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Abstract: Previous methods to measure protozoan numbers mostly rely on manual counting, which
suffers from high variation and poor efficiency. Although advanced counting devices are available,
the specialized and usually expensive machinery precludes their prevalent utilization in the regular
laboratory routine. In this study, we established the ImageJ-based workflow to quantify ciliate
numbers in a high-throughput manner. We conducted Tetrahymena number measurement using
five different methods: particle analyzer method (PAM), find maxima method (FMM), trainable
WEKA segmentation method (TWS), watershed segmentation method (WSM) and StarDist method
(SDM), and compared their results with the data obtained from the manual counting. Among
the five methods tested, all of them could yield decent results, but the deep-learning-based SDM
displayed the best performance for Tetrahymena cell counting. The optimized methods reported
in this paper provide scientists with a convenient tool to perform cell counting for Tetrahymena
ecotoxicity assessment.

Keywords: ImageJ; macro language; segmentation; Tetrahymena

1. Introduction

Ciliated protozoa are unicellular eukaryotes commonly found in aquatic environments.
They play an integral part in the community by connecting the food chain between bacteria
and small phytoplankton to larger metazoa and zooplankton. Additionally, they are able to
consume free organic material from the environment if necessary. These properties make
the ciliated protozoan an appropriate organism to determine the health of an aquatic envi-
ronment [1]. As a eukaryotic microorganism, Tetrahymena grows rapidly in the laboratory
and divides every 2–3 h in the optimal condition, making it a superb experimental system
for toxicological analysis [2–5]. By counting the cell number under different treatments
and time courses, it is easy to monitor growth inhibition and assay the effect of a potential
toxicant. The most common method to count Tetrahymena (or cultured cells in general)
is using the hemocytometer, which is a popular laboratory technique for counting cells
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manually [6,7]. This method only requires basic equipment and a dozen microliters of cell
culture but has a disadvantage of being low throughput, prone to human errors and subject
to high variation. Meanwhile, advanced machineries, such as the Coulter counter, flow
cytometer, image cytometer and microfluidic cytometer, have been applied to quantify cell
numbers [8,9]. These expensive and specialized devices, however, may not be accessible
for laboratories with limited resources or under an educational setting. Furthermore, they
are not always suitable for day-to-day operations, since tweak and adjustment are often
required or a larger volume of cells is needed.

Digital image analysis can facilitate manual counting to improve the efficiency and
consistency. Software such as ImageJ provides an array of tools to assist the counting
process, ranging from object counter, image editing and object calculation [10–12]. Available
from the public domain, ImageJ can be adopted to manual counting or semi-automated
counting using various built-in tools and community-supplemented plugins. For example,
the Find Maxima tool of ImageJ determines the local intensity of the image, and users can
adjust the prominence level for the object of interest (OOI) as a threshold for counting.
Other preinstalled tools, Threshold and Analyze Particles, can be applied to highlight and
count the objects according to the size and circularity threshold [10]. The Watershed tool,
also preinstalled in ImageJ, applies the watershed algorithm to separate overlapping objects
based on the edges. Furthermore, the setting and operating steps in ImageJ can be recorded
and composed into a batch of commands, or macros, for easy execution in the subsequent,
repeat analysis.

The built-in ImageJ-based tool by itself, however, encounters limitations for correctly
segmenting overlapping objects. Advances in machine learning potentially provide a way
to overcome this issue by transforming the segmentation problem into a pixel classification
problem. Through labeling objects in the image and then making it a training set for the
classifier, once the result has been obtained and improved by providing feedback, the
classifier model can be used to classify similar images. Trainable WEKA segmentation
comes preinstalled with the FIJI build of ImageJ and is convenient to use, since the training
dataset is created by annotating the objects and background directly in ImageJ [13–15].
Another machine-learning method that can be integrated into the ImageJ platform is
StarDist, which works by predicting the reference shape and is based on a neural network
called U-Net [16]. A StarDist result is comparable to the state-of-the-art Mask R-CNN
method but with advantages of being easier to train, use and requiring less tuning for the
best result [17].

Since multiple tools for cell counting based on digital images are available, systemic
assessment and documentation of their application should be useful for the research com-
munity. In this study, we investigated the utilization of three ImageJ-based methods [10],
which are the find maxima method (FMM), particle analyzer method (PAM), and watershed
method (WSM), to quantify the cell number of Tetrahymena. We also compared their results
with those obtained from manual counting and from two machine-learning-assisted ImageJ
processes: trainable WEKA segmentation (TWS) and StarDist (SDM). We established the
workflow and composed the macro to simplify the operation.

