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Inhibition of growth, biofilm
formation, virulence, and
surface attachment of
Agrobacterium tumefaciens by
cinnamaldehyde derivatives
Bilal Ahmed†, Afreen Jailani†, Jin-Hyung Lee* and Jintae Lee*

School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea

Agrobacterium tumefaciens, a soil-borne, saprophytic plant pathogen

that colonizes plant surfaces and induces tumors in a wide range of

dicotyledonous plants by transferring and expressing its T-DNA genes. The

limited availabilities and efficacies of current treatments necessitate the

exploration of new anti-Agrobacterium agents. We examined the effects

of trans-cinnamaldehyde (t-CNMA) and its derivatives on the cell surface

hydrophobicity, exopolysaccharide and exo-protease production, swimming

motility on agar, and biofilm forming ability of A. tumefaciens. Based on initial

biofilm inhibition results and minimum inhibitory concentration (MIC) data, 4-

nitro, 4-chloro, and 4-fluoro CNMAs were further tested. 4-Nitro, 4-chloro,

and 4-fluoro CNMA at ≥150 µg/ml significantly inhibited biofilm formation by

94–99%. Similarly, biofilm formation on polystyrene or nylon was substantially

reduced by 4-nitro and 4-chloro CNMAs as determined by optical microscopy

and scanning electron microscopy (SEM) and 3-D spectrum plots. 4-Nitro

and 4-chloro CNMAs induced cell shortening and concentration- and time-

dependently reduced cell growth. Virulence factors were significantly and

dose-dependently suppressed by 4-nitro and 4-chloro CNMAs (P ≤ 0.05).

Gene expressional changes were greater after 4-nitro CNMA than t-CNMA

treatment, as determined by qRT-PCR. Furthermore, some genes essential for

biofilm formation, motility, and virulence genes significantly downregulated

by 4-nitro CNMA. Seed germination of Raphanus sativus was not hindered

by 4-nitro or 4-fluoro CNMA at concentrations ≤200 µg/ml, but root

surface biofilm formation was severely inhibited. This study is the first to

report the anti-Agrobacterium biofilm and anti-virulence effects of 4-nitro,

4-chloro, and 4-fluoro CNMAs and t-CNMA and indicates that they should be

considered starting points for the development of anti-Agrobacterium agents.
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Introduction

Agrobacterium tumefaciens is a fatal plant pathogenic
bacterium responsible for crown-gall disease and contains a Ti-
plasmid that is inserted into the plant genome via horizontal
gene transfer (Liu and Nester, 2006). This exclusive feature of
A. tumefaciens has been well researched and utilized for genetic
transformations of plants under laboratory conditions (Nguyen
et al., 2021). However, in natural environments, pathogenic
agrobacteria may infect a range of important crop plants
based on their biovars; (i) A. tumefaciens species complex
(biovar I), (ii) Agrobacterium rhizogenes (biovar II), and (iii)
Agrobacterium vitis (biovar III) (Slater et al., 2009). Of these,
A. tumefaciens is predominantly found living a saprophytic
lifestyle in different environments, including the rhizosphere
where it thrives, forms biofilms (Heindl et al., 2014), and
may infect a broad range of dicotyledonous plant species
(>600), induce gall formation, and cause huge crop losses
(>5% of economically important crops globally) (Moens, 2009).
A. tumefaciens senses chemical signals (rhizospheric signal
molecules), such as sugars, organic acids, and amino acids by
chemotaxis, and enters host tissues at surface wounds (Liu and
Nester, 2006). Furthermore, on receiving signals from plants,
Agrobacterium increases the expressions of its virulence genes.
The two-component VirA/VirG regulatory system activates
virulence genes and assists transfer of Ti-plasmid to host
plants (Nabi et al., 2022). Virulent A. tumefaciens transfers
and integrates its T-DNA fragment from a Ti-plasmid into
the host genome and its subsequent expression increases the
production of opines and plant hormones like cytokinin and
indole-3-acetic acid (Dessaux and Faure, 2018; Nabi et al.,
2022), which enhance the plant growth and induce tumor
formation. Opines are utilized by Agrobacterium as nutrients
and activate quorum sensing (QS) signaling, which further
enhances A. tumefaciens virulence and opine metabolism
(Faure and Lang, 2014).

For disease to occur, A. tumefaciens must first physically
attach to the host surface, which may occur in a stepwise
manner, as follows: (i) initial surface contact by motile flagella,
(ii) establishment of transient reversible attachment facilitated
by protein adhesins and a range of pili (conjugative and
Ctp) (Matthysse, 2014), and (iii) irreversible attachment by
bacterial exopolysaccharides (EPS) after biofilm establishment
(Thompson et al., 2018). A. tumefaciens can colonize and
form biofilms on various abiotic surfaces, plant roots,
and wounds, which it reaches by swimming using six
flagella located around a single pole (Merritt et al., 2007)
and then attaches firmly to cellulose fibrils. Bacterial EPS
secretion, pili activity, and biofilm formation vary among
soil-borne pathogenic bacteria but are required when
pathogens transit to the biofilm mode from planktonic
(Muhammad et al., 2020). Generally, antibiotics, copper
bactericides, or fosetyl-aluminum are used to control plant

pathogenic bacteria, but these measures are less effective
at controlling A. tumefaciens infections (Lee et al., 2020),
not cost-effective, and not readily available. Agrocin 84
(a biopesticide) produced by genetically modified (GM)
Agrobacterium radiobacter (non-pathogenic) strains K84 and
K1026, which competitively colonized the roots of several
crops, were reported to inhibit the production of leucyl-tRNA
synthetase in A. tumefaciens (McCardell and Pootjes, 1976;
Kerr and Bullard, 2020). However, its effects on non-targeted
useful rhizospheric organisms have not been assessed, and
its interactions with agrobacterial species complex (biovar
I–III) are unknown. Furthermore, field applications of GM
organisms are prohibited in some countries (Kahla et al.,
2017). Thus, other novel approaches are needed to prevent
A. tumefaciens biofilm formation and virulence and control
crown gall disease.

