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This paper details the design, evaluation, and implementation of a framework for detecting
and modeling non-linearity between a binary outcome and a continuous predictor variable
adjusted for covariates in complex samples. The framework provides familiar-looking para-
meterizations of output in terms of linear slope coefficients and odds ratios. Estimation
methods focus on maximum likelihood optimization of piecewise linear free-knot splines
formulated as B-splines. Correctly specifying the optimal number and positions of the knots
improves the model, but is marked by computational intensity and numerical instability.
Our inference methods utilize both parametric and non-parametric bootstrapping. Unlike
other non-linear modeling packages, this framework is designed to incorporate multistage
survey sample designs common to nationally representative datasets. We illustrate the
approach and evaluate its performance in specifying the correct number of knots under
various conditions with an example using body mass index (BMI, kg/m2) and the complex
multistage sampling design from the Third National Health and Nutrition Examination Sur-
vey to simulate binary mortality outcomes data having realistic non-linear sample-weighted
risk associations with BMI. BMI and mortality data provide a particularly apt example and
area of application since BMI is commonly recorded in large health surveys with com-
plex designs, often categorized for modeling, and non-linearly related to mortality. When
complex sample design considerations were ignored, our method was generally similar
to or more accurate than two common model selection procedures, Schwarz’s Bayesian
Information Criterion (BIC) and Akaike’s Information Criterion (AIC), in terms of correctly
selecting the correct number of knots. Our approach provided accurate knot selections
when complex sampling weights were incorporated, while AIC and BIC were not effective
under these conditions.

Keywords: free-knot splines, non-linear modeling, logistic regression, bootstrap, complex samples, body mass
index

INTRODUCTION
Large epidemiological surveys are powerful sources of observa-
tional information for investigating health outcomes as they relate
to potentially predictive variables in the presence of confound-
ing factors. The datasets from many of these surveys, such as the
National Health and Nutrition Examination Survey (NHANES)
and the National Health Initiative Survey (NHIS), are complicated
by the fact that the surveyed participants are not selected by simple
random sampling (SRS). The survey designers planned the sam-
pling of groups of individuals in multiple stages with oversampling
of certain demographic or geographic clusters to collect a complex
sample which represents the population more efficiently than SRS.

There is a drawback to these designs in terms of additional
statistical considerations that impact analyses of their data. Since
equal probability of selection is not granted to each unit in the
population and they are not independently sampled, observations
taken from them should not be considered independent and iden-
tically distributed (iid). To illustrate why incorporating the sample

design components, particularly the sample weights, is important
in analyzing these data, consider this simple hypothetical example.
Suppose that in the population you have 20% African Americans
and 80% Caucasians and that due to planned oversampling, you
have drawn a sample consisting of 50% African Americans and
50% Caucasians. Now suppose that the effect you are studying is
more pronounced in Caucasians than African Americans. If you do
not adjust for the additional weight given to the African Americans,
you will misspecify the variability estimates and run the risk of
either missing or spuriously detecting effects or differences because
of the bias induced by over-representation of African Americans
in the analysis. Thus, analyzing a complex sample with methods
designed for SRS samples will produce incorrect variance estimates
and possibly biased estimates of means and model parameters.

Common traditional statistical methods for modeling and
hypothesis testing have been adapted to account for the imbal-
ances and correlations induced by the survey sampling design (1,
2). Specialized software packages, such as SUDAAN or WestVar,
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have been designed for conducting many types of common statis-
tical analyses on complex samples. The freely available R statistical
computing software with the survey package, described in detail
elsewhere (3), gives the ability to incorporate complex sample
design features into R modeling function calls. This provides the
analyst a tremendous amount of flexibility in the types of mod-
els, including various types of non-linear models that can be fitted
while taking into consideration complex sample designs. However,
software is not currently available for modeling complex sample
data by certain specialized modeling techniques, such as free-knot
splines that will be described in detail below. Some have pointed
out the utility of free-knot spline models for effectively represent-
ing non-linear associations between continuous predictors and a
binary outcome (4). Interestingly, they also describe how some free
parameters in their models can be interpreted as thresholds for dis-
tinguishing groups with differing risk relationships. This implies
that these modeling techniques can be used to identify thresh-
olds that may have important biological or clinical significance.
As such, free-knot spline modeling methodology could become
very useful in providing an alternative to traditional quantitative
epidemiological methods for characterizing non-linear risk rela-
tionships (i.e., parsing an important continuous predictor into
local pieces having distinct relationships with outcome).

OBJECTIVE
We propose in this paper a free-knot spline framework for con-
ducting piecewise linear logistic regression in complex multistage
survey samples using B-splines and bootstrapping with a focus on
likelihood function maximization for model computation. Piece-
wise linear representations of parameter estimates and odds ratios
(OR) are output for expressing results in a familiar-looking for-
mat. A study of simulated mortality outcomes conditioned on
measured body mass index (BMI, kg/m2) data from a real complex
sample will demonstrate the performance of the procedure we have
developed for specifying the optimal number of knots under vari-
ous population and sampling conditions. BMI and mortality data
provide a particularly apt example and area of application for our
modeling framework since BMI is commonly recorded in complex
samples, often categorized for modeling, and non-linearly related
to mortality (5).

FREE-KNOT SPLINES LOGISTIC REGRESSION MODELING
FRAMEWORK
MODELING BMI AS A PREDICTOR OF OUTCOME
A key assumption in fitting linear models or generalized linear
models, as is the case here, with a continuous predictor is that
there is an underlying quantitative relationship between predictor,
BMI, and outcome, mortality odds. Furthermore, we assume that
mortality odds can be represented well by some estimable function
of BMI (i.e., a functional form). There are basically three differ-
ent ways of treating BMI to characterize a flexible functional form
between BMI and mortality odds: (1) categorizing BMI, (2) using
a polynomial basis expansion of continuous BMI, or (3) using a
spline basis expansion of continuous BMI.

Many investigators have applied contiguous categories of BMI
set a priori by common standards (e.g., underweight: BMI < 18;
normal: 18≤BMI < 25; overweight: 25≤BMI < 30; and obese:

30≥BMI) or by some other arbitrary classification rules. The
motivation for categorizing BMI is most likely convenience or con-
vention. Categorization can facilitate examination of differences
between groups and does not assume linearity or smoothness in
the outcome relationship. However, categorization of BMI has sig-
nificant disadvantages and limitations, including ignoring within-
category BMI information resulting in decreased statistical power;
insensitivity of trend tests to non-monotonic relationships; trend
tests may indicate a trend, but cannot describe it; similar indi-
viduals within a BMI category are treated as though they have
a uniformly constant mortality odds regardless of their actual
BMI level; the results can depend heavily upon how the categories
are chosen; and unfortunately, a priori classification boundaries
of BMI are not likely to represent “true” partitions that would
group individuals according to the underlying pattern of outcome
likelihood within a BMI category.