2. Results
2.1. Overview of Our Setting and Analysis Pipeline for Tetrahymena Counting

Cell counting can be used to calculate the cell concentration, which is often applied
to indicate the growth rate of cells. The most common method to count cells is manual
counting using a hemocytometer. A variety of software tools from the public domain can
facilitate manual counting by analyzing digital images. Here, we sought to assess some
of these available tools. We conducted cell counting of the ciliated protozoan Tetrahymena,
established the workflow for five methods and compared their results. The experimental
design is shown in Figure 1. We also supplied the Supplementary Materials containing the
steps we used for each tool in this study (Supplementary File S1).
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Figure 1. Experimental overview of analysis pipeline for Tetrahymena counting. First, 100 µL Tetrahy-
mena samples were loaded into a protozoa counting chamber and covered with cover slide. Next,
video recording was conducted for 10 s with 40× magnification. Later, videos were periodically
output as 10 frames at 1 s interval. Finally, images were analyzed by five different cell counting
methods and compared with manual counting method as the golden standard.

Our tested methods are divided into two groups: the ImageJ-based methods (FMM,
PAM and WSM) and the machine-learning-based methods (TWS and SDM). All were
mainly carried out on the ImageJ platform, since it is publicly accessible and the plugins for
machine-learning-based methods have been developed. Analyses using the ImageJ-based
methods started from image preprocessing for better detection and execution in both FMM
and PAM. Afterward, the processed images were objected to the watershed algorithm
to segment the overlapping cells (in WSM). These steps are bundled into one macro for
ease of use (Supplementary File S2). TWS and SDM were performed according to the
developer’s guide.

2.2. Comparison of Tetrahymena Counting Performance between Known Methods

Through manual counting, the average cell of Tetrahymena from ten different images
counting was 173.2 ± 8 cells/µL. Two ImageJ-based methods, FMM and PAM, yielded the
exact cell count due to a shared image preprocessing. Using the manual counting as the ref-
erence, both FMM and PAM could recognize 156.4 ± 8.46 Tetrahymena with 90.30 ± 2.70%
sensitivity (Table 1). In WSM, applying the watershed tool after image normalization
could segment the cells better, thus reducing overlap incidents that were not counted in
FMM and PAM. WSM recognized 172.4 ± 9.62 cells with 99.52 ± 2.33% sensitivity. Mean-
while, two machine-learning-based methods, TWS and SDM, could detect 157.5 ± 8.26 and
171.3 ± 8.57 cells, respectively (with 90.95 ± 2.88% and 98.89 ± 1.08% sensitivity, summa-
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rized in Table 1 and Figure 2A). Overall, all of the five methods could reasonably yield
decent cell counts with the >90% sensitivity compared to the manual counting. Among the
five methods tested, WSM and SDM showed superior results compared to the other three
methods, with relatively low false negative, high count sensitivity, and more comparable to
manual counting results (Table 1 and Figure 2A).

Table 1. Comparison of cell counting performance for Tetrahymena between five different methods.

Method Cell Count ± SD
(Cells/µL) False Negative Count Sensitivity Average Cell Size

± SD (Pixel)
Total Area ± SD

(Pixel)

Manual 173.2 ± 8.0 - - 1027.76 ± 85.3 182,583.7 ± 18,556.0
FMM 156.4 ± 8.0 16.8 90.3 ± 2.7% Not available Not available
PAM 156.4 ± 8.5 16.8 90.3 ± 2.7% 1145.0 ± 105.4 179,006.8 ± 18,148.7
WSM 172.4 ± 9.6 0.8 99.5 ± 2.3% 1097.1 ± 105.5 187,745.3 ± 19,083.8
TWS 157.5 ± 8.3 15.7 91.0 ± 2.9% 1194.4 ± 81.6 187,965.4 ± 14,320.5
SDM 171.3 ± 8.6 1.9 98.9 ± 1.1% 987.9 ± 37.1 169,264.4 ± 11,169.2

Figure 2. Assessment of the consistency and performance of five Tetrahymena counting methods.
Comparison of the cell count (A), average cell size (B) and total area occupancy (C) result of Tetrahy-
mena using five different methods for manual counting and measurement using one-way ANOVA.
Different letter represents statistical difference (p < 0.05). Deming regression of the results obtained
from five methods for manual counting and measurement of Tetrahymena cell count (D), average
size (E) and total area (F). For each method, data obtained from ten image captures were used
for comparison.