Plant-derived bioactive compounds offer a potential
source of anti-Agrobacterium molecules, and cinnamaldehydes
derived from the bark of ∼250 species belonging to the
genus Cinnamomum are of particular interest (Shreaz et al.,
2016). The cinnamaldehyde obtained from essential oils has
been categorized as generally regarded as safe (GRAS) by
the U.S. Food and Drug Administration (FDA) and has been
approved for used in foods (Wei et al., 2011) and given status
“A” by the Council of Europe for use in food (Friedman,
2017). Due to its characteristic aroma, color, and taste, trans-
cinnamaldehyde (t-CNMA) is used medically and as a flavoring
agent (Chun et al., 2013). Furthermore, t-CNMA has been
reported to have anti-QS (Zhang et al., 2018), antibiofilm
(Yu et al., 2020), and antibacterial effects (Yossa et al., 2014)
against several food and clinical pathogens including Erwinia
carotovora (Zhang et al., 2018), Pseudomonas fluorescens
(Zhang et al., 2018), Campylobacter spp. (Yu et al., 2020),
Escherichia coli O157:H7 (Yossa et al., 2014), Salmonella (Yossa
et al., 2014), Staphylococcus aureus (Ferro et al., 2016), and
the fungus Candida albicans (Chen et al., 2019). Moreover,
cinnamaldehydes also have antioxidant, anti-inflammatory,
anticancer, and anti-diabetic activities (Rao and Gan, 2014).
Nevertheless, the antivirulence and antibiofilm effects of
t-CNMA and its derivatives on A. tumefaciens have not
been investigated. We hypothesized that t-CNMA and its
derivatives might inhibit biofilm formation by A. tumefaciens
on abiotic and biotic surfaces, and thus, we investigated the
antibacterial and antibiofilm effects of t-CNMA and ten of its
derivatives.

Materials and methods

Cinnamaldehyde and derivatives

Trans-cinnamaldehyde (99%) and 10 of its derivatives:
cinnamaldehyde oxime (95%), α-methylcinnamaldehyde
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(95%), 2-methoxycinnamaldehyde (95%), 2-
nitrocinnamaldehyde (98%), 4-bromocinnamaldehyde (95%),
4-methoxycinnamaldehyde (95%), 4-nitrocinnamaldehyde
(95%), 4-dimethylaminocinnamaldehyde (98%), 4-
fluorocinnamaldehyde (97%), and 4-chlorocinnamaldehyde
(95%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA) or Combi-Blocks (San Diego, CA, USA). Their molecular
weights and chemical structures are given in Table 1. Stocks of
100 mg/ml were prepared in dimethyl sulfoxide (DMSO) and
kept at −20◦C until required. A total of 0.1% (v/v) DMSO was
used as the control for antibacterial and biofilm experiments; at
this concentration DMSO did not effect on bacterial growth or
biofilm formation.

Organism and growth conditions

Agrobacterium tumefaciens GV2260 was maintained at
30◦C on Luria Bertani (LB) agar plates, and for long-term
preservation, glycerol (20% v/v) culture stocks in LB were stored
at−80◦C. For working cultures, two independent colonies from
LB agar plates were inoculated in LB broth and incubated
at 250 rpm for 24 h at 30◦C. At least two independent
cultures replicated into three (n = 2 × 3 = 6) were used
for experiments.

Antibiofilm screening and minimum
inhibitory concentration
determinations

For antibiofilm screening, colonies of A. tumefaciens
grown for 24 h in LB broth were diluted with fresh LB at
1:50, and t-CNMA or its derivatives at 100 or 200 µg/ml
in LB were added. Bacterial cells incubated with LB only
were considered non-treated controls. Aliquots (300 µl) of
these cultures were added to wells of 96-well microtiter
plates and incubated for 48 h at 30◦C. Then A. tumefaciens
biofilm formation was checked using a crystal violet assay
(Ramey and Parsek, 2006), with modifications; wells were
washed three times with sterile distilled water kept at room
temperature, plates were air-dried, and 300 µl of 0.1% crystal
violet was added to each well. After incubation for 20 min
at room temperature, wells were rinsed three times with
sterile distilled water, and 300 µl of 95% ethanol was added.
After shaking microtiter plates for 1 min in a plate reader,
biofilm absorbance was recorded at 570 nm. To determine
minimum inhibitory concentrations (MICs), A. tumefaciens
cells were treated with 0–400 µg/ml of t-CNMA or its
derivatives in LB diluted at 1:100, and then 300 µl aliquots
were incubated in a microtiter plate for 24 h at 30◦C.
Cell growths were determined by measuring optical density
at 620 nm.

Estimation of Agrobacterium
tumefaciens biofilm production by
crystal violet assay: Quantification and
microscopy

Cells of strain GV2260 from 24 h cultures were
diluted with LB at 1:50 and 25, 50, 75, 100, 150, 200, or
400 µg/ml of t-CNMA, 4-nitrocinnamaldehyde (4-nitro
CNMA), 4-chlorocinnamaldehyde (4-chloro CNMA), or 4-
fluorocinnamaldehyde (4-fluoro CNMA) were added. Crystal
violet biofilm assays were performed as described in section
“Antibiofilm screening and minimum inhibitory concentration
determinations” above. A total of six wells and two independent
bacterial cultures were used for each test concentration. The
experiment was terminated after incubation for 48 h at 30◦C
under static conditions.

For microscopic observation, biofilm formation by
A. tumefaciens was also challenged in 6-well tissue culture
plates using t-CNMA, 4-nitro, 4-chloro, or 4-fluoro CNMA.
Briefly, 3 ml of bacterial suspensions prepared in LB broth (1:50
culture broth ratio) were mixed with t-CNMA or its derivatives
(50–200 µg/ml) and added to wells. After incubation for 48 h at
30◦C under static conditions, the media containing planktonic
cells was carefully removed, and biofilms were rinsed carefully
three times with PBS in the wells. Biofilms were then stained
with crystal violet (0.1%) for 20 min at room temperature,
rinsed with distilled water, and visualized using the iRiS Digital
Cell imaging system (Logos Biosystems, Annandale, VA, USA).
Micrographs were captured, and color mesh plots were created
using ImageJ software.

Effect of trans-cinnamaldehyde and
derivatives on biofilm formation on
membranes

Agrobacterium tumefaciens was allowed to form biofilm
on nylon membrane surfaces in 96-well plates (Lee et al.,
2011). t-CNMA, 4-nitro CNMA, 4-chloro CNMA, or 4-fluoro
CNMA (200 µg/ml) were added to bacterial cultures in LB
(1:50), and small autoclaved pieces of nylon membrane were
added to wells. Plates were incubated for 48 h at 30◦C.
Membranes were then removed, rinsed with sterile PBS, fixed
in a mixture of 2.5% glutaraldehyde and 2% formaldehyde
solution in distilled water, left for 30 min at room temperature,
and then kept at 4◦C overnight (Ahmed et al., 2021). Samples
were then dehydrated using an ethanol gradient (30, 50, 70,
90, and 100% for 10 min each), critical point dried, coated
with Au or Pt, and visualized by FE-SEM (model S-4200,
Hitachi, Tokyo, Japan) at 15 kV. The length of biofilm cells
attached to nylon surface were determined by measuring the
length of at least 50 cells per test concentration using ImageJ
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TABLE 1 Minimum inhibitory concentration and biofilm reduction by t-CNMA derivatives against A. tumefaciens.