Categorical analysis of BMI can be used to effectively compare
results across studies and to provide a useful approach to explor-
ing the extent to which any function fitted to the continuous BMI
data adequately captures the apparent pattern in the functional
relationship and suggest alternative functions when indicated. Fol-
lowing comparative or explorative categorical analyses, however, it
is most often appropriate and important to return to a continuous
BMI model for representing its relationship with the outcome in
order to avoid bias (6).

Treating continuous BMI with polynomial predictor variables
does not degrade data, tends to preserve power, and does not
impose arbitrary categories or groupings. Curved U- or J-shaped
relationships are commonly detected in BMI and mortality data
modeled with polynomials of BMI. Modeling with polynomials
can also have disadvantages and limitations, including: lack of
flexibility possibly leading to biased estimation, particularly in the
tails of the BMI distribution; and poorly parameterized models
that smooth over any real partitions between BMI groups having
different mortality risk relationships.

Splines can offer some of the best features of continuous and
categorical modeling of BMI.

BRIEF GENERAL BACKGROUND ON NON-LINEAR MODELING WITH
SPLINES
The literature regarding innovation in non-linear modeling and
smoothing methods in recent decades has focused in several areas
(with cited examples): penalized splines with fixed knots (P-
splines) (7, 8); multivariate adaptive regression splines (MARS)
(9); incorporating splines into logistic regression (4, 10) and sur-
vival analysis (11–15); Bayesian methods that utilize Reversible
Jump Markov Chain Monte Carlo to fit penalized splines (16)
and Bayesian Adaptive Regression Splines (BARS) (17); applying
mixed models to smoothing (8, 18); generalized additive models
(GAM) (19, 20); and free-knot splines (21, 22). Some researchers
are also applying bootstrapping methods to spline estimation (4,
15, 23). Research in spline methodology continues to be popu-
lar as a resource for new methods, particularly those utilizing the
increased computing power of today’s technology. Splines applied
to modeling may become increasingly important for summarizing
information and drawing inferences from data sources that are
growing in number and complexity.
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WHAT FREE-KNOT SPLINES OFFER, SOME OF THEIR LIMITATIONS, AND
WHY THEY ARE USED
Specialized statistical modeling tools are called for in clinical and
epidemiological settings for constructing useful models under
circumstances of non-linearity, non-normality, and heteroscedas-
ticity,which represent departures from GLM assumptions (2). One
such modeling tool is the free-knot spline. A free-knot spline may
be loosely described as a non-linear regression characterized by
piecewise polynomials of order m joined at locations called knots
where the adjoining segments typically agree at their (m−2)th
derivative and both the number and locations of the knots are free
parameters estimated along with other model parameters (24).
Free-knot splines can be used to generate models that incorpo-
rate “local” flexibility over contiguous regions of BMI that are
defined by the locations of the knots. In these models, spline para-
meters are estimated simultaneously along with any other model
parameters, such as covariate parameters. As we describe below
in Section “Interpretability of the knots can be biologically or
clinically useful,” the knots themselves are parameters that can be
used under certain circumstances to estimate partition bound-
aries (also called cut-points, knots, or thresholds) characterizing
groups experiencing differing, non-uniform BMI-mortality odds
relationships. The localized estimation properties of these mod-
els limit the influence of observations to particular regions of the
fitted model (22) and can also be particularly helpful for bet-
ter characterizing associations in the tails of the predictor and
response joint distribution where: (1) small proportions of per-
haps the most interesting observations exist and (2) polynomial
models lack flexibility and are more susceptible to the impacts of
outliers and high-leverage data points. A disadvantage of using
free-knot splines is that they can be challenging to estimate and
apply as statistical software packages typically will not fit them
automatically.

Molinari et al. (15) give an excellent discussion of how to utilize
and interpret free-knot splines with knots in the log hazard func-
tion where mortality risk, expressed as a hazard ratio, may vary
greatly. In a similar fashion, Keith et al. (25) used free-knot splines
to show how increased BMI is associated with a steady decrease in
risk of severe or frequent headache in women with BMI below a
threshold of approximately 20 (an estimated risk threshold para-
meter in the population) and a steady increase in risk above 20.
A similar analysis stemming from categorized BMI would only
describe an average risk of headache within each arbitrary classi-
fication (say above vs. below the detected threshold of BMI= 20),
thus giving little information regarding the patterns of risk over
the complete range of BMI.

Our non-linear framework utilizes piecewise linear free-knot
splines to build an additive model of a dichotomous outcome as
a non-linear function of a continuous predictor. The knots are
estimated as free parameters along with other linear continuous
or categorical covariate parameters. Estimating the optimal num-
ber and locations of the knots improves the approximating power
of the model, but has been marked by computational intensity
and numerical instability (26). Free-knot splines are very sensi-
tive to local maxima in either the likelihood or residual sums of
squares (SSE) surfaces. Free knots also tend to coalesce or over-
lap. The result has often poor computational performance, which

has been described as the “lethargy property” of free-knot splines
(27). Some successful efforts have been made to mitigate these
challenges with the introduction of B-splines (24) and penalties
for coalescent knots (22).

The optimization of even one non-linear relationship via a free-
knot spline has proven to be a difficult task in large datasets. If the
computational demands and numerical instability associated with
free-knot splines may be overcome, the free-knot models may have
great potential for optimal non-linear model fit to observed data
in many dimensions. In our present approach, however, we have
restricted our methodology to non-linearity between an outcome
and only one independent variable while adjusting for covariates.
This helps simplify our presentation and simulations by at least
avoiding the computational demands and instability attributable
to the “curse of dimensionality” (19, 28), which can be described
as the problem of extremely rapid increases in data sparseness as
the dimension of the non-linear multivariate space increases.

A key feature of the framework is that the splines may be rep-
resented algebraically and interpreted according to their piecewise
polynomial segments, which gives the output from these models
a familiar appearance to researchers accustomed to interpreting
GLM results. This is an important aspect as the framework is
intended to be accessible and attractive for use by epidemiologists
and other quantitative researchers.