In addition to cell count, we also explored the potential application on measur-
ing the average cell size and total area occupancy by cells from each image. Manual
measurement showed an average cell size of 1027.76 ± 85.3 pixels and total area of
182,583.7 ± 18,556.0 pixels. The ImageJ-based PAM measured an average cell size of
1,145.0 ± 105.4 pixels and total area of 179,006.8 ± 18,148.7 pixels, and WSM measured
an average cell size of 1,097.1 ± 105.5 pixels and total area of 187,745.3 ± 19,083.8 pixels.
FMM was unable to calculate these endpoints because of its inherent limitation, i.e., that it
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is not for measuring the area of each object. Machine-learning-based methods showed an
average cell size and total cell size of 1,194.4 ± 81.6 pixels and 187,965.4 ± 14,320.5 pixels
for TWS and 987.9 ± 37.1 pixels and 169,264.4 ± 11,169.2 pixels for SDM, respectively
(Table 1). Consistent with cell count data, we observed that SDM and WSM perform
better than the other methods in measuring the average cell size (Figure 2B) and total
area occupancy (Figure 2C), with more consistent values when compared to the manual
measurement method.

To assess the consistency and performance of these five methods, we systematically
investigated the correlation between the cell number, average cell size and total area
obtained from every method compared to the manual counting. We used the Deming
regression and calculated the correlation coefficient (r) for evaluation. Deming regression is
a technique to fit a straight line to two-dimensional data where both variables are measured
with error. Regression analysis of Tetrahymena cell count (summarized in Table 2) showed
that all the methods tested in this study had a slope closely resembling the manual counting
method (1.041–1.226, Figure 2D) and significant deviation from the zero-slope (p < 0.01
or smaller). In the machine-learning-based method, SDM showed a superior counting
outcome compared to TWS due to a lower 95% confidence interval (CI) range, lower p value
and higher correlation coefficient, which signifies that the value obtained from SDM has
a lower variable range, which better fits the manual counting result compared to TWS.
In the ImageJ-based method, WSM had a higher slope (1.226) compared to PAM and
FMM (1.071). However, the counting values obtained from PAM and FMM were more
variable and less consistent than WSM, as both the p value and correlation coefficient
suggested, which means WSM is more suitable for Tetrahymena cell counting. Additionally,
if we compare the best machine-learning-based and ImageJ-based methods, SDM as the
machine-learning-based method comes on top for Tetrahymena cell counting.

Table 2. Summary of Deming regression of Tetrahymena cell count using five different methods.

Group SDM WSM TWS PAM FMM

Slope 1.073 1.226 1.041 1.071 1.071
95% Lower CL # 0.8499 0.5038 0.1019 0.1850 0.1850
95% Upper CL 1.296 1.947 1.981 1.956 1.956

y-intercept −14,537 −39,866 −22,865 −29,011 −29,011
95% Lower CL −53,465 −162,036 −183,179 −179,390 −179,390
95% Upper CL 24,392 82,304 137,448 121,368 121,368

p value <0.0001
(****)

0.0003
(***)

0.0054
(**)

0.0028
(**)

0.0028
(**)

