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Location, location, location 
Expression of a gene is in a sense a bit like purchasing a new

home - the value is strongly dependent on location. This

value is context-dependent: it depends on who your neigh-

bors are and also on the larger geographical picture. Two

recent studies have analyzed DNA topology and chromatin

structure on a genome-wide scale in Escherichia coli [1,2].

Both show that an important factor in determining tran-

scription profiles - when and to what extent a gene is

expressed - is the location of the gene within the context of

the E. coli K-12 chromosome. Whereas this is old news for

those who are interested mainly in eukaryotic chromosomes,

it is an important concept that has often been overlooked (in

our opinion) in bacterial transcriptomics. In eukaryotes, it is

well known that there are two types of chromatin: hetero-

chromatin, which remains condensed for the most part

throughout the cell cycle and contains few genes, and

euchromatin, which, on the other hand, contains gene-rich

regions and in some cases clusters of highly expressed genes. 

Jeong et al. [1] analyzed similarities in the transcriptional

activities of E. coli genes as a function of their position on

the chromosome. An autocorrelation function identified

three levels of spatial correlations of expressed genes: short-

range (7-16 kilobase-pairs, kb), medium-range (approxi-

mately 100 kb) and long-range (over 700 kb). Figure 1 shows

the gene-expression data obtained by Jeong et al. [1],

together with that of Peter et al. [2], mapped onto the circular

E. coli chromosome, with four circles (circles 3-6) corre-

sponding to values obtained from the four experiments of

Jeong et al. [1]. They took into account the transcription

levels of nearly all genes, although only the more highly

expressed genes are visible in Figure 1. Most of the genes in

E. coli are transcribed around the time of replication [3], and

only a small fraction (typically around 10%) of the genes are

highly transcribed. These ‘clumps’ or regions of highly

expressed genes can be seen as dark bands in Figure 1, and

some of these regions differ