/pubmed/21095256
http://www.ncbi.nlm.nih.gov/pubmed/12706709
http://www.ncbi.nlm.nih.gov/pubmed/9652427
http://www.ncbi.nlm.nih.gov/pubmed/17109336
http://www.ncbi.nlm.nih.gov/pubmed/16988008
http://dx.doi.org/10.1093/infdis/jiu511
http://dx.doi.org/10.1093/infdis/jiu511
http://www.ncbi.nlm.nih.gov/pubmed/25225676
http://dx.doi.org/10.1086/523650
http://www.ncbi.nlm.nih.gov/pubmed/18190252
http://dx.doi.org/10.1093/infdis/jir054
http://www.ncbi.nlm.nih.gov/pubmed/21398392
http://dx.doi.org/10.1016/j.vaccine.2010.11.050
http://www.ncbi.nlm.nih.gov/pubmed/21111785
http://dx.doi.org/10.1016/j.vaccine.2011.07.019
http://www.ncbi.nlm.nih.gov/pubmed/21777640
http://www.ncbi.nlm.nih.gov/pubmed/22023477
http://dx.doi.org/10.1016/j.vaccine.2011.07.021
http://www.ncbi.nlm.nih.gov/pubmed/21777637