Correlation
coefficient (r) 0.9784 0.9096 0.8007 0.8320 0.8320

# CL, Confidence limit. ** shows a p value of <0.01, *** shows a p value of <0.001, and **** shows a p value
of <0.0001.

The Deming regression of average cell size from SDM and WSM (Figure 2E) showed
varied performance unlike the cell count result. In this endpoint, TWS showed the closest
slope value to 1, which is 0.8372, followed by SDM at 0.3176. Meanwhile, ImageJ-based
methods showed exceptionally high slope value at 3.637 and 5.141 for WSM and PAM,
respectively. Even though TWS showed the closest slope value to 1, the p value (0.4846, ns)
suggests that the TWS slope is not significantly different from zero, indicating that the
data obtained by TWS are highly varied. WSM and PAM also showed a higher p value
than TWS at 0.7257 (not significant) and 0.8129 (not significant), respectively. On the other
hand, SDM showed significant difference with the zero slope through its p value (0.0378, *).
Additionally, SDM also had the highest correlation coefficient at 0.6600, while the other
methods we tested showed a relatively low correlation coefficient (WSM (0.1274), TWS,
(0.2508) and PAM (0.08616)). However, a slope value of 0.3176 is far from 1, which means
SDM is not suitable for measuring Tetrahymena cell size, although this method had superior
performance in Tetrahymena cell counting.
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The Deming regression of total area yielded a similar result to the average cell size,
showing the machine-learning-based method with low slope values far from 1 (0.5371
for SDM and 0.6634 for TWS, respectively). The ImageJ-based methods showed a better
slope value (1.085 for WSM and 0.9470 for PAM). However, the statistical significance is
not supported by the p values, which were 0.0055, ** for SDM; 0.3284, ns for WSM; 0.5833,
ns for TWS; and 0.4048, ns for PAM. Similar to the average cell size result, the regression
analysis of the total area endpoint suggests that none of the methods we tested were
suitable for calculating the total area occupied by Tetrahymena. WSM and SDM showed the
most comparable results to manual counting in terms of average cell size, while all of the
methods showed similar results for total area occupancy to manual measurement. Deming
regression was used as regression analysis to further confirm the methods we tested with
manual counting/measurement. The regression analysis results showed WSM and SDM as
the best methods for counting Tetrahymena cells; however, none of the methods showed
comparable average cell size and total area occupancy to manual measurement.

2.3. Effect of Various Tetrahymena Density on SDM and WSM Counting Performance

From the five methods tested, SDM proved itself as a well-performing machine-
learning-based method, while WSM was the best ImageJ-based method for counting
Tetrahymena cells. A further test was conducted to observe the counting performance of
both methods in several different Tetrahymena cell densities. Afterward, the obtained cell
count was pooled into one graph, which encompasses all the obtained data. Additionally,
due to the unsatisfactory performance of the methods we tested in collecting/calculating
the average cell size and total area occupancy, these endpoints were not pursued further.

With the addition of several cell densities spanning about an eight-fold difference
around ~105 cells/mL, we were still able to obtain satisfactory cell counting performance for
both SDM and WSM methods. The slope values, which were 0.9630 for WSM and 1.002 for
SDM, respectively, were close to the ideal slope value of 1, indicating both methods yielded
a consistent and comparable result to manual counting. This conclusion was supported
by their low p value and high correlation coefficient (Table 3 and Figure 3). The p value
signifies there was a non-zero correlation between the methods we tested with manual
counting; therefore, there was a linear association between the methods, as presented by
the slope value that we obtained. Between the WSM and SDM results, SDM appeared to be
a better method due to its closer slope value to 1 compared to the WSM value of 0.9630.

Table 3. Summary of Deming regression of Tetrahymena cell density using SDM and WSM at several
different cell concentrations.

Group SDM WSM

Slope 1.002 0.963
95% Lower CL # 0.9934 0.9346
95% Upper CL 1.01 0.9914

y-intercept 457.1 −300
95% Lower CL −5825 −1135
95% Upper CL 5225 2049

p value <0.0001 (****) <0.0001 (****)
Correlation coefficient (r) 0.9934 0.9995

# CL = Confidence limit. **** shows a p value of < 0.0001.
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Figure 3. Deming regression of Tetrahymena cell count using either SDM or WSM on samples with a
wide range of cell concentrations. For each method, cell counting data obtained from 80 different
image captures were used for comparison.

3. Discussion

Counting microorganisms is one of the main endpoints in environmental microbiology.
It is mainly used to ascertain the effect of certain compounds of interest on microbes
and microbial diversity [18,19]. While Tetrahymena is an important microbe in the aquatic
environment [1], most methods for observing and counting Tetrahymena are manual, making
the observation a tedious effort. The five methods we suggested here showed >90%
sensitivity compared to manual counting. WSM and SDM showed more superior results
compared to the other methods. The cell counting results are also supported by one-way
ANOVA statistical test, which showed comparable results between WSM and SDM to
manual counting. Average cell size and total area occupancy by Tetrahymena were also
observed for additional endpoints. The result of these endpoints agreed with the cell count
result, as they showed WSM and SDM to be the most compatible methods for measuring
these parameters.