Test compound Structure MIC (µg/ml) Biofilm reduction (%) after 48 h

100 µg/ml 200 µg/ml

t-CNMA 400 16.2 93

CNMA oxime 200 24.4 93

Alpha-methyl CNMA >400 4.3 7.4

2-Methoxy CNMA 400 18.4 30.6

2-Nitro CNMA 400 26.8 23.5

4-Bromo CNMA 200 10.7 100

4-Methoxy CNMA 400 0.0 0.0

4-Nitro CNMA 100 91.5 100

4-Dimethylamino CNMA >400 0.0 0.0

4-Fluoro CNMA 400 0.0 0.0

4-Chloro CNMA 200 4.6 94
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software. A scale was set with the “Analyze” tool of ImageJ
and then length of each cell (n = 50) was determined in
micrometers (µm).

Virulence factor production by
Agrobacterium tumefaciens

Swimming motility
The swimming motility of A. tumefaciens GV2260 was

assessed using peptone-agar (1% peptone, 0.25% agar, and
0.5% NaCl) containing t-CNMA or its derivatives at 25–
200 µg/ml. The bacterial inoculum (1 µl) from overnight
grown culture was placed at the center of peptone-agar plates
and allowed to stand for 72 h at 30◦C (Ahmed et al., 2022).
Swim diameters were recorded at 48 and 72 h to check
cell migration through agar. Data from three replicates were
averaged.

Measurement of cell surface hydrophobicity
Agrobacterium tumefaciens was exposed to t-CNMA or its

derivatives at 25, 50, 75, 100, 150, 200, or 400 µg/ml in 1 ml
LB at a culture: medium ratio of 1:100 in Eppendorf tubes and
incubated at 250 rpm for 24 h at 30◦C. Microfuge tubes were
then centrifuged at 10,000 rpm for 10 min, and cell pellets
were mixed with PBS, washed three times, and resuspended in
PBS (1 ml). Optical density (OD) values of suspensions were
read at 600 nm and designated A0. The method described
earlier for bacterial adhesion to hydrocarbons (BATH) was
followed (Rosenberg, 1984) with modifications. Hexadecane
was then added to cell suspensions and vigorously vortexed
for 1 min and then left for 30 min at room temperature to
allow phase separation. Similarly, a blank (1 ml PBS only)
was also processed. Aqueous phase OD (600 nm) values were
designated Ai. Percent hydrophobicity were calculated using the
formula:

Percent hydrophobicity (%H) =
A0− Ai

Ai
× 100

Assessment of extracellular protease
production

Agrobacterium tumefaciens culture mixed with LB at 1:100
was exposed to t-CNMA compounds at 25–400 µg/ml in LB at
250 rpm for 24 h at 30◦C. Samples were then spun at 10,000 rpm
for 10 min, and supernatants were collected. Supernatants
(100 µl) were mixed with an equal volume of azocasein and
incubated for 30 min at 37◦C when 600 µl of tricarboxylic acid
(10%) was added to stop proteolysis. These mixtures were then
kept for 30 min at −20◦C. After centrifugation at 10,000 rpm
for 10 min, 700 µl of the resulting supernatants was added to
700 µl of NaOH, and absorbances were recorded at 440 nm
(Sethupathy et al., 2020).

Determination of exopolysaccharides
production

Agrobacterium tumefaciens was grown with or without
t-CNMA derivatives at 25, 50, 75, 100, 150, 200, or 400 µg/ml
in LB in 1.5 ml microfuge tubes at 250 rpm for 24 h at
30◦C. Tubes were centrifuged at 10,000 rpm for 10 min.
Supernatants were added with chilled ethanol at a ratio of 1:3
and left undisturbed at 4◦C for overnight. EPS precipitates
were collected by centrifugation (10,000 rpm for 5 min.) and
solubilized in 200 µl of water. A phenol/sulfuric acid mixture
(prepared at a ratio of 1:5) was then added to 200 µl of EPS
samples, incubated for 30 min. at room temperature, and left
at room temperature for 20 min. Absorbances were measured at
490 nm (Ali et al., 2016).

Effect of cinnamaldehyde derivatives
on the planktonic cell growth of
Agrobacterium tumefaciens

Time-dependent growth inhibition assay
Agrobacterium tumefaciens was grown in LB diluted at 1:100

for 24 h then treated with t-CNMA or its derivatives at different
concentrations. These suspensions (300 µl) were then added to
the wells of a 96-well plate. Culture growths were monitored
every 2 h at 620 nm for 24 h (Ahmed et al., 2019b). The results
of two independent cultures in six wells per concentration were
averaged and plotted as a function of incubation time and
concentration.

Impact of trans-cinnamaldehyde derivatives on
CFU count and percent cell survival

Agrobacterium tumefaciens grown for 24 h in LB was diluted
at 1:100 with 25–400 µg/ml of t-CNMA, 4-nitro CNMA, 4-
chloro CNMA, or 4-fluoro CNMA and incubated at 250 rpm
for 24 h at 30◦C. Aliquots (100 µl) of appropriate dilutions
were then plated on LB agar and incubated for 48 h at 30◦C.
Colonies were counted, and CFU/ml values were calculated and
converted to a log scale:

CFU/ml =
No. of colonies counted × Dilution factor

Volume plated (ml)

Survival percentages of A. tumefaciens were also calculated
with respect to non-treated controls.

Biofilm formation by
trans-cinnamaldehyde
derivatives-challenged Agrobacterium
tumefaciens on root surfaces

Seeds of Raphanus sativus were germinated on 0.86 g/L MS
medium supplemented with 0.7% agar, and after germination,
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seedlings were grown for 5 days. Seedling roots (n = 5 per
test concentration) were placed in 6-well plates in an aseptic
environment. Inoculums of A. tumefaciens prepared in 4 ml LB
broth at a 1:50 ratio and treated with 200 µg/ml of t-CNMA,
nitro CNMA, 4-chloro CNMA, or 4-fluoro CNMA. Biofilm
development was initiated at 30◦C, and experiments were
terminated after 48 h of incubation. Growth media containing
planktonic cells and loosely attached biofilms were removed by
rinsing the roots with sterile PBS. Root samples were then fixed
in 2.5% glutaraldehyde and 2% paraformaldehyde for 30 min
at room temperature and then overnight at 4◦C. Fixatives were
removed, and samples were rinsed with PBS, dehydrated using
a graded ethanol series (30, 50, 70, 90, and 100%) for 10 min,
and kept in isoamyl acetate. Root samples were dried in a
critical point dryer (CPD), sputter-coated with gold or platinum,
subjected to SEM (S-4200 Hitachi FE-SEM) at 15 kV, and
photographed at different magnifications.

