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Abstract: Biological systems are often represented as Boolean networks and analysed to identify sensitive nodes which on
perturbation disproportionately change a predefined output. There exist different kinds of perturbation methods: perturbation of
function, perturbation of state and perturbation in update scheme. Nodes may have defects in interpretation of the inputs from
other nodes and calculation of the node output. To simulate these defects and systematically assess their effect on the system
output, two new function perturbations, referred to as ‘not of function’ and ‘function of not’, are introduced. In the former, the
inputs are assumed to be correctly interpreted but the output of the update rule is perturbed; and in the latter, each input is
perturbed but the correct update rule is applied. These and previously used perturbation methods were applied to two existing
Boolean models, namely the human melanogenesis signalling network and the fly segment polarity network. Through
mathematical simulations, it was found that these methods successfully identified nodes earlier found to be sensitive using other
methods, and were also able to identify sensitive nodes which were previously unreported.

1Introduction
Biological pathways are often represented as networks, the nodes
being the biomolecules and edges being the connections. Dynamic
models can explain how abundances of biomolecules change over
time due to their interactions. Dynamic modelling approaches can
be continuous or discrete. In continuous dynamic modelling, the
number of nodes and reactions is limited by sparse data leading to
limited identifiability of kinetic parameters [1–3]. Boolean
modelling is the simplest type of discrete dynamic modelling with
abundances represented by 0 (absent/low) and 1 (present/high). It
does not require knowledge about the kinetic details of the
interactions. The only information needed is the logic of regulatory
interactions such as the activating or inhibitory nature of genetic
regulations. In a Boolean network, which is a rule-based binary
network, the interaction between nodes is represented using logic
rules. Synchronous or asynchronous updating is used to update
node states and hence simulate the system dynamics from a given
set of initial node states [4]. Boolean networks with a varying
number of nodes from <10 [5] to approximately 100 [6, 7] have
been used to investigate biological systems.

It is often of interest to identify sensitive nodes in a regulatory
network that when perturbed lead to a significant change in the
network output. For instance, in models for signalling or metabolic
pathways in pathogens, nodes that disproportionately affect
survival are potential drug targets. The same motivation exists for
identifying sensitive nodes in cancer cell pathways. The robustness
(or otherwise) of a signalling network can be assessed from
identification and analysis of all sensitive nodes. To estimate
sensitivity, a perturbation is applied to every node or edge, and the
effect on a set of node states predefined as the system output is
calculated.

Previous studies on robustness of Boolean networks have used
perturbation methods that can be classified in three broad classes:
state perturbations, function perturbations and update rule
perturbations. A vast majority of studies use state perturbation to
explain system properties including node sensitivity. Shmulevich et
al. [8] explored the effect of random gene state perturbation on
entire network, i.e. any gene can flip its value for only one-time
point from 0 to 1 or vice versa with probability p. Lee et al. [9]
performed node control analysis (constitutive state perturbation) to

identify an effective target to reduce skin pigmentation. In this
method, the state value of each internal regulatory node is fixed at
either ‘0’ for inhibition or ‘1’ for constitutive activation and then
the steady-state activity of output nodes is measured. Fauré et al.
[10] simulated the effect of loss of function and gain of function
mutation in mammalian cell cycle by constraining selected node
within specific value intervals. Subramanian and Gadgil [11]
showed that transient state perturbation in Drosophila
Melanogaster segment polarity network leads to an ectopic
expression pattern. Saadatpour et al. [12] introduced dynamic
perturbation that entails setting the node's status opposite to the
existing state (diseased state) and normally updating other nodes.

Function perturbations change the normal truth table for a node
or set of nodes. Function perturbations have also been used to
estimate sensitivity. Garg et al. [13] assume that one gene (or one
function) can have a fault at a given time. At a different time in the
same trajectory, another gene (or function) can be faulty. The node
faults [stochasticity in nodes (SINs)] are interpreted as a change of
the current state at that time; moreover, the function faults
[stochasticity in function (SIF)] are interpreted as using a different
truth table at that time point. They find that the SIN approach
predicts biologically implausible behaviour, whereas the SIF
approach predicts more biologically relevant robustness. Qian and
Dougherty [14] take into account 1  bit function perturbation which
entails flipping the value of a single row in the truth table of a
probabilistic Boolean model. Another study by the same authors
used a similar approach along with the change in probabilistic
parameter, i.e. change in the probability of selecting each
constitutive Boolean network in the probabilistic Boolean model
and changing the perturbation probabilities [15].