We also tested for Deming regression analysis, a common regression analysis used
to compare methods with the same endpoints [20,21]. The Deming regression analysis
supported the cell counting result, stating that all of the methods were compatible for
counting Tetrahymena cells, with WSM and SDM as the best methods for cell counting.
Meanwhile, none of the methods showed compatible results for average cell size and total
area occupancy measurements, according to the Deming regression analysis result. Deming
regression has a limitation where the equation is only applicable to values within the range;
therefore, we added several cell densities to cover this limitation of Deming regression.
Through the addition of samples with lower or higher cell densities (Figure A1), we found
that the SDM and WSM methods can be applied for densities within a rather wide range,
which is applicable for the routine experiment or cell assay.

Even though the overall result from the ImageJ-based method was not as good as
the machine-learning-based method, ImageJ, as a major open-access platform, is still a
powerful too, since other algorithms, such as the TWS and SDM, could be implemented
to expand the versatile ImageJ function. The methods we tested in this study had their
individual limitations and advantages when compared with each other. We found the PAM
and TWS methods were unable to resolve overlapping objects in the object segmentation
process. This could cause overlapping objects being counted as one object, reducing the
cell counts and increasing the average size of each cell (Table 1 and Figure 2).
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The built-in watershed tool in ImageJ (Figure 4A) was used to obtain better segmen-
tation of overlapping cells. The watershed algorithm is known for separating different
objects in an image. Therefore, it should be applicable for differentiating overlapped cells
in our image. The WSM result showed promising cell count sensitivity of 99.5 ± 2.3%
(Table 1). However, the Deming regression slope value and correlation coefficient showed
WSM was less compatible for counting Tetrahymena cells than SDM. Meanwhile, SDM
could separate overlapped Tetrahymena cells into several distinct cells compared to the
other tested algorithms (Figure 4A). We also noticed that the WSM could not correctly
recognize cells, which deviated from the regular shape, such as an unhealthy cell or a cell
undergoing binary fission (Figure 4B). In conclusion, SDM performed better than WSM in
image segmentation to obtain a better sensitivity in Tetrahymena cell counting.

Figure 4. Images depicting segmentation results obtained from different Tetrahymena cell counting
methods. (A) FMM/PAM and TWS showed the inability of segmenting overlapping Tetrahymena cells.
In contrast, WSM showed limited segmentation, while SDM showed better segmentation. Segmented
cells are marked with red circles, but misdetection on edge is marked with red rectangle. (B) Images
showing segmentation error by WSM compared to SDM during cell division. Tetrahymena marked
with red circle is undergoing binary fission, and it is still counted as single cell. This Tetrahymena was
recognized as two cells by WSM due to the segmentation method.

All the ImageJ-based methods (FMM, PAM and WSM) have the advantage of being
easier to learn than the other two methods. Creating a macro based on these methods
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can speed up the entire analysis process. Since these methods share a common workflow,
they can even be compiled into one macro for convenience. There have been numerous
publications that used TWS in ImageJ to process and segment images. For example, it
has been used in the mineralogy field to study the distribution of crystal size and to
develop a pap-smear analysis tool for detecting cancer cells through image detection [22].
TWS can process the images well in both studies, with some limitations in separating
heterogeneities (foreign objects). Our study showed that it is possible for TWS to recognize
smaller particles as heterogeneities and exclude the object in the final image. It was
also able to recognize the difference of contrast between Tetrahymena cell images, which
were not uniform. Although the machine-learning-based TWS could correctly detect
Tetrahymena cells, WSM outperformed TWS in our study, since the former could achieve
higher correlation coefficient, better p value (Table 2) and shorter workflow.

The final method we tested, SDM, showed the closest regression value to 1 (Figures 2 and 3).
The machine-learning-based SDM was designed to detect cell nuclei relying on star-convex
polygons rather than the usual bounding box, as it better suits the natural roundish shape
of cell nuclei [17,23]. Therefore, by design, SDM had a better performance in segment-
ing overlapping cells, which was demonstrated in our tests (Tables 1 and 2, Figures 2–4).
However, the operational steps for SDM are more complicated compared to the other
methods. First, training data set must be created by annotating similar images in QuPath,
followed by training in Python, creating a model file, then applying the model to images
on ImageJ platform. To simplify the entire process for Tetrahymena counting, we established
the workflow of SDM and its model file (Supplementary File S3), and this could serve as
an entry point and exemplary for adopting SDM to analyze other planktons of a similar
dimension and shape.