qRT-PCR analysis of Agrobacterium
tumefaciens genes

To assess the expressional changes induced by t-CNMA and
4-nitro CNMA, qRT-PCR was used to analyze the expressions
of motility (flgE and motA), biofilm (celA, cheA, and phoB),
virulence (virE2, chvE, virE0, and virG), stress related response
(clpB, dnaK, gsp, marR, soxR, and hspAT2), and efflux pump
(emrA, norM, ifeA, and ifeR) genes. A. tumefaciens culture in
25 ml LB with an OD600 nm of 1.0 was incubated with 100 µg/ml
of t-CNMA or 4-nitro CNMA at 250 rpm for 8 h at 30◦C.
An RNase inhibitor (700 µl; RNAlater, Ambion, TX, USA) was
added and gently agitated on ice. Centrifugation of untreated
and treated cultures was performed at 13,000 rpm for 10 min
at 4◦C. The RNA was extracted using the Qiagen RNeasy mini
kit (Valencia, CA, USA) and concentrations were determined
using a nanodrop spectrophotometer (model: Cytiva NanoVue
Plus Spectrophotometer, Fisher Scientific, England, UK). Primer
sequences of tested genes are provided in Supplementary
Table 1. qRT-PCR was conducted using SYBR green master
mix and an ABI StepOne Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA) using two independent
cultures (Lee et al., 2015).

Evaluation of seed germination

The impact of t-CNMA and its derivatives on white radish
(R. sativus) seed germination was examined (Ahmed et al.,
2019a). In brief, R. sativus seeds were soaked in distilled water
for 6 h, thoroughly rinsed with distilled water and then ethanol
(95%), and surface sterilized using sodium hypochlorite (3% for
10 min). t-CNMA its derivatives at 25–400 µg/ml were added to
soft agar (0.7% agar) containing 0.86 g/L Murashige and Skoog

(MS) medium. After washing with autoclaved distilled water, 10
seeds/plate/test were placed and incubated at 25◦C for 4 days.
The seeds showing evidence of germination were counted.

Data analyses

All experiments were performed with two independent
bacterial cultures. Data are expressed as means ± standard
deviations (SD), and significances of differences were
determined using the two-tailed t-test. Statistical significance
was accepted for P-values ≤ 0.05 unless otherwise stated.
Graphs were prepared using Sigma Plot Ver. 14.0.

Results

Determination of minimum inhibitory
concentrations of cinnamaldehydes
against Agrobacterium tumefaciens

The effects of t-CNMA and 10 of its derivatives on
A. tumefaciens were investigated. As shown in Table 1, MICs
were variable. We selected three derivatives, viz. 4-nitro CNMA,
4-fluoro CNMA, and 4-chloro CNMA based on their MICs,
which were 100, 200, and 200 µg/ml, respectively, and their
biofilm inhibitory effects at 100 or 200 µg/ml (Table 1).
t-CNMA (MIC 400 µg/ml) was used as the control.

Biofilm formation of Agrobacterium
tumefaciens in the presence of
trans-cinnamaldehydes

Biofilm formation of A. tumefaciens in 96-well plates
(Figure 1) was inhibited most by 4-chloro CNMA and 4-nitro
CNMA by 94 and 100%, respectively, at 200 µg/ml (Table 1). 4-
Fluoro CNMA did not inhibit biofilm at 200 µg/ml but reduced
biofilm formation by >90% at 400 µg/ml (Figure 1D) versus the
non-treated control. t-CNMA reduced biofilm at ≥150 µg/ml,
whereas 4-nitro CNMA reduced it significantly (P ≤ 0.05) at
≥75 µg/ml (Figure 1B). 4-Chloro CNMA inhibited biofilm
formation at 200 µg/ml (P ≤ 0.05) (Figure 1C).

Microscopic assessments of
Agrobacterium tumefaciens biofilms
on polystyrene and nylon surfaces

Biofilm formation by A. tumefaciens was also investigated
on flat polystyrene and nylon membranes. Almost all tested
compounds dose-dependently reduced biofilm volumes
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FIGURE 1

Inhibition of A. tumefaciens biofilm formation by t-CNMA (A), 4-nitro CNMA (B), 4-chloro CNMA (C), and 4-fluoro CNMA (D) after 48 h in
polystyrene microtiter plates containing LB. “∗” denotes a significant difference by the two-tailed t-test between non-treated and treated
cultures.

(Figure 2A), and microscopic images showed they reduced
biofilm thicknesses (Figure 2B). t-CNMA had the least
inhibitory effect at 200 µg/ml, whereas only a few traces of
biofilms remained after treatment with 4-nitro CNMA at 150 or
200 µg/ml. 4-Chloro CNMA slightly reduced biofilm formation
at 150 µg/ml and completely inhibited it at 200 µg/ml.
However, 4-fluoro CNMA did not affect biofilm formation at
200 µg/ml but drastically reduced it at 400 µg/ml. Similarly,
3-D mesh-filled spectrum-LUT plots of biofilms were observed
at a scale range of 0–240, after exposing biofilms to different
concentrations of t-CNMA, 4-nitro CNMA, 4-chloro CNMA,
and 4-fluoro CNMA showed dramatic shifts in color to blue at
150–200 µg/ml (Figure 3A). 4-Chloro CNMA (150 µg/ml) and
4-fluoro CNMA (200 µg/ml) had lesser effects on biofilms.

Scanning electron microscopy (SEM) of biofilms on
nylon membranes showed variable reductions in biofilm
formation by t-CNMA (Figures 4D,E), 4-nitro CNMA
(Figures 4F,G), 4-chloro CNMA (Figures 4H,I), and 4-
fluoro CNMA (Figures 4J,K) versus non-treated controls
(Figures 4B,C). The specimens treated with 4-nitro CNMA
or 4-chloro CNMA were most affected, and fewer cells
were attached to nylon surfaces (Figures 4F–I). In addition,
shortening of A. tumefaciens cells treated with 4-nitro, 4-chloro,

and 4-fluoro derivatives was observed at ×10,000 (Figure 4K).
Specifically, the sizes of non-treated A. tumefaciens biofilm
cells were 1.5 ± 0.4 µm which decreased slightly by 7.5%
(1.4 ± 0.3 µm) after t-CNMA treatment. However, 4-nitro,
4-chloro, and 4-fluoro significantly (P < 0.001) decreased the
length by 30% (1± 0.25 µm), 35% (0.96± 0.25 µm), and 31.3%
(1 ± 0.22 µm), respectively (Figure 4L). SEM observations
indicated t-CNMA and its derivatives alter the morphology and
architecture of A. tumefaciens biofilms.