INTERPRETABILITY OF THE KNOTS CAN BE BIOLOGICALLY OR
CLINICALLY USEFUL
Effectively estimating both the numbers and locations of the knots
tends to produce a simpler, low dimensional analytic function
than fixing either the number or locations (or both) of the knots
a priori. This is appealing from the perspective of parsimonious
model fitting, but can also provide an interesting interpretation
for the knots. Assuming that the true model has the same order
and number of knots as that estimated, then the model may be
considered parametric. Some have used this to their advantage
by interpreting the knots in their free-knot spline models as cut-
points in a risk relationship that define thresholds between groups
with differential patterns of association with the outcome of inter-
est (4, 15). We suggest that this may be inappropriate for cubic,
perhaps even quadratic, free-knot splines as the ability to cor-
rectly specify the true model in simulation studies decreases greatly
with increasing order. However, in situations where the aforemen-
tioned assumption holds sufficiently well, this interpretation of
the knot parameters can yield compelling biological or clinical
insights.

BASIS FUNCTIONS
A spline is constructed from basis functions. A basis function is
an element of the basis for a function space. Each function in a
given function space can be expressed as a linear combination of its
basis functions. For example, the class of cubic polynomials with
real-valued coefficients has a basis consisting of 1, x, x2, and x3.
Every cubic function can be written as a linear combination of this
basis (i.e., a1+ bx + cx2

+ dx3). Basis function expansions must
be explicitly specified in order to calculate free-knot splines. We
considered two possible bases for our framework: the truncated
power basis (8) and the B-spline basis (24).
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Truncated power basis
The truncated power basis expansion of order m can be expressed
as

f (x) = β0 + β1x1
+ · · · + βpxp

+

∑K

i=1
bpi (x − ζi)

p
+ (1)

where some function, f, is a non-linear, piecewise polynomial (hav-
ing degree= p) function of an independent variable, x ; ζi is the
ith of K knots such that ζ1≤ ζ2≤ · · · ≤ ζK; and u+=max(u,0).
Here, we limit our scope to the piecewise linear truncated power
basis expansion (order m= p+ 1= 2)

f (x) = β0 + β1x +
∑K

i=1
bi(x − ζi)+. (2)

A piecewise linear representation
We use indicator functions, I{ }, to then express the truncated
power basis as a piecewise linear function on the ith contiguous
interval of the domain of the predictor vector variable, X,delimited
by either the knots or bounds of X. Suppose that each numerical
item, x, in this vector has the property x ∈<+ and that we fix
knots that will not be estimated at the endpoints a=min(X) and
b=max(X) such that ζ0= a and ζK+1= b, then we have

h (x) = a0 + a1x I{x < ζ1} +
∑k

i=1

[
ai+1 (x − ζi)

+

∑i

j=1
aj
(
ζj − ζj−1

)]
I {ζi ≤ x < ζi+1} (3)

where a1= β1 using the coefficients from (2) can give us

al = a1 +
∑l−1

i=1
bi , (l = 2, . . . , K + 1) (4)

the slope parameter for any observed x ∈ [ζl−1, ζl]. Note that this
basic transformation is used only for estimating the slopes after
optimization. Although algebraically equivalent, this basis rep-
resentation of the piecewise linear space is less computationally
stable for optimization than the truncated power basis.

To illustrate our model including covariates, suppose that X is
an N × 1 vector of data on some continuous prognostic variable
of interest and Z represents a N × (p+ 1) matrix consisting of a
column of ones followed by p columns of data on covariates. Let η

be a parametric function of p+ 1 linear covariate predictors mul-
tiplied by their respective logistic regression coefficients (β) and
the K+ 1 piecewise linear slope coefficients (a1,…, aK+1). For the
qth individual (q= 1, . . ., N )

η
([

Zq , Xq
])
= β0+ β1Zq2 + · · · + βpZq(p+1)+ a1Xq I

{
Xq < ζ1

}
+

K∑
i=1

ai+1
(
Xq − ζi

)
+

i∑
j=1

aj
(
ζj − ζj−1

)
× I

{
ζi ≤ x < ζj−1

}
. (5)

For comparison, consider the simpler truncated power basis
expression

η
([

Zq , Xq
])
= β0 + β1Zq2 + · · · + βpZq(p+1) + b0Xq

+

∑k

i=1
bi
(
Xq − ζi

)
+

. (6)

B-splines
B-spline bases are easy to incorporate into the framework by
applying de Boor’s recurrence relation for their practical imple-
mentation (24). B-splines are used extensively throughout the
non-linear modeling literature. Here, we discuss them only in brief
detail.

Consider a knot sequence, ζ0=min(X)= ζ1≤ ζ2≤ · · · ≤

ζK≤ ζK+1≤ ζK+2=max(X)= ζK+3, such that there are K inte-
rior knots {ζ2, . . ., ζK+1}. By the definition of B-splines, the jth
B-spline of order m= 1 (piecewise constant) is

Bj1 =

{
1 if ζj ≤ Xq < ζj+1

0 otherwise
(7)

and the higher order B-splines may be constructed by this
recurrence relation

Bjm = ωjmBj (m−1)
+

(
1− ω(j+1)m

)
B(j+1)(m−1), (8)

where

ωjm
(
Xq
)
=

Xq − ζj

ζj+m−1 − ζj

. (9)

So the linear B-spline basis of order m= 2 (piecewise linear) we
use can be expressed for any Xq ∈< as

βj2 =
xq − ζj

ζj+1 − ζj
I
[
ζj ≤ Xq < ζj+1

]
+

ζj+2 − Xq

ζj+2 − ζj+1

× I
{
ζj+1 ≤ Xq < ζj+2

}
, j = 0, . . . , K + 1, (10)

where K is the number of interior knots fitted. Thus we have

η
([

Zq , Xq
])
= Zqβ+ Bqb = β0 + β1Zq 2 + · · · + βpZq(p+1)

+

K+1∑
i=1

biBqi2
(
Xq
)
, (11)

where b1, . . ., bK+1 are linear regression coefficients correspond-
ing to their respectively indexed values in the qth row vector, Bq, of
the B-spline expansion matrix B. This shows how η is an additive,
linear expression of B-spline parameters. Note that Eq. 11 may be
easily transformed to a polynomial expression as piecewise poly-
nomial coefficients are clearly linear combinations of the B-spline
coefficients.

COMPUTATION METHODS
Before we discuss optimizing the fit of the spline to data, we briefly
consider some computational aspects. Mathematicians and com-
puter scientists have demonstrated that B-splines can have desir-
able properties, such as local linear independence (24) and com-
putational stability (29). As such, B-splines have been a popular
choice used extensively for free-knot modeling (4, 22).