4. Material and Methods
4.1. Tetrahymena Cell Culture and Maintenance

The wild-type Tetrahymena thermophila CU428 strain was a gift from Dr. Meng-Chao
Yao’s laboratory (Academia Sinica, Taipei, Taiwan). The culture was grown in a large
beaker (PYREX® 3000 mL) (Corning Inc., New York, NY, USA) containing SPP medium
(1% proteose peptone, 0.1% yeast extract, 0.2% dextrose, 0.003% sequestrene) [24] and
maintained at 26 ◦C. The cell was grown to the middle-log phase (1–2 × 105 cells/mL) or
late-log phase (6–7 × 105 cells/mL) as the example for cell counting performance testing.

4.2. Tetrahymena Recording

A volume of 100 µL of Tetrahymena cells was taken from the top region of the origi-
nal culture using a micropipette and dispersed into a protozoan counting chamber with
10 × 10 grids (Zgenebio, Taipei, Taiwan) covered using a coverslip. Live Tetrahymena cells
were counted from one grid of the protozoan counting chamber. As Tetrahymena are alive
and move freely, it is assumed that they spread evenly across the protozoan counting
chamber. Therefore, we alternated the recording at different time points within one grid
and recorded several single grids within the counting chamber. The cell was observed using
an upright microscope (ex20, SOPTOP, Taipei, Taiwan) equipped with a high-resolution 4K
CCD (XP4K8MA, ToupTek, Zhejiang, China). Fields from one grid (corresponding to 1 µL
volume) were recorded for 10 s at 4K resolution (3840 × 2160 pixels), 30 frames per second,
with the 4× plan objective lens. The video was recorded and saved in the .mp4 format.

4.3. Image Processing

The recorded video was converted to the .avi format from .mp4 file using VirtualDub2
software for use in ImageJ. Ten images were extracted from the 10 s video with the 1 s
interval between images. The image stack was output for subsequent counting analysis
and used as image for detection. In addition, 10 more images were randomly selected to
compose the training dataset, which was used for machine-learning-based methods. The
FIJI build of ImageJ (https://imagej.net/software/fiji/downloads, accessed on 21 May

https://imagej.net/software/fiji/downloads
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2022) was used as the major image analysis platform and can be downloaded for free from
the website. ImageJ-based methods firstly went through the preprocessing step, including
binary conversion and size exclusion by thresholding using the Threshold tool and Analyze
Particles tool. A binary mask with a threshold set at 300–Infinity was created to exclude
foreign objects, which might cause false positives due to their contrast similarity to the
object of interest. This process resulted in a binary image, which could increase the selection
accuracy for PAM, FMM and WSM methods.

4.4. Find Maxima Method (FMM)

The find maxima method uses the Find Maxima tool provided by ImageJ. The promi-
nence threshold was set to 50 for counting Tetrahymena cells. The result was saved in .tsv
format through a macro command.

4.5. Particle Analyzer Method (PAM)

The particle analyzer method uses Analyze Particles tool provided by ImageJ. The
size threshold was set as 300 to Infinity. Afterward, the Analyze Particles tool was used
to save the data in the region-of-interest (ROI) manager, which also showed the result
and summary of the cell counting. The data were saved in .tsv format through a macro
command.

4.6. Watershed Segmentation Method (WSM)

The Watershed tool preinstalled on ImageJ was used to segment Tetrahymena in the
image and then counted using the Analyze Particles method with the same-size threshold
as PAM at 300–Infinity. The result was saved in .tsv format through a macro command.

4.7. Trainable WEKA Segmentation Method (TWS)

Trainable WEKA segmentation comes preinstalled with the FIJI build of ImageJ. TWS
implementation in FIJI was developed by Arganda-Carreras et al. [13]. The training dataset
was created by annotating the object (Tetrahymena cells) and background (and non-cell
particles) directly using the free-hand select tools of ImageJ. In this study, we used 30 images
for training. From these images, we annotated 10 samples each for Tetrahymena and
background per image. The training features we used in this study were the Gaussian
blur, Sobel filter, membrane projections, difference of Gaussians, membrane projections,
variance, median, mean, maximum, anisotropic diffusion, Laplacian and Kuwahara. After
each training, manual checks for wrong classification and additional annotation were
conducted. The training process was repeated until the desired results were achieved.
Afterward, the model was saved as a classifier to detect ten images, which were prepared
for detection.