Impact of trans-cinnamaldehyde
derivatives on exopolysaccharides
production and cell surface
hydrophobicity

The QS regulates virulence factors considered responsible
for A. tumefaciens biofilm formation (Faure and Lang, 2014).
Of these, cell surface hydrophobicity and extracellular polymeric
substances are critical for bacterial adhesion and successful
biofilm formation. Non-treated cells of A. tumefaciens produced
significant amounts of EPS; however, treatments with t-CNMA
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FIGURE 2

Inhibition of A. tumefaciens biofilm formation on flat
polystyrene in 6-well plates as determined by crystal violet
staining (A) and optical microscopy at 20×magnification (B) by
t-CNMA, 4-nitro CNMA, 4-chloro CNMA, and 4-fluoro CNMA in
the concentration range (50–400 µg/ml).

or its derivatives decreased EPS production at relatively high-
test concentrations (Figures 4A–D). t-CNMA did not reduce
the EPS secretion below 150 µg/ml but decreased it significantly
by >40% at concentrations ≥200 µg/ml (Figure 4A). 4-Nitro
CNMA at 75 µg/ml caused a similar reduction (40%) and at
200 µg/ml decreased EPS production by 69% (Figure 4B). 4-
Chloro CNMA caused a significant reduction at 100 µg/ml
followed by a concentration-dependent decrease till 400 µg/ml
(Figure 4C). The reduction in EPS production by 4-fluoro
CNMA (Figure 4D) was similar to that of t-CNMA. Cell
surface hydrophobicity (% CSH) is essential for bacterial
attachment to surfaces (Tribedi and Sil, 2014) and was also
found to be decreased by t-CNMA and its three derivatives in
a concentration-dependent manner (Figures 4E–H). When we
compared the inhibitory effects on % CSH at a concentration
of 100 µg/ml, 4-nitro CNMA (Figure 4F) and 4-chloro CNMA
(Figure 4G) had the greatest effects and reduced CSH by 79%

(P ≤ 0.05) and 82% (P ≤ 0.05), respectively, versus non-treated
controls. At 150–400 µg/ml, %CSH was zero for t-CNMA
(Figure 4E) and 4-nitro CNMA (Figure 4F). As was observed
in the EPS assay, 4-fluoro CNMA had least reduction (45% at
200 µg/ml) (Figure 4H).

Inhibition of protease production and
motility by trans-cinnamaldehyde
derivatives

Production of exo-proteases by A. tumefaciens was
dose-dependently reduced by t-CNMA and its derivatives
(Figures 4I–L). At 100 µg/ml, t-CNMA, 4-nitro CNMA, and
4-chloro CNMA significantly reduced the protease production.
4-Nitro CNMA most effectively inhibited protease production.
In regards of motility, A. tumefaciens exhibited swimming
motility on agar plates prepared with 1% peptone, 0.25% agar,
and 0.5% NaCl, and this increased with time (48–72 h). The
bacterium reached a swimming diameter of 5.7 cm after 72 h
incubation in non-treated agar (Figure 5). The addition of
t-CNMA or its derivatives to agar at 25–200 µg/ml decreased
swimming diameters, and no mobility was observed after
treatment with 4-nitro CNMA or 4-chloro CNMA at 150
or 100 µg/ml, respectively (Figure 5). Interestingly, 4-fluoro
CNMA inhibited swimming motility at 100 µg/ml (P ≤ 0.05).
Furthermore, t-CNMA supplemented agar reduced promoted
mobility versus non-treated agar, although even at 200 µg/ml,
A. tumefaciens exhibited limited mobility (3.1 cm diameter).

Trans-cinnamaldehyde derivatives
reduced the planktonic cell growth of
Agrobacterium tumefaciens

The planktonic cell growth of A. tumefaciens was assessed
using logarithmic values of CFUs (Figures 6A–D), percent cell
survival (Figures 6E–H), and time-dependent growth curves
(Figures 6I–L). Total log CFU/ml counts of A. tumefaciens
grown in the presence of t-CNMA (Figure 6A), 4-nitro
CNMA (Figure 6B), 4-chloro CNMA (Figure 6C), and 4-fluoro
CNMA (Figure 6D) were reduced by only 4-nitro CNMA (>6-
log reduction) and 4-chloro CNMA (>6.5-log reduction) at
400 µg/ml. 4-Fluoro CNMA also reduced cell survival, but less
than the other derivatives; a fraction of cells survived even after
treatment with 4-fluoro CNMA at 400 µg/ml. Concentration
(25–400 µg/ml) and time (0–24 h) dependent analysis of
A. tumefaciens planktonic growth showed t-CNMA (Figure 6I),
4-nitro CNMA (Figure 6J), 4-chloro CNMA (Figure 6K), and
4-fluoro CNMA (Figure 6L) induced concentration-dependent
decreases. 4-Nitro CNMA and 4-chloro CNMA inhibited cell
growth at 150 and 200 µg/ml, respectively (Figures 6J,K). The
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FIGURE 3

Visual assessment of A. tumefaciens biofilm thicknesses formed on polystyrene after exposure to increasing concentrations of t-CNMA, 4-nitro
CNMA, 4-chloro CNMA, or 4-fluoro CNMA. The colored 3-D images show biofilm thicknesses (A) on a low to high (0–200) scale, where red
indicates maximum biofilm formation and dark blue no biofilm formation. Biofilms of non-treated (B,C) A. tumefaciens on nylon and its
inhibition by t-CNMA (D,E), 4-nitro CNMA (F,G), 4-chloro CNMA (H,I), and 4-fluoro CNMA (J,K) after incubation for 48 h. Micrographs taken at
2,000× and 10,000× revealed complete inhibition by 4-nitro and 4-chloro CNMA and reductions in cell lengths (L), although t-CNMA (E) and
4-fluoro CNMA (K) showed biofilm with the presence of EPS threads.

possible reason for this cell killing could be the enhanced direct
contact of cells with tested compound at 250 rpm shaking.