Change in updating scheme as a means of assessing robustness
has been used by a few researchers. Chaves et al. [16] considered
the effect of a perturbation in synchronous update scheme on the
dynamics of the model for the D. melanogaster segment polarity
genes. Perturbation in the time scales or using different kinds of
updating schemes in combination with knockout strategies or state
perturbation is also an effective way to identify sensitive nodes [10,
16–18]. Other studies demonstrate different kinds of perturbations
not easily classifiable into these three categories. Structural
perturbation strategies have been developed [12, 19] to identify
essential nodes in a static network whose disruption can reverse the
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abnormal state of the signalling network. Here, topological
intervention involves ranking of the nodes by the effects of their
loss (knockout) on the connectivity between the network's inputs
and outputs. There are also many reports studying the effect of
function perturbation on an ensemble of Boolean networks but not
on a specific Boolean network [20, 21].

Here, we introduce two new function perturbation methods and
use them to identify sensitive nodes in two specific networks. Our
methods are general and applicable to any individual Boolean
model or probabilistic Boolean model. These perturbations were
applied to the existing melanogenesis signalling network [9] and D.
melanogaster segment polarity network [22]. Mathematical
simulations revealed that for melanogenesis network, nodes
identified as sensitive by the new function perturbation methods
are in agreement with state perturbation. Similarly, for D.
melanogaster segment polarity network, results of gene mutation
performed by Albert and Othmer [22] and transient state
perturbation [11] coincide with the results of function perturbation.
The nodes identified by each method individually as sensitive
nodes are elements of the union of the set of sensitive nodes
identified through constitutive activation and constitutive inhibition
perturbations. In addition, the new methods identify new nodes as
sensitive. We discuss the experimental support for the sensitivity of
the newly identified nodes.

2Materials and methods
2.1 Simulation of existing Boolean models

2.1.1 Melanogenesis signalling network: The melanogenesis
network constructed by Lee et al. [9] contains two main modules –
the keratinocyte and the melanocyte. There are a total of 62 nodes
and 113 links (80 activating and 33 inhibiting links). Of the 62
nodes, there is one external input node [ultraviolet B (UVB)
radiation]. The objective was to identify safe and effective targets
in the network for reduction of pigmentation as measured by the
state of the output nodes. To this end, constitutive activation and
constitutive inhibition of each node was simulated by setting the
node state to 1 and 0, respectively. The UV input was varied from
0% (always off) to 100% (always on). A ‘wild-type (WT)’ profile
of the average state of each node at each UV level was obtained in
the absence of any perturbation. Sensitivity of each node was
estimated by calculating the post-perturbation change in the profile
of the three output nodes: B-cell chronic lymphocytic leukemia/
lymphoma 2 (Bcl2) in keratinocyte (Bcl2K), Bcl2 in melanocyte
(Bcl2M) and melanin. Nodes whose constitutive activation or
inhibition results in a significant reduction in the melanin node
activity without significantly affecting Bcl2 activity are reported as
potential targets in this paper.

We look at node-wise sensitivity for each of the three output
nodes identified in this paper, and identify nodes whose
constitutive activation/repression has a significant effect on each of
the three output node profiles, as quantified by the magnitude of
the (negative) correlation coefficient between the WT and
perturbed profile or the Euclidean distance between the two
profiles. The set of nodes thus identified includes the nodes
identified by Lee et al. [9] as depigmentation targets. Next, we
apply each of the new function perturbation methods to the
network, keeping other simulation parameters constant; and assess
the overlap between the nodes identified as sensitive by the new
methods, and those identified as sensitive using constitutive
activation/inhibition perturbations. Simulations were carried out
using the network and rules reported in [9]. The intensities of input
node UVBs were set to 0, 25, 50, 75 and 100% through a random
(non-cyclic) input with the corresponding probability of being ON.
Average of node state values was calculated for each UV level as
an average of the last 100 of 1000 time steps for each of 100
random initial conditions. We verified that the results are robust to
change in the simulation parameters.