4.8. StarDist Method (SDM)

StarDist and its dependencies were installed on ImageJ using the provided installation
guide in their ImageJ Wiki page (https://imagej.net/plugins/stardist, accessed on 25
August 2021). The training dataset was prepared using QuPath, as recommended by the
StarDist developer (https://github.com/stardist/stardist, accessed on 25 August 2021).
QuPath was used to annotate all Tetrahymena in the training image set, which contained
10 images, to obtain masks for training. Images used for the training dataset in StarDist
method were the same images as those used in TWS. After annotating all Tetrahymena,
jupyter notebook was used to run the commands for StarDist model training. The training
process was performed using Anaconda with Python 3.7.0 implementation by following
the provided tutorial in GitHub and running the export command to obtain a model (.zip)
file, which was subsequently used in ImageJ to detect Tetrahymena cells from the 30 images
prepared for detection. The training took around 12 h using GPU training on a computer
with i7-9700k CPU, Nvidia GTX 1060 GPU and 32 GB of RAM. The probability/score
threshold was set to 0.70 and the overlap threshold to 0.4 during ImageJ Tetrahymena

https://imagej.net/plugins/stardist
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detection. In addition, we also provided a supplementary tutorial video deposited on
YouTube (https://www.youtube.com/watch?v=LPI8MWOvKn0&t=811s, accessed on 22
May 2022) for the detailed procedure for performing all the methods we used in this study.

4.9. Manual Counting

Manual counting of Tetrahymena cells was performed using QuPath 0.2.3 (available
online: https://qupath.github.io/, accessed on 10 September 2021). The area selection was
performed using a brush tool.

4.10. Sensitivity Calculation

The sensitivity of each method was calculated using the sensitivity equation:

Sensitivity =
True Positives

True Positives + False Negatives

The True Positives are cells that are detected by respective methods, while False Negatives
are cells, which are not detected by the methods, or miscounted and overlapping cells,
which should be counted as more than one.

4.11. Statistics and Reproducibility

Statistical analysis was performed using GraphPad Prism 8 (Graphpad Holdings,
LCC, San Diego, CA, USA). One-way ANOVA was used to compare the result of the tested
methods compared to manual counting at first; afterward, the Deming regression was used
to further analyze the performance of each tested method compared to manual counting.

5. Conclusions

The five methods we tested in this study showed acceptable performance for Tetrahy-
mena cell counting, with their >90% sensitivity. However, some methods seemed to be
less accurate compared to the others, as they were not able to distinguish or separate
overlapping/clumped-up cells and non-cell objects in the images. At first, WSM and SDM
showed the best sensitivity compared to PAM, FMM and TWS for cell counting. Through
the Deming regression analysis, we found machine-learning-based SDM and ImageJ-based
WSM to be the more suitable methods in their respective groups. In addition, we also tested
two other endpoints, including the average cell size and total area occupancy. However,
none of the methods showed ideal, comparable results to manual measurement. Therefore,
we conclude that the currently established methods were the only suitable methods for
Tetrahymena cell counting. More studies are still required to address the Tetrahymena cell
size estimation issue in the future.

The regression analysis results showed that both SDM and WSM yielded accurate and
consistent cell counts at cell density range from 105 to ~106 cells/mL (Figure 3 and Table 3).
Machine-learning-implemented SDM showed the best compatibility and highest correlation
with manual counting, with a slope able to reach 1.002. Thus, based on the five tested
methods, we conclude that SDM, using StarDist for image segmentation and counting, is the
best recommended method for Tetrahymena counting due to its accuracy and simplicity if a
pretrained model is available, while WSM can be used due to its comparable result to SDM
if there are no available pretrained models. In addition, the tools provided for counting
Tetrahymena can be used freely due to ImageJ and QuPath being a free-to-use software. Our
established workflow and supplemented model file also simplify the pretraining steps that
allow scientists to run Tetrahymena cell counting program in a straightforward manner.

Supplementary Materials: https://www.mdpi.com/article/10.3390/ijms23116009/s1. File S1. Stan-
dard operation protocol (SOP) for Tetrahymena counting; File S2. ImageJ counter macro scripts; File S3.
Trained model for Tetrahymena counting.
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Appendix A

Figure A1. Tetrahymena images at either (A) middle-log phase or (B) late-log phase. In the late-log
phase, cells become smaller than their counterparts in the middle-log phase. Both densities are used
to calculate the relation between manual counting method which is the most common method to
count Tetrahymena cells to 5 methods we tested.
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