Reduced biofilm formation on
Raphanus sativus roots

Agrobacterium tumefaciens formed biofilms on R. sativus
roots after incubation for 48 h under non-treated and optimized
growth conditions (Figures 7A–C). The biofilms produced
were dense and showed multiple aggregates of cells embedded
in an EPS-like substance (Figure 7C). While observing root
surfaces, biofilms were observed in multiple regions after
t-CNMA treatment (Figures 7D–F). However, no biofilms
were observed on roots after exposure to 4-nitro CNMA
(Figures 7G–I), 4-chloro CNMA (Figures 7J–L), or 4-fluoro
CNMA (Figures 7M–O), though a few cells were dispersed at
some locations on root surfaces (Figures 7I,O). Furthermore,

root surfaces in different zones, e.g., root tips, hairs, and
meristematic and root elongation zones were undamaged after
exposure to 200 µg/ml of the test compounds. SEM findings
after 4-fluoro CNMA treatment (Figures 7M–O) differed from
nylon membrane results (Figures 3J,K) since 4-fluoro CNMA
did not eradicate biofilms on nylon membranes. On the other
hand, results for t-CNMA, 4-nitro CNMA, and 4-chloro CNMA
treatments of biofilms on nylon (Figure 3) and R. sativus root
surfaces (Figure 7) were correlated.

Changes in gene expressions induced
by trans-cinnamaldehyde and 4-nitro
cinnamaldehyde

Biofilm, virulence, stress, motility, and efflux pump
regulation genes of A. tumefaciens (OD600 nm = 1.0) assessed
after 8 h contact with test compounds in LB at 30◦C were
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FIGURE 4

Production of virulence factors and their inhibition by t-CNMA and its 4-nitro, 4-chloro, and 4-fluoro CNMA derivatives. Effects on EPS
production (A–D), cell surface hydrophobicity (E–H), and extracellular protease production (I–L). “*” denotes a significant difference by the
two-tailed t-test (P ≤ 0.05).

variably affected by t-CNMA and 4-nitro CNMA versus non-
treated controls while 4-nitro CNMA more significantly affected
the gene expression than t-CNMA (Figure 8). Genes subjected
to qRT-PCR were selected based on their direct or indirect
involvements with these functions. For example, the biofilm
formation genes cheA, celA, and phoB encode for the two-
component sensor kinase of the Che operon that regulates
chemotaxis (Merritt et al., 2007), cellulose synthase required for
cellulose production (Matthysse et al., 2005), and production
of a regulatory protein for the two-component (PhoR-PhoB)
system (Tomlinson et al., 2010), respectively. 4-Nitro CNMA
significantly (P ≤ 0.05) downregulated celA, cheA, and phoB by
3. 3-, 3. 9-, and 3-fold, respectively, versus non-treated controls
(Figure 8). Similarly, two flagellar motility genes flgE and motA,
which encode for a flagellar hook protein and a constituent
of the flagellar motor of A. tumefaciens, were downregulated
by 11- and 2.5-fold, respectively, by 4-nitro CNMA (Merritt
et al., 2007). Interestingly, t-CNMA only slightly reduced the
expression of these genes (Figure 8). Among the virulence
genes, virE2 encodes for virulence protein (virE2) that facilitates
the import of T-DNA-protein complex in the host nucleus (Li
et al., 2020). chvE encodes for a periplasmic-binding protein,
which after interacting with the VirA/VirG regulatory system
induces the expressions of vir genes (Hu X. et al., 2013). virE0
encodes for a regulator protein that may be directly involved
in Agrobacterium-plant interactions (Yuan et al., 2008). virG

encodes for a two-component response regulator protein (Yuan
et al., 2008) and was significantly downregulated (Figure 8) by
t-CNMA only. The expressions of all other virulence genes were
either unchanged or non-significantly downregulated. Genes
involved in multiple stress responses, namely, clpB, dnaK, gsp,
marR, and hspAT2, reported in other studies (Rosen et al., 2001;
Tsai et al., 2012; Rittiroongrad et al., 2016) were also tested.
Results revealed that dnaK and clpB were downregulated by
2.7- and 28-fold, respectively, and soxR was upregulated (1.72)
by 4-nitro CNMA (the expressions of other stress-related genes
were slightly changed or unaffected). t-CNMA upregulated the
gsp gene, which is associated with general stress, by 2.5-fold,
and 4-nitro CNMA reduced the expression of a heat shock
protein (hspAT2). Also, some efflux pump genes, namely, emrA,
norM, ifeA, and ifeR, were included (Palumbo et al., 1998;
Nuonming et al., 2018; Khemthong et al., 2019), but the only
effect observed was that 4-nitro CNMA upregulated emrA by
3.7-fold (Figure 8).

Raphanus sativus seed germination in
the presence of cinnamaldehyde
derivatives

The effects of t-CNMA, 4-nitro CNMA, 4-chloro CNMA,
and 4-fluoro CNMA were also investigated on R. sativus

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1001865
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001865 October 5, 2022 Time: 13:13 # 11

Ahmed et al. 10.3389/fmicb.2022.1001865

FIGURE 5

Swimming motility of A. tumefaciens on motility agar (1% peptone, 0.25% agarose, and 0.5% NaCl) and its inhibition by t-CNMA, 4-nitro CNMA,
4-chloro CNMA, and 4-fluoro CNMA (25–200 µg/ml) after exposure for 48 and 72 h. “*” denotes a significant difference in swim diameter by
the two-tailed t-test (P ≤ 0.05).

seed germination. The impacts of tested compounds
at 25–400 µg/ml on percent seed germination were
variable (Supplementary Figure 1). Seed germination was
non-significantly reduced by t-CNMA (Supplementary
Figure 1A), 4-nitro CNMA (Supplementary Figure 1B),
and 4-fluoro CNMA (Supplementary Figure 1D) at
concentrations up to 200 µg/ml. However, 4-chloro CNMA
caused 70% inhibition at 200 µg/ml (Supplementary
Figure 1C). At 400 µg/ml t-CNMA, 4-chloro CNMA, and
4-fluoro CNMA prevented germination, but interestingly,
4-nitro CNMA at this concentration only reduced
germination by 41%.

Discussion

We report the biofilm inhibiting characteristics of
t-CNMA and ten derivatives, which were selected because
of their dissimilar functional moieties on the aromatic
ring or side chain of t-CNMA. A few studies on CNMA
derivatives have reported the antityrosinase effects of α-
substituted derivatives such as α-methylcinnamaldehyde,
α-chlorocinnamaldehyde, and α-bromocinnamaldehyde
(Cui et al., 2015). Similarly, fungal growth was inhibited
by 2-bromo and 2-chlorocinnamaldehyde (Badawy and
Rabea, 2013). Among the ten derivatives investigated in

the present study, 4-nitro CNMA, 4-chloro CNMA, and
4-fluoro CNMA were subjected to further testing because
they exhibited potent antibiofilm effects and low MICs.
Badawy and Rabea (2013) reported that chitosan-based
derivatives had antifungal activity against seven fungal species.
The same authors investigated the effects of chitosan-based
derivatives, such as N-(α-methylcinnamyl) chitosan and
N-(o-methoxycinnamyl) chitosan, on A. tumefaciens but
reported very high MICs of 1,275 and 1,925 µg/ml, respectively.
In the present study, the MICs of 4-nitro CNMA, 4-fluoro
CNMA, and 4-chloro CNMA were 100, 200, and 200 µg/ml,
respectively. Zhu et al. (2009) previously reported t-CNMA
thiosemicarbazone had an A. tumefaciens MIC of 100 µg/ml
with no report on antibiofilm potential and gene expressional
changes.

Biofilms provide microorganisms on abiotic and biotic
surfaces with well-structured protective sheaths impermeable
to drugs and antibacterial agents (Sharma et al., 2019).
Thus, microorganisms in biofilms are more virulent than
planktonic cells, and novel solutions are required to address
this challenge (Ying et al., 2019). A. tumefaciens adheres to
surfaces using its molecular appendages (Thompson et al., 2018)
and subsequently forms reversible or irreversible attachments
(Heindl et al., 2014) with abiotic (Figures 2, 3) or biotic
surfaces (Figure 7). After establishing contact with a surface,
A. tumefaciens releases EPS to make this contact reversible
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FIGURE 6

Effects of cinnamaldehydes on A. tumefaciens planktonic growth. Log reduction in CFU counts by t-CNMA (A), 4-nitro CNMA (B), 4-chloro
CNMA (C), and 4-fluoro CNMA (D); percent cell survival after treatment with t-CNMA (E), 4-nitro CNMA (F), 4-chloro CNMA (G), or 4-fluoro
CNMA (H) for 24 h. Time and concentration-dependent growth inhibition were recorded every 2 h (I–L). “*” denotes a significant difference in
planktonic growth by the two-tailed t-test (P ≤ 0.05).

and initiates microcolony formation (Heindl et al., 2014).
In the present study, 4-nitro CNMA and 4-chloro CNMA
significantly inhibited biofilm formation by A. tumefaciens
on polystyrene and nylon (Figures 2, 3F–I) and plant root
surfaces (Figures 7G–L), as determined by light microscopy
and SEM. Similar reductions in bacterial aggregation and
microcolony formation by P. fluorescens were observed by
light microscopy after cinnamaldehyde exposure. In a previous

study, SEM revealed a maximally disrupted biofilm architecture
of P. fluorescens at 0.1 µl/ml t-CNMA (Li et al., 2018).
We observed gaps and poor volumes of A. tumefaciens
biofilms (Figure 3) after treatments with 4-nitro CNMA
(150–200 µg/ml), 4-chloro CNMA (200 µg/ml), or 4-fluoro
CNMA (400 µg/ml) but not after treatment with t-CNMA.
Li et al. (2018) reported that t-CNMA induced fissures
in P. fluorescens biofilms, and Kim et al. (2015) observed
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FIGURE 7

Scanning electron microscopy micrographs of A. tumefaciens biofilms on the surface of R. sativus at three different magnifications (30×, 200×,
and 10,000×): non-treated (A–C), treated with t-CNMA (D–F), 4-nitro CNMA (G–I), 4-chloro CNMA (J–L), and 4-fluoro CNMA (M–O).

cinnamon bark oil and t-CNMA at 0.01% v/v reduced
enterohemorrhagic E. coli (EHEC) fimbriae formation, which
is required for biofilm maturation, and suggested that
reduced EHEC fimbriae production by t-CNMA on nylon
membranes was largely responsible for biofilm inhibition. Our
observations of reductions in A. tumefaciens biofilm formation
at ≥150 µg/ml by t-CNMA, 4-nitro CNMA, and 4-chloro
CNMA (Figure 1) suggest that –NO2 functional group at
the fourth position on the aromatic ring is more detrimental
to biofilm formation than –Cl, and that –F is less effective

than –NO2 or –Cl. When we compared the gene expressional
changes induced by 4-nitro CNMA and t-CNMA, 4-nitro
CNMA was found to have substantially more potent effects
(Figure 8). Furthermore, our findings regarding the effects
of t-CNMA concur with those of Budri et al. (2015) who
found that at 106 µg/ml t-CNMA reduced MRSA biofilm
formation on stainless steel and polystyrene by 45 and 70%,
respectively. Similarly, Albano et al. (2019) found t-CNMA
at 300 µg/ml reduced biofilm formation by Staphylococcus
epidermidis by 89%.
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FIGURE 8

Gene expressional changes in A. tumefaciens induced by 100 µg/ml t-CNMA or 4-nitro CNMA after treatment in LB broth at 250 rpm for 8 h at
30◦C. Bars are averages of four reactions performed using two independent cultures. 16S rRNA was used as the housekeeping gene. “*”
represents a significant difference (P ≤ 0.05) between non-treated and treated cells. Fold changes in gene expression were calculated using the
2−11Ct method.

Biofilm inhibition by t-CNMA might be related to
disruption of the QS regulatory system, as has been reported
for P. fluorescens (Li et al., 2018) and E. coli (Niu et al., 2006),
and this inhibition may be due to the downregulations of curli
genes (csgA and csgB) in EHEC (Kim et al., 2015) and biofilm-
related adhesion genes (icaA and sarA) in Staphylococcus spp.
(Jia et al., 2011). QS signaling controls EPS secretion, motility,
protease production, and cell surface hydrophobicity (Li et al.,
2014; Tan et al., 2014; Mizan et al., 2016; Pena et al., 2019), and
in the present study, these virulence attributes of A. tumefaciens
were remarkably and concentration-dependently inhibited by
t-CNMA and its derivatives (Figures 4, 5). For t-CNMA,
these effects have been suggested to be associated with the
aldehyde group (Kot et al., 2015) as also shown for swimming
motility of E. coli at 2.17 mM t-CNMA (Niu and Gilbert, 2004).
Furthermore, it has been suggested that the presence of halogen
(–Cl or –F) or nitro (–NO2) groups in t-CNMA increases its
suppressive effects on bacterial virulence (Brackman et al., 2011;
Nepali et al., 2018).

We also observed that 4-nitro CNMA, 4-chloro CNMA,
and 4-fluoro CNMA reduced the lengths of A. tumefaciens cells
(Figures 3G,I,K) as compared with non-treated (Figure 3C) and
t-CNMA (Figure 3E) treated cells. However, we did not observe
the t-CNMA-induced morphological distortions of E. coli and
S. aureus cells reported by Shen et al. (2015). Furthermore,
exposure to t-CNMA and the three derivatives had markedly
impacted cell viability and growth (Figure 6), which could be
associated with t-CNMA-induced reductions in intracellular
pH (Oussalah et al., 2006), its interactions with membrane
proteins (Mousavi et al., 2016), or its effects on cell membrane

conductivity (He et al., 2019) or membrane lipid profiles
(Wendakoon and Sakaguchi, 1995). In addition, the effects
of –NO2, –Cl, and –F containing derivatives may have been
influenced by the electronegativities of these groups (Shaikh
et al., 2016; Doyle et al., 2019). t-CNMA has also been suggested
to act as an ATPase inhibitor and inhibit enzymes involved
in cytokine interactions (Shreaz et al., 2016). Furthermore,
differences between the cellular uptakes of derivatives and their
post-cellular uptake transformations may have modulated their
effects.

No biofilm formation was observed on the root surfaces
of R. sativus seedlings roots grown in the presence of 4-nitro
CNMA, 4-chloro CNMA, or 4-fluoro CNMA (Figures 7G–
O). A difference in biofilm volume on root surface and nylon
surface was observed in non-treated groups where it was higher
on nylon membranes possibly due to more firm attachment
of cells on cellulose fibrils (Merritt et al., 2007; Heindl et al.,
2014). The inhibition of A. tumefaciens biofilm formation on
plant roots by CNMA derivatives has not been previously
reported. However, biofilms of Pseudomonas putida KT2440
were reported to be dose-dependently inhibited by t-CNMA
(Niu and Gilbert, 2004). A. tumefaciens utilizes adhesive pili,
rhicadhesin, and chromosome-encoded factors in addition to
universal forces like electrostatic and hydrophobic interactions
and Van der Waals forces to attach to plant surfaces (Wheatley
and Poole, 2018) and form biofilms. Our qRT-PCR data
showed 4-nitro CNMA induced significant changes in the
expressions of genes associated with motility (flgE and motA),
biofilm formation (celA, phoB, and cheA), stress response
(clpB, dnaK, and soxR), and efflux pump (emrA) (Figure 8)

Frontiers in Microbiology 14 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1001865
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001865 October 5, 2022 Time: 13:13 # 15

Ahmed et al. 10.3389/fmicb.2022.1001865

FIGURE 9

Mechanistic illustration of A. tumefaciens interaction with t-CNMA and its analogs specifically 4-nitro CNMA after screening based on MIC and
biofilm inhibition percentages. A. tumefaciens was able to swim in agar by flagellar machinery, showed cell surface hydrophobicity, showed
protease and EPS production, EPS and biofilm on three different surfaces nylon, polystyrene, and plant root (displayed beneath the biofilm).
Selected derivatives inhibited these virulence factors and biofilm phenotype. Higher alterations in gene expressions were observed by 4-nitro
CNMA than t-CNMA. Different color-coded gene boxes represent specific virulence phenotype (i.e. biofilm, motility, stress, and efflux), solid
black bordered boxes show downregulation while blue bordered boxes show upregulation of genes. Arrows in different colors represent
different group of genes and flat arrow ends stand for inhibition. cDNA, complimentary DNA; qPCR, quantitative polymerase chain reaction;
MIC, minimum inhibitory concentration; EPS, exopolysaccharides.

compared to t-CNMA. A. tumefaciens downregulated by 4-
nitro CNMA induced a series of events that ultimately result
in inhibition of bacterial adherence on surfaces, EPS, motility,
biofilm as depicted in Figure 9. For example, celA encodes
for a regulatory protein of two-component sensor kinase
required for chemotaxis, therefore its downregulation reduces
the chemotactic response of A. tumefaciens towards rhizospheric
chemicals and prevent adherence to plant tissues (Figure 9).
Another biofilm gene cheA encodes for cellulose synthase
and induces EPS production, therefore its inhibition brings
down the EPS matrix of biofilm. The increased transcription
of soxR (stress related gene), sensing stress due to 4-nitro
CNMA presence induced biofilm formation, however, other

genes regulating the biofilm formation directly or indirectly
were downregulated. The stress-related clpB and dnaK (or
Hsp70) were downregulated and this ATP-dependent protease
production and correct folding of proteins were compromised
respectively that is suggestive of the possible antibacterial
mechanism of 4-nitro CNMA.

Our findings suggest that the presence of strong
electron-withdrawing groups at the fourth position of
t-CNMA disrupts the biofilm formation mechanism of
A. tumefaciens. The Ca2+ adhesion protein rhicadhesin
has been proposed to play a role in A. tumefaciens
attachment to plant surfaces (Swart et al., 1994), and
it has been suggested that t-CNMA might similarly

Frontiers in Microbiology 15 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1001865
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001865 October 5, 2022 Time: 13:13 # 16

Ahmed et al. 10.3389/fmicb.2022.1001865

disrupt Ca2+ homeostasis in Phytophthora capsici (Hu L. et al.,
2013). After evaluating the effects of t-CNMA, 4-nitro CNMA,
4-chloro CNMA, and 4-fluoro CNMA on A. tumefaciens, we
suggest that structure-based activity factors and the presence
of a conjugated aldehyde contribute to antibiofilm effects of
t-CNMA. Xie et al. (2017) assigned the antifungal activity of
t-CNMA and α-methyl CNMA to –CHO and –CH3 group at
the ortho position of the aromatic ring. We found the presence
of –NO2, –Cl, or –F at the para position had considerable
effects on A. tumefaciens biofilms, and that 4-nitro CNMA had
a greater suppressive effect on biofilm-associated genetic factors
than t-CNMA (Figure 8).

Conclusion

In summary, we evaluated the antibiofilm and antivirulence
effects of t-CNMA and 4-nitro CNMA, 4-chloro CNMA,
and 4-fluoro CNMA on A. tumefaciens. t-CNMA significantly
reduced swimming motility, cell surface hydrophobicity, EPS
secretion, and exo-protease production; however, these effects
were considerably greater for 4-nitro CNMA and 4-chloro
CNMA. We suggest the greater effects of these two derivatives
on biofilm formation and growth may have been due to
the presence of (i) a conjugated aldehyde group and (ii) an
electron-withdrawing group like –NO2 at the para position.
Also, qRT-PCR data showed 4-nitro CNMA downregulated
the expressions of multiple biofilm formation associated genes,
which shows CNMA derivatives target multiple processes
and thus are unlikely to induce resistance in A. tumefaciens.
Moreover, reductions in A. tumefaciens cell viability, growth,
and root surface biofilm formation observed suggest that
t-CNMA derivatives with –NO2, –Cl, or –F at position 4
on the aromatic ring provide an excellent starting point for
the development of anti-Agrobacterium agents that effectively
prevent crown gall disease.
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