We are fitting non-linear functions constrained to the class of
piecewise linear free-knot spline functions mapping a continuous
independent variable onto the space of the outcome variable as

Frontiers in Nutrition | Nutrition Methodology September 2014 | Volume 1 | Article 16 | 4

http://www.frontiersin.org/Nutrition_Methodology
http://www.frontiersin.org/Nutrition_Methodology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keith and Allison Free-knot spline logistic regression framework

a projected estimate of the mean response surface. Our goal is to
first find the optimal fit for a given number of knots, K, and then
determine which value of K best represents the data. There are
two general approaches to these computations:

(1) by minimizing the sum of squared distances between observed
and predicted values (i.e., leastsquares estimation or LSE) and

(2) by maximizing the likelihood function (i.e., maximum likeli-
hood or MLE approach).

Least squares
LSE in this context involves minimizing, with respect to residual
SSE, the distance between the observed outcome or a function
of the observed outcome and non-linear estimates. This typically
requires a method, such as the Gauss–Newton method with the
Levenberg–Marquardt adjustment (30, 31), which uses derivatives
or estimates of derivatives to pick out the optimal fit.

No canned SAS procedures (SAS Institute, Cary, NC, USA) such
as PROC GAM,PROC TRANSREG,or PROC TPSPLINE are capa-
ble of fitting free-knot splines. However, a free-knot spline basis
can be computed at run time with SAS macros that use PROC
NLIN for least-squares model estimation. This involves minimiz-

ing a measure of distance between vectors, say
∥∥∥f− f̂

∥∥∥2
, which

represents the non-linear SSE in a multidimensional space where

f is the collected data and f̂ is a collection of non-linear estimates
as a function of the data, complex sample weights, and model
parameters including free-knots.

Maximum likelihood
For MLE, the non-linear logistic likelihood function must be
numerically maximized to find the parameter values under which
the observed data were most likely produced. In theory, these
estimates might have the properties of asymptotic efficiency and
invariance under reparameterization which makes MLE attractive
in general (32). This invariance property is particularly important
to our framework as we intend to perform the optimization with
B-splines and then reparameterize the estimates as linear combina-
tions of B-spline parameters that will represent the local piecewise
linear slopes. In practice, unlike the B-spline parameters, these
slopes are straightforward and easy to present and interpret.

The Nelder–Mead simplex (33) is a popular and powerful direct
search procedure for likelihood-based optimization. The attrac-
tion of this method is that the simplex does not use any derivatives
and does not assume that the objective function being optimized
has continuous derivatives. Nelder–Mead simplex optimization is
the only method currently available in SAS, which does not require
derivative calculations to search the parameter space. In cases such
as ours (i.e., piecewise linear splines), we do not expect continuity
in the first derivatives at the knot locations. Therefore an MLE
and simplex optimization approach seems more reasonable than
the LSE and residuals SSE minimization approach. Direct search
methods can, however, be much less efficient or highly unstable
as compared to derivative-based LSE or MLE methods when sam-
ple sizes are as large as the datasets common to complex survey
designs. Hence, as a compromise, we have used “quasi-Newton
methods” with estimated derivatives to perform the MLE.

Non-linear logistic likelihood. Let us now examine the non-
linear logistic likelihood function for modeling binary outcomes.
The probability of the qth participant having experienced the
outcome of interest, Yq= 1, can be expressed as

πq
(
η
([

Zq , Xq
]))
= P

(
Yq = 1|η

([
Zq , Xq

]))
=

exp
{
η
([

Zq , Xq
])}

1+ exp
{
η
([

Zq , Xq
])} , (12)

where η([Zq, Xq]) may be Eq. 11. Note that the logit or log (odds)
function of this probability

logit
{
πq
(
η
([

Zq , Xq
]))}
= log

{
πq
(
η
([

Zq , Xq
]))

1− πq
(
η
([

Zq , Xq
]))}

= η
([

Zq , Xq
])

, (13)

may reasonably be modeled piecewise linearly as a function of
the variables in [Zq, Xq]. We may express a weighted likelihood
function:

L (θ|[Z, X], W) =

n∏
q=1

[
πq

yq
(
1− πq

)1−yq
]wq

, (14)

where θ is a vector of all the linear and spline parameters expressed
in Eq. 11, n= sample size, πq is defined above in Eq. 12, yq is the
binary outcome, and wq is the complex sample weight in the weight
vector, W, assigned to the qth participant by the study designers.
The weighted log-likelihood, which is more convenient for use in
optimization procedures,

log {L (θ|[Z, X], W)}=

n∑
q=1

wq

[
log

(
1−πq

)
+yq log

(
πq

1−πq

)]
.

(15)
may be maximized numerically using PROC NLP in SAS.

Optimization
Our goal is to first find the optimal fit for a given number of knots
and leave the optimization with respect to the number of knots
for the next section.

Quasi-Newton methods for MLE. In our experiences with tun-
ing the optimization algorithm for analysis of real and simulated
data, using quasi-Newton methods has produced more efficient
and more stable results than the Nelder–Mead simplex. Quasi-
Newton methods are a class of optimization algorithms which we
used to locate minima in the negative natural logarithm of Eq.
14. The particular quasi-Newton procedure we employed is called
the dual Broyden–Fletcher–Goldfarb–Shanno method (DBFGS)
(34–37). The details of this procedure extend beyond the scope
of this paper. In brief, DBFGS uses line searches along feasible
descent search directions in combination with estimation of the
Cholesky factor of the Hessian matrix of second derivatives to
iteratively update the overall search for minima. Although this
method requires first derivatives, we were able to calculate deriva-
tive estimates by using finite difference approximations as we did

www.frontiersin.org September 2014 | Volume 1 | Article 16 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Nutrition_Methodology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keith and Allison Free-knot spline logistic regression framework

for the LSE methods. As expected, in application to large survey
datasets, we have found that the MLE methods suffer fewer prob-
lems with convergence than the LSE methods. The non-linear LSE
optimization procedure by the Gauss–Newton method is fairly
straightforward, though, and additional information on this pro-
cedure is provided in Supplemental Material (see Quasi-Newton
Methods for MLE).

Computing odds ratios
We found OR to be a powerful way of expressing event risk as
a function of the non-linear predictor. We choose OR over the
log(odds) when models have been adjusted for covariate informa-
tion because, unlike log(odds), OR for comparing two otherwise
similar individuals do not depend on the covariates. While com-
puting OR in our framework is not quite as simple as in a con-
ventional GLM, it is straightforward. Assume the basis in Eq. 5
and, assuming all else is equal between individuals l = 1 and l = 2
except for their respective non-linear predictor values, X 1 and X 2,
respectively, we may compute an odds ratio:

OR =

a1X1 I {X1 < ζ1} +
∑K

i=1

[
ai+1 (X1 − ζi)

+
∑i

j=1 aj
(
ζi − ζj−1

)]
I {ζi ≤ X1 < ζi+1}

a1X2 I {X2 < ζ1} +
∑K

i=1

[
ai+1 (X2 − ζi)

+
∑i

j=1 aj
(
ζi − ζj−1

)]
I {ζi ≤ X2 < ζi+1}

. (16)

Graphical representations of this OR may be created if a suitable
reference level can be fixed for X 2 while allowing X 1 to range.