2.1.2 Segment polarity network: The D. melanogaster segment
polarity gene expression is defined and maintained through
spatiotemporal interactions between gene products including
secreted proteins, receptors and transcription factors expressed by

cells in a parasegment. A continuous state model was developed by
von Dassow who concluded that the patterning was robust to the
choice of reaction rate constants [23]. This idea was taken to its
logical limit by Albert and Othmer [22] who developed a Boolean
model of the regulatory network, thereby obviating the need for
any rate parameter. Their model [22] represents 14 cells spread
across four parasegments. The first and last parasegments consists
of three cells, whereas the second and third parasegments consist of
four cells. Each cell has 15 nodes, of which one (SLP) is treated as
an input. A parasegment thus has 56 nodes.

Simulations were carried out using Boolean updating rules,
initial conditions and parameters specified by Albert and Othmer
[22]. Simulations were carried out till attractor state was attained.
The simulations were repeated for perturbations, where individual
nodes were subjected to constitutive activation/inhibition.
Simulations were also carried out after applying each of the two
new perturbations introduced here. The node was identified as
sensitive if the system steady state on perturbation was either a
qualitatively different attractor (i.e. not a point attractor) or the
node states differed by 20% from the WT.

All Boolean model simulations were carried out using
MATLAB 2015b.

3Results
First, we describe the two new function perturbation methods to
identify sensitive nodes, followed by application of these methods
on two existing Boolean networks.

3.1 Two new function perturbation methods

Each node j in the network is associated with variable xj(t) which
describes its expression level at time t. In Boolean models with
synchronous updating, the future state of node j, denoted by xj(t + 
1), is defined by a logic rule involving the current states of its
regulators (inputs), i.e. xj(t + 1) = Fj[x(t)], where Fj is a Boolean
rule and x represents the vector of all node states.

Biological processes occur in an inherently noisy environment.
Here, we simulate the effect of two permanent defects in the
regulatory network. Defects in nodes due to misinterpretation of
one or more input signals or miscalculation of the output even
when the inputs are received correctly are captured by the function
of not (FoN) and not of function (NoF) perturbations (Fig. 1a).
Biological regulatory networks have been compared with electrical
circuits. Nodes are components of a digital circuit that read inputs
and emit an output depending on the input. The NoF perturbation
simulates a defective node that reads inputs correctly but gives the
incorrect output. For example, consider a node where binding of
two components results in activation (Fig. 1b). In a malfunctioning
node with an NoF perturbation, deactivation of the otherwise active
node would result from the presence of the two inputs. The FoN
perturbation simulates a situation, where the node logic is
functioning properly (activation when there are two non-zero
inputs) but there is an error in reading the inputs such that the
presence of either component is misinterpreted as absence. This
results in a node that is active only when both inputs are absent.
These perturbations are incorporated by flipping the output of the
function (NoF) or by flipping all the inputs to the function (FoN).
Fig. 1c illustrates the two new function perturbation methods of
flipping the output (FoN) and misreading the inputs (NoF). 

The effect of perturbing the nodes on the output is compared
with the output when there is no perturbation (WT) by using
similarity measures such as correlation coefficient and Euclidean
distance. Correlation and distance between the WT and the
perturbed network are calculated for the steady-state values/pattern
of output, before and after applying the function perturbation using
equations
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where nature of perturbation k∈{0, 1, 2}, i∈{output nodes} and j∈
{all nodes}. R is the correlation coefficient, D is Euclidean distance
and AvgD is average distance across all the n levels of UV or in
general over the length of the vector Si

0. Si, j
k  is a vector representing

steady-state activity of output node i for all levels of UVB input
when node j is subjected to a perturbation of type k, where k = 0, 1,
2 represents no perturbation (WT), NoF perturbation and FoN
perturbation, respectively. Si

0 denotes steady-state activity of output
node i for WT condition (k = 0) for all levels of inputs. We apply
these perturbations to two existing Boolean models. The identified
sensitive nodes were then compared with those given in previous
studies for constitutive state perturbation.

3.2 Effect of function perturbations in melanogenesis network

Effect of function perturbations in melanogenesis network is
calculated by measuring a change in the activity profile of the
output nodes melanin, Bcl2M and Bcl2K relative to the respective
unperturbed output profiles, for the inputs of 0, 25, 50, 75 and
100% UVB. Change in the activity profile of the output is
calculated using the measures described previously. The nodes
having either the top five Euclidean distance score or correlation
coefficient value <−0.8 were selected as sensitive (Table 1).
Sensitive nodes with correlation coefficient <−0.8 are depicted in
Fig. 2. We also performed constitutive activation and inhibition
perturbations of each node in the network, as described in [9], and
checked its effect on the outputs using similar measures. When
function perturbation is applied to the sensitive nodes, it resulted in
a Euclidean distance score of 126–180 for melanin. This is
equivalent to AvgD > = 25. Similarly, for Bcl2M and Bcl2K the
AvgD score was in the range of 21–24 and 20–30, respectively.
AvgD values for constitutive activation and inhibition falls in the
range of 30–36 and 7–9 for melanin, 30–32 and 12–20 for Bcl2M
and 22–33 and 14–22 for Bcl2K. The comparison showed that
most of the nodes identified as sensitive by function perturbations
are in agreement with the results of state perturbation analysis but
with a few exceptions (non-underlined nodes in Table 1). There are
literature reports suggesting the importance of these nodes. For
instance, an experimental study by Jost et al. [24] showed that
inhibition of MAPK/ERK kinase (MEK) enzymatic activity in
keratinocyte is associated with down-regulation of Bcl-2
expression and increased susceptibility to cell death induction.
There is also literature evidence for nodes identified as sensitive by
both the new methods as well as constitutive activation/inhibition
perturbations. For instance, activation of cAMP response element-
binding protein (CREB) is known to activate the microphthalmia-

associated transcription factor (MITF) promoter that promotes
melanogenesis [25]. 

3.3 Effect of function perturbations in D. melanogaster
segment polarity network

To identify sensitive nodes in segment polarity network, Boolean
function was perturbed for each node in all the cells in all
parasegments. It is observed that, for a few nodes, when the logic
function was perturbed, the system tends to approach a cyclic
attractor. This condition highly differs from WT pattern, where
system approaches a point attractor. Therefore, such nodes were
classified as sensitive (Table 2). For others (node perturbations
resulting in point attractors), the Euclidean distance was calculated
and if the distance was >3.35, then the node was assigned as
sensitive. This is equivalent to the condition that expression value
for at least 20% nodes (11 out of 56) should be changed when a
particular node is perturbed. Constitutive inhibition analysis
performed previously has shown that null mutation of selected
genes in segment polarity network result in alternate steady-state
patterns such as ‘no segmentation pattern’ and ‘broad stripes
pattern’ [22]. Similarly, critical and benign nodes identified by
transient perturbation are those in which a perturbation leads to the
‘broad stripes pattern’ or alternate steady state [11]. We were
successfully able to identify most of the nodes previously identified
as sensitive using the new function perturbation methods. There are
also a few exceptions where nodes identified as sensitive
previously are not identified as such by FoN or NoF perturbations;
and new nodes are identified as sensitive (Table 2). Our analysis
indicates that patterning is sensitive to perturbation of Cubitus
interruptus. This is in contrast to the results of Albert and Othmer.
Interestingly, the experimental literature also seems to be divided,
with one report suggesting that there is no requirement for cubitus
interruptus (CI) before embryonic stage 11 [26] as well as another
suggesting that there is an ‘absolute requirement’ for CI in
hedgehog signalling [27]. It seems likely that the node sensitivity
changes under different conditions, thus supporting the use of
multiple perturbation methods to assess sensitivity. 

4Conclusion
We developed two new methods of dynamic function perturbation,
namely FoN and NoF and applied it to two existing Boolean
models – melanogenesis signalling network and segment polarity
network. To our knowledge the perturbation methods closest to
FoN and NoF are the SIF and SIN derived by Garg et al. However,
there are critical differences. As implemented, NoF results in a
change of state of the output node; moreover, it is equivalent to
SIN for a given updating time when that node has a defect. In the
NoF approach, there is a ‘permanent’ defect that persists through
the simulation, whereas in SIN, different nodes may be defective at
different times during a single simulation instance. We also find
that predictions using NoF are consistent with other perturbation
studies in contrast to the ‘implausible’ results obtained using SIN
[13]. SIF perturbations assume that defects only arise in active
nodes, and use as an example the unlikeliness of transcription
without activation. However, leaky transcription is known to occur,
and switch – on defects are possible. We include both switch-on
and switch-off defects in our FoN perturbation. Conceptually, we
regard such a perturbation as a defect in interpreting all the input
signals. An interesting follow-up study would be to consider a
defect in interpreting one input of a multi-input node. However,
this would complicate the comparison between nodes with
differing number of inputs. We have applied each of the two
perturbations on two models of differing size and complexity (the
segment polarity network with 13 nodes each in 4 cells and the
melanogenesis network with 64 nodes in two cell types). We found
that as both methods do not require addition of additional inputs to
nodes but just involve changing the existing truth tables,
implementation was not difficult. We have also verified that it is
possible to use these methods to perturb a larger network (∼100
nodes, results not shown). We have analysed the perturbed
networks solely from the perspective of identification of sensitive
nodes. The effect of small perturbations on attractor states and

Fig. 1 Methods of function perturbation with an example
(a) Equations for FoN and NoF, (b) Example model, (c) Both a and b are required to

activate c but ‘NoF’ perturbation (c1) will result in inhibition of c, i.e. not of output.

Similarly, with ‘FoN’ perturbation (c2) only inputs are flipped
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Fig. 2 Effect of function perturbation (left column – NoF and right column – FoN) of selected nodes on UVB-induced skin pigmentation and Bcl-2
expressions. Each data point represents average steady-state activity of output node at 0, 25, 50, 75 and 100% of UVB. Error bar represents standard
deviation. Steady-state value of WT and Lee et al. WT (values of WT outputs mentioned in [9]) fall under each other's standard deviation
(a) Positive relationship between UVB and melanin synthesis (WT) is seen for k = 0. A negative relationship is observed when function perturbations are applied to certain nodes,
implying a large average distance and negative correlation. Effect of perturbing PKCM, ETRM and ET1K on melanin are quantitatively identical, (b) Nodes that greatly affect WT
activity of Bcl2M on ‘NoF’ perturbations. Lee et al. WT values are not available for Bcl2M, (c) A negative relation between UVB and Bcl2K activations. Perturbation in the growth
factor receptor-bound protein 2 (Grb2) and Son of Sevenless (SOS) complex (SG) and GTPase (Ras) in keratinocytes results in a quantitatively overlapping positive relationship

 
Table 1 Sensitive nodes in the melanogenesis signalling network

Constitutive activation Inhibition NoF FoN
melanin MITFproteinM, PKCM, RasM, ET1K,

ETRM, SGM, IL1K
ERKM, AktM, PI3KM, RafM,

PDK1M, MEKM, MITFproteinM,
bcateninM, CREBM, IL1K, ASK1M,

MITFmRNAM, p38M, MKK6M

MITFproteinM, SGM, IL1K,
RasM, ET1K, ETRM, PKCM

RasM, ET1K,
MITFproteinM, ETRM,

PKCM

Bcl2M AktM, PI3KM, PDK1M, PKCM, ET1K,
ETRM, RasM, SGM, IL1K

ASK1M, p38M, MKK6M, AktM,
PI3KM, PDK1M, CREBM

SGM, IL1K, AktM, RasM,
ET1K, ETRM, PDK1M,

PI3KM

RasM, ET1K, ETRM,
PKCM, PDK1M, AktM

Bcl2K ASK1K, MKK6K, p38K, MKK4K, JNKK,
p53K, RasK ERKK, RafK, SGK

PDK1K, PI3KK, EGFRK, AktK,
ASK1K

MKK6K, p38K, ASK1K,
JNKK, MKK4K, RasK, SGK

MKK6K, p38K, JNKK,
MEKK, RasK

The table lists nodes which highly influence melanin, Bcl2M and Bcl2K activities when perturbed with constitutive activation, inhibition, NoF and FoN. Shown are the nodes with
the top five Euclidean distance score and correlation coefficient value <−0.8 for each method of perturbation. Underlined nodes are identified as sensitive both by at least one method
of function perturbation and one of constitutive activation/inhibition.
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trajectories can lead to better insights about the stability of the
phenotype [28]. Further analysis of the effects of such
perturbations on the attractors and their basins of attraction would
be desirable but very challenging for large networks even of the
order of magnitude of the melanogenesis network. Larger Boolean
networks [6, 7] have been used to analyse signalling pathways and
cancer pathways. However, analysis of the attractor states of the
large unperturbed networks is itself challenging, especially for
networks with asynchronous updating [29]. Although methods [30,
31] for identifying attractors for large networks such as the cancer
pathways network have been presented, we have focused on
identification of node sensitivity and not carried out an analysis of
the state space of the perturbed networks in this paper. Although
we have used synchronous updating, the methods are equally
applicable to asynchronous updating since they both involve a
time-invariant change to the truth table. The updating order and
frequency for a particular asynchronous updating scheme can be
applied to the modified truth table corresponding to NoF and FoN
perturbations.

To examine the ability of FoN and NoF perturbations to identify
sensitive nodes in the network, we compared the results obtained
by our methods with those of existing ones. Sensitivity is expected
to be a function of the nature of the perturbation applied to the
network. However, in the case of melanogenesis, a few nodes were
robustly identified as sensitive irrespective of perturbation method
applied to them, e.g. melanin activity was found to be sensitive to
MITFproteinM; moreover, PDK1M and AktM were found to be
critical for maintaining Bcl2M level. FoN perturbation results in
identification of MEKK as a sensitive node, important for Bcl2K
activity, consistent with a reported experimental result. In the case
of segment polarity network, we assigned nodes as ‘sensitive’ if
perturbation in them results in variation from WT pattern. We were
able to identify few new nodes which are important in maintaining
WT steady-state pattern, e.g. imbalance between cubitus
interruptus transcriptional activator (CIA) and cubitus interruptus
transcriptional repressor (CIR) in posterior cells of parasegment
leads to the mutant state [16]. We were able to identify CI as a
sensitive node, which is in agreement with some (but not other)
experimental reports. As contradictory reports are likely to indicate
that the sensitivity differs depending on the experimental condition
tested, such data suggests that multiple perturbation methods may
capture differing biological situations, and hence a comprehensive
determination of node sensitivity may require different perturbation
methods to be applied to the network.

Most of the nodes identified as sensitive by our methods are
also identified as such by constitutive activation/inhibition. This
suggests that our method is more stringent than constitutive
activation/repression; and relaxing the Euclidean distance cut-off
criteria would result in identification of more sensitive nodes
(inclusion of non-underlined nodes in Tables 1 and 2). There is no
theoretical result to our knowledge suggesting an optimal
perturbation method. Indeed, a variety of stochastic perturbations
resulting from intrinsic and external sources are encountered by
individual cells and developing organisms. Hence, depending on
the question sought to be answered, either a specific perturbation
corresponding to a specific experiment (for instance gene
knockout) is applied to assess the effect on the network output or a
suite of perturbation methods is applied to study node and network

robustness. In this paper, we have presented two methods that we
believe would be useful additions to this suite of perturbation
methods for Boolean networks. These methods result in further
support for the nodes previously identified as sensitive by other
perturbation methods. However, more interestingly, they also lead
to the identification of sensitive nodes not identified as such by
existing perturbation methods assessed here. This suggests that
these new methods query system dynamics and response in a way
differing from existing methods. Hence, these methods are
expected to be a useful addition to the set of perturbations used to
assess node and network sensitivities.
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