KNOT SELECTION
A novel parametric bootstrap-based method
We outline in this section a novel method of selecting the optimal
number of knots. Knot locations, linear and non-linear coeffi-
cients, and a common intercept are parameters optimized simul-
taneously while having complex sample weights incorporated into
the fitted function. This achieves adjusted and, presumably, unbi-
ased parameter estimates. Like others (4, 15), we are interested in
interpreting the fitted knots to define clinically meaningful groups
with differential patterns of risk. It is very important to correctly
specify a parsimonious number of knots, say 4 or fewer, which
would indicate 5 or fewer different risk groups. Therefore, keeping
the framework from producing models with unnecessary knots is
a priority.

Our technique involves a forward selection procedure based on
the concept of a 2 df for the addition of two parameters, a knot and
a slope, to the piecewise linear model (our“2 df knot testing proce-
dure”). As depicted in Eq. 11, we are considering a set of p linear or
categorical covariates for adjustment purposes, but this procedure
is targeted at optimizing the complexity necessary to effectively
model the one potentially non-linear prognostic variable, X. The
test statistic for the LSE framework is an F-ratio:

F =
(SSEreduced − SSEfull)/2

SSEfull�dffull

, (17)

where the df of the full model, dffull, is N – (p+ 2K+ 2) [i.e., the
sample size minus the number of free parameters estimated: p,

linear coefficients, K, free-knots, the K+ 1, spline parameters (the
piecewise linear slopes), and the intercept]. We are not certain of
the distribution of F, so we use parametric bootstrapping (38, 39)
to build a hypothetic distribution of these F-ratio test statistics
under the null hypothesis that the reduced model having K knots
is true against an alternative having K+ 1 knots. We draw D1 para-
metrically resampled replicate datasets of binary outcomes and
compute the F-ratio distribution {F

rep
1 , . . . , F

rep
D1 }. A bootstrap p-

value representing the probability that adding the (K+ 1)th knot
produces an F-ratio at least as large as what might be observed by
chance alone can be calculated from this F-ratio distribution as

pboot =

1+
D1∑
j=1

I
{

F
rep
j ≥ F

}
D1 + 1

. (18)

This is analogous to integrating the distribution of F to determine
the probability of observing the data given that the null model
is true. For the MLE, we adopted a similar approach, but with
likelihood ratio (LR) test statistics:

LR =
− ln L

(
θ̂null

)
− ln L

(
θ̂alt.

) (19)

in place of the F-ratio statistics for comparing the minimized
negative-log-likelihood functions from two models: a null model
having K knots and parameter estimates for their locations and
other regression estimates for parameters expressed in Eq. 11,

θ̂null, versus an alternative model with a parameter estimate set,
θ̂alt., expanded from the null model to include an additional knot
parameter and slope parameter.

We select a value for α to represent the significance level selec-
tion criterion for this test of the contribution to reducing SSE or
increasing the likelihood. That is, the bootstrap p-value in Eq. 18
would have to be smaller than α in order to reject the null hypoth-
esis that the model with K knots is the true model in favor of
the model with K+ 1 knots. We can control the flexibility of the
model by manipulating α.

The algorithms. The details and algorithms for applying the LSE
and MLE approaches to the 2 df knot testing procedures are shown
in Tables S1 and S2 in Supplementary Material. By either approach,

we end with output parameters, θ̂
PLS

, for an optimal piecewise lin-
ear model expressed in terms of local linear slope coefficients, knot
locations, and covariate coefficients.

Grid search
The selection of good starting values is critical for iterative opti-
mization procedures in avoiding locally optimal model parameter
settings in favor of converging to the global optima. It can be
challenging to identify such starting values when modeling with
free-knot splines. This issue is ubiquitous in the literature and is
particularly troublesome in regions where the functional surface
relating the non-linear predictor and response is nearly flat. Not
only is it important to place the knots well, but the algorithm
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Keith and Allison Free-knot spline logistic regression framework

must also start with well-placed covariate and spline parameters.
To address this, we start spline coefficient parameters at zero and
any covariate coefficient parameters at their multivariate GLM
estimates. For the knots, we objectively search the free-knot para-
meter space for plausible knot locations by using a grid search
algorithm similar to that applied by others (4). This obviates the
need for subjectivity in assigning starting values, but comes with
high computational costs as increasing the size of the grid has a
multiplicative impact on the number of times we need to run the
bootstrap testing procedure.

The grid search was implemented in steps 4 and 5 of the 2 df
MLE testing procedure algorithm to locate the best starting val-
ues, θ0

null and θ0
alt. (see Table S2 in Supplementary Material). That

is, we set starting covariate coefficient parameters in θ0 equal to
those estimated by a linear logistic regression in SAS Proc Survey-
Logistic. For the MLE, we calculate models for C possible starting
locations placed at nearly equal distances throughout the range of
the predictor to avoid getting stuck on local maxima and help pre-
vent coalescent knots. To ensure that knots did not overlap, we also
enforced linear constraints so that a small minimal distance was
maintained between any two knots, including the boundary knots.
As noted, the search can be extremely computationally expensive
as for each loop from step 2 to 9 of the algorithm, we must make
(C

K ) calls to fit a model with PROC NLP. In the most extensive case
we consider, where we reject the model having K = 2, we would
require a total of 4+(D1+1)×{(C

0 )+2×[(C
1 )+(C

1 )+(C
3 )]+(C

4 )}

PROC NLP calls, where D1 represents resampled replicate datasets.
For instance, this quantity might range from 22,604 if D1= 200
and C = 6 up to 511,004 if D1= 1,000 and C = 9. The latter rep-
resents a large number of program calls and is recommended only
for high performance parallel processor computing environments.

ESTIMATING UNCERTAINTY IN PARAMETER ESTIMATES
Incorporating multistage probability cluster sampling
The data we are considering are drawn from the target popula-
tion using complex, multistage probability cluster sampling that
achieves the quality of effectively representing the population
much more quickly than the classic SRS design (1, 40). There are
three components to the information provided to the analyst to
adjust for the unequal probability sampling of multistage complex
sample designs we see in datasets such as NHANES and NHIS. The
components are stratum, primary sampling unit (PSU), and sam-
ple weight. The strata are often based on geographic area. PSUs are
clusters within a stratum and generally given a probability of being
selected for sampling that is proportional to the size of the cluster
(with the exception that some clusters, such as the New York City
metropolitan PSU in NHANES that are assigned a selection prob-
ability= 1). The sample weights can be loosely defined as giving
each sampled participant a weight to indicate what proportion of
the population they represent (i.e., what proportion of the pop-
ulation has the same apparent characteristics as a given sampled
participant).

The complex sample design variables actually presented to
the interested researcher are pseudo-variables. They have been
modified by the survey designers in order to protect participant
confidentiality by masking the true sampling design features, but
maintain their useful utility for providing unbiased parameter

estimates and standard errors. It is not clear from the pseudo-
variables which PSUs have been sampled with certainty and which
have not.

Making adjustments without existing software
As we are not aware of any available tools, such as SUDAAN
software or R with the survey package, for free-knot spline model-
ing of survey data with complex sample designs, we wrote our
own ad hoc software utilizing available methodology to make
appropriate adjustments in our programs. There are two basic
approaches to making complex sample adjustments: linearization
and resampling. Linearization is the application of a Taylor’s series
expansion to make first order linear approximations to possibly
non-linear parameters. Variance estimates are then based on the
linear approximations (41). Some have provided useful ideas for
alternative approaches to this problem based on resampling (42).
Rao (41) suggests that

“An advantage of a resampling method is that it employs
a single standard-error formula for all statistics, θ̂, unlike
the linearization method, which requires the derivation of a
separate formula for each statistic θ̂. Moreover, linearization
can become cumbersome in handling poststratification and
non-response adjustments, whereas it is relatively straight-
forward with resampling methods. . . As a result, they [soft-
ware packages using linearization] cannot handle more com-
plex analyses such as logistic regression with poststratified
weights.”

Thus, resampling provides a more general and versatile approach
well suited to our problem.

The resampling methods detailed by Rao et al. (42) include
balanced repeated replication (BRR), the jackknife, and bootstrap.
BRR involves resampling many “half-sample” replicates by delet-
ing one PSU from each stratum, rescaling the complex sample
weights, calculating a weighted replicate parameter estimate, and
computing variance estimates for the original parameter estimate
based on the variability in the BRR replicates. This method does
not work well in cases where we have more than two PSU per
stratum. The jackknife method deletes one PSU, rescales the sam-
ple weights, calculates a replicate parameter estimate, and repeats
this for each PSU within each stratum. A variance estimate for
the original parameter estimate can then be calculated from these
jackknife replicates.

The most convenient resampling approach is to resample the
PSUs with replacement within each strata by using the non-
parametric bootstrap method (42) and appropriately rescale the
weights. To be specific, the individual sampling weights within the
hth stratum (h= 1, . . ., H ) are rescaled by the following equation:

w∗hij = whij

(
1−

√
dh

nh − 1
+

√
dh

nh − 1
×

nh

dh
× rhi

)
. (20)

where w∗
hij

is the rescaled weight for jth individual in the ith PSU,

whij is the original weight for the jth individual in the ith PSU, nh

and dh are, respectively, the number of PSUs and the number of
bootstrap samples drawn from this stratum, and rhi is the number
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Keith and Allison Free-knot spline logistic regression framework

of times the ith PSU is resampled. This is the underlying method-
ology applied in our framework to achieve approximately unbiased
standard errors and confidence intervals adjusted for multistage
complex sample designs.

Some have presented detailed discussions of this method for
bootstrap adjustment of complex multistage sample weights when
the number of PSUs per statum is at least 2 (nh ≥ 2) (42, 43). Rao
et al. (42) suggested that this method is valid and consistent for
estimated parameters expressed as either smooth or non-smooth
functions of totals when nh≥ 2 and H is relatively large (e.g.,
H = 49 in NHANES III). Setting nh= 2 is a popular choice (com-
mon to both the NHANES and NHIS series) as it provides the
maximum amount of stratification possible for conducting valid
variance estimation.

Once we have settled on a model with K knots by application
of our 2 df knot testing procedure, we are prepared to ascertain
the certainty in our parameter estimates. The specification for
our complex sample adjustment procedure is outlined in Table S3
(corresponding to the LSE approach) and Table S4 (correspond-
ing to the MLE approach) in Supplementary Material. We begin
by applying the methods suggested by Rao et al. (42) described
above to generate D2 non-parametric bootstrap replicate esti-
mates per each parameter of interest. Investigators have applied
the LSE methodology to BMI as a predictor of binary headache
outcomes in women (25), used the bootstrap-t method described
by DiCiccio and Efron (44) for calculating 95% CI from D2= 1000
non-parametric bootstrap replicates. Some have suggested this
method as a general guideline for improving statistical power and
the accuracy of coverage probabilities [i.e., bootstrapping a distri-
bution for an asymptotically pivotal quantity, T = (θ̂ − θ)/σ̂ by
T ∗i = (θ̂∗i − θ̂)/σ̂∗i , i = 1, . . . , D2, where θ is some parameter of

interest (say a particular knot or slope), θ̂ is the original parameter
estimate, σ̂ is the original standard deviation estimate, θ̂∗i and σ̂∗i are
the parameter and standard deviation estimates, respectively, from
the ith bootstrapped sample] (45). Then the bootstrap estimate of
the standard error of θ̂ is

σ̂∗ =

√
1

D2 − 1
(θ̂∗ −

¯̂
θ
∗

)
T
(θ̂∗ −

¯̂
θ
∗

) (21)

where θ̂
∗

represents the vector of θ̂
∗

i ’s estimated from the D2 boot-

strap samples and ¯̂θ
∗

= (1/D2)1T θ̂
∗

is the mean of the bootstrap
replicates.

The distribution of T is not necessarily symmetric, so
we locate the critical values at either end of the ordered
bootstrapped distribution T ∗ = {T ∗(1), . . . , T ∗(D2)

} such that
P(T *(lower critical) < T < T *(upper critical))≥ 0.95, with equal prob-
ability in either tail, and applying some algebra leads to
the 95% CI for θ = (θ̂∗

(lowercritical), θ̂∗
(uppercritical)), where

θ̂∗
(lowercritical) = T ∗

(lowercritical)σ̂
∗

(lowercritical) − θ̂, and θ̂∗
(uppercritical) =

T ∗
(uppercritical)σ̂

∗

(uppercritical) − θ̂.

This method can be more stable and less conservative than
using the more basic percentile methods (39) and applied to
free-knot splines (4), however, the standard-error estimates σ̂∗i
were drawn from the optimization procedure (PROC NLIN) and

required running the model with the far less stable piecewise linear
basis, depicted in Eq. 5, in order to apply them directly to the
bootstrap-t distribution of the slope coefficient parameters.

SIMULATIONS: EVALUATING THE MLE 2 DEGREE OF FREEDOM KNOT
TESTING PROCEDURE
A simulation study was devised to assess how well the MLE 2 df
knot testing procedure performs in correctly specifying the opti-
mal number of knots and compare results to those obtained by
other popular model selection criteria:

AIC = −2 log
{

L
(
θ̂|X, W

)}
+ 2r (22)

and

BIC = −2 log
{

L
(
θ̂|X, W

)}
+ r log (n) , (23)

where r represents the number of parameters in the model and
n is the sample size. The conditions we focused upon in simu-
lating data were the size of the sample (n) and the proportion
of events (po). For each, we selected two setting: n ∈ {500, 5000}
and po ∈ {0.10, 0.33}. The simulated outcomes data were plas-
modes (46) generated from randomly selected samples of n BMI
records from NHANES III – a complex sample weighted, nation-
ally representative survey conducted between 1988 and 1994 with
mortality follow-up in 2000. Plasmodes are sets of data gener-
ated by natural biologic processes (i.e., hypothetical outcomes data
generated conditional on real BMI from a real complex sample)
under experimental conditions we set. This allows us to evaluate
an aspect of truth (i.e., the rate at which models select the correct
number of knots under these conditions) in a realistic simulated
environment. One hundred simulated sets of n binary mortality
outcomes were generated conditional on the n BMI records and
a true log (odds) model having two knots in their piecewise linear
relationship. More precisely, for a given set of n BMI values, each
one, q= 1, . . ., n, was assigned a Bernoulli random variable, Yqj

| Xq=BMIq (j = 1, . . ., 100), based on the probability of event
defined by

πq
(
η
([

Xq
]))
= P

(
Yq = 1|η

([
Xq
]))
=

exp
{
η
([

Xq
])}

1+ exp
{
η
([

Xq
])} ,

(24)
where the η function was specified by a true log(odds) model hav-
ing K true= 2 knots fixed at BMI= 25 and BMI= 32 and piecewise
slopes fixed at a1=−0.4, a2= 0.0, and a3= 0.2 as in (3). These
parameter settings were chosen as they define a functional shape
that characterizes the true non-linear U-shaped BMI relationship
with a binary mortality outcome variable observed during follow-
up among NHANES III participants having 17≤BMI≤ 45 at their
baseline assessment. The intercept of the true model, a0, was cal-
culated for each BMI dataset as it must be conditioned on the
desired level of po. To evaluate sensitivity to the selection criterion
(α), we ran our MLE 2 df knot testing procedure with settings of
α∈ {0.10, 0.25} on all combinations of the n and po settings.

Figure 1 displays the true model (in red) and replicated models
(in black) resulting from the application of the MLE 2 df knot test-
ing procedure to 20 randomly selected simulated datasets for each
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Keith and Allison Free-knot spline logistic regression framework

FIGURE 1 | Model selection simulation results for the parametric
bootstrap MLE 2 df selection procedure. True log odds model (K true =2)
plotted (in red) by BMI with results from 20 replicate datasets (in black).
Each (A–H) depicts results from data simulated under various conditions
including the proportion of events, po (0.10 or 0.33) and sample size, n (500
or 5,000), and evaluated by our methods with two selection criterion
settings, α (0.10 or 0.25).

combination of settings. Note that if the model having K = 3 was
rejected, we selected the model with K = 4 and stopped the evalua-
tion at that point in order to conserve computation time. When the
sample size was low (n= 500 in Figures 1A–D), there was consid-
erable error variance or “noise” distorting the true model “signal”
which generated the binary simulated data and our procedure did
not perform nearly as well as when there was more information

FIGURE 2 | Model selection simulation results when sampling weights
are applied.

available (n= 5,000 in Figures 1E–H). When the proportion of
events was elevated (po= 0.33 in Figures 1B,D,F,H), it also intro-
duced more information and reduced uncertainty in where the
true model was located. Figure 2 shows an instance in which the
sample weights from NHANES III had been included. Incorpo-
rating the sample weights did not appear to greatly impact the
accuracy of the MLE 2 df knot testing procedure, but it did intro-
duce an extra source of variance and possibly some degree of
numerical instability resulting in increased computation time and
lower precision.

In Figure 3, we plotted the frequencies with which each of the
number of knots (i.e., K = 0, 1, 2, 3, or 4) was selected as opti-
mal from the 100 datasets simulated and evaluated under each
combination of settings. Recall that the true number of knots was
2 in all simulations. Each frame has colored points representing
the observed frequencies connected by colored lines representing
knot selection results from our method (in red), Akaike’s Informa-
tion Criterion (AIC, in black), and Bayesian Information Criterion
(BIC, in blue). All these approaches were too conservative when
the sample size was low (n= 500 in Figures 3A–D) as they tended
to select models with one knot. BIC was also too conservative
when the sample size was high and the proportion of events was
low (n= 5,000, po= 0.10 in Figures 3E,G). Sample-weighted like-
lihoods from large survey samples are not on a scale by which the
AIC or BIC penalties would have any effect to curb overfitting the
data. We can see this result clearly in Figure 4 where our method
was accurate, but somewhat imprecise while AIC and BIC methods
were neither accurate nor precise. In cases where no sample weights
were used, our method worked very similarly to AIC under all con-
ditions simulated (see Figure 3). However, like AIC, our method
was only accurate in selecting two knots when the sample size was
relatively large (i.e., when n= 5,000 in Figures 3E–H). Table 1
presents statistics on the accuracy of each selection approach for
correctly selecting a two-knot model. These results include pair-
wise Fisher’s exact tests between our parametric bootstrap MLE
2 df testing procedure and AIC or BIC. Consistent with the plots
in Figures 3 and 4, AIC was the preferred approach for small
sample sizes. Our approach significantly outperformed AIC only
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Keith and Allison Free-knot spline logistic regression framework

FIGURE 3 | A comparison of knot selection simulation results. Plotted
lines connect frequencies for the number of knots fitted to 100 simulated
datasets by method: AIC (in black), BIC (in blue), and the parametric
bootstrap MLE 2 df selection procedure (in red). Each (A–H) depicts results
from data simulated under various conditions including the proportion of
events, po (0.10 or 0.33) and sample size, n (500 or 5,000), and evaluated by
our methods with two selection criterion settings, α (0.10 or 0.25).

when there were sampling weights involved (p < 0.001) or when
the sample size and prevalence was high and selection criterion
was set low (p < 0.001). Interestingly, the only case where BIC was
superior to our method was when the sample size and prevalence
were high, the selection criterion was set low, and no sampling
weights were involved (p= 0.048).

FIGURE 4 | A comparison of knot selection simulation results when
sampling weights are applied.

DISCUSSION
The MLE 2 df knot testing procedure for specifying the optimal
number of knots generally performed well in simulations and very
similar to AIC when ignoring sampling weights, as long as the sam-
ple sizes were large or when the selection criterion was set fairly
high (i.e., n= 5000 or α= 0.25). BIC was too conservative unless
both the proportion of individuals experiencing events and the
sample size was large (i.e., po= 0.33 and n= 5000). Most sam-
ple sizes among complex nationally representative surveys have
at least 5,000 participant records available for analyses. However,
when the data are stratified and analyses are run on small subsets
of the survey data, our methods may not have enough power to
precisely or accurately characterize the “true” model. It is note-
worthy from the simulations that neither AIC nor BIC will incur
penalties sufficient enough to curb overfitting the data when com-
plex sampling weights are applied to the likelihood functions. The
weights distort the scale of the likelihood away from the penalty
to the point that they no longer correct for overfitting. It is clear
that the likelihood and/or the penalty terms must be normalized
in some way before these AIC or BIC would work correctly in the
complex sample analysis setting.

Due to computational demands and long running times asso-
ciated with our MLE 2 df knot testing procedure, we conducted a
relatively small simulation study and did not introduce covariates
into the simulated models. More research is needed to examine
how correlation structures and collinearities might influence the
performance of our knot selection procedure. While we acknowl-
edge these weaknesses, we feel that the results from the simulations
are valid and characterize well important properties of this novel
aspect of our modeling framework.

Our methods are intended for use on biological data in which
the knot parameters have meaning with the expectation of looking
for a relatively low number of knots in data where the number of
observations (n) is much larger than the number of parameters
(q). Given the computational intensity of applying our frame-
work, it is not recommended for applications where q is close to
or greater than n. With enough computing power, we suggest that
the non-linear bases in our framework can be readily extended for
fitting models with more than one non-linear predictor.
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Keith and Allison Free-knot spline logistic regression framework

Table 1 | Knot selection accuracy: comparing our parametric bootstrap MLE 2 df selection procedure to AIC and BIC by how frequently they

correctly select two knots in 100 datasets simulated and evaluated at each combination of sample size, prevalence, and selection criterion

settings.

Sample size (n) Prevalence (po) Complex sample

weights

Selection criterion

for our test (α)

Frequency of correctly

selecting 2 knots

Test 1: Ours

vs. AIC, p*

Test 2: Ours

vs. BIC, p*

Our test AIC BIC

500 0.10 No 0.10 13 22 2 0.136 0.006

500 0.33 No 0.10 20 38 1 0.008 <0.001

500 0.10 No 0.25 19 20 3 >0.999 <0.001

500 0.33 No 0.25 27 37 1 0.172 <0.001

5,000 0.10 No 0.10 78 76 21 0.867 <0.001

5,000 0.33 No 0.10 92 76 94 0.003 0.783

5,000 0.10 No 0.25 63 69 18 0.456 <0.001

5,000 0.33 No 0.25 83 77 93 0.377 0.048

5,000 0.33 Yes 0.10 73 0 0 <0.001 <0.001

*p-Value from two-sided Fisher’s exact test.

Akaike’s Information Criterion and BIC were designed for test-
ing non-nested models. Although our MLE 2 df knot testing
procedure performed well in our simulation study in compari-
son to AIC and BIC, it is important to note that a problem may
exist for our approach to selecting the optimal number of knots,
K. One of the foundational assumptions of the forward selection
is that the model with K knots is nested within the model with
K+ 1 knots. As Bessaoud et al. (4) pointed out, free-knot splines
in which both the number and locations of knots are estimated
are non-nested, with the notable exception that the linear model
(K= 0) is nested in all K -knot models. Although it is hard to
imagine a well-fitted (K+ 1)-knot model fitting any worse than
a K -knot model, this could possibly happen since the models are
not nested. Defining nested models is not a straightforward task.
The following are somewhat oversimplified definitions of nested
and non-nested models (47):

Two models are nested if one model can be reduced to the
other model by imposing a set of linear restrictions on the
parameter vector.

Two models are non-nested, either partially or strictly, if one
model cannot be reduced to the other model by imposing a
set of linear restrictions on the parameter vector.

These concepts provide the foundation for the asymptotic F-test
and LR test for evaluating the contribution of sets of parame-
ters to the overall model fit in regression analysis. Our situation
with fitting free-knot parameters is more complicated than most
regression applications. When a free-knot parameter is added to
or removed from these models, the parameters locally fitted to
construct the adjoining spline segments do not maintain their
definition. If we compare two piecewise linear free-knot spline
models (say, one with K = 1 to another with K = 2) fitted to the
same data, we cannot say that the slope parameter to the right of
the knot in the K = 1 model (a2) is analogous to the slope para-
meter (a2) between the two knots in the K = 2 model (note also
that it is also not analogous to the parameter to the right of the

second knot, a3). These models would be nested if the knot fit-
ted in the K = 1 knot model was in a fixed location for the K = 2
knot model. However, conditioning added knots on the location
of the previous knot locations undermines the properties we prize
in free-knot splines.

Though our 2 df knot testing methods appeared to work well in
simulations and in applications to real data (25), our approach to
finding the optimal K from amongst non-nested candidate models
may yet be improved. For instance, it would be useful to introduce
penalties for coalescing knots in a fashion similar to that of Lind-
strom (22). If the data model were truly improved by including
jump-discontinuities, then the modeling framework should allow
for this possibility. However, inducing penalties to avoid unneces-
sary overlapping of knots would help avoid the lethargy problem
(27) and provide a more powerful approach than dropping mod-
els in which knots have coalesced, or enforcing linear constraints
to ensure enough space between knots so that they might still
be considered biologically meaningful, as we have done in some
applications of our framework to real data.

Modeling time to event data with censored observations in
complex samples is a crucial objective for our framework. We
expect to extend our likelihood-based MLE methods to model-
ing non-linear bases in partial likelihood equations in Cox-type
models (48). This will provide a foundation to begin modeling
relative risks in terms of hazard ratios computed by non-linear
proportional hazards regression in our framework with some
modifications to the design of our MLE approach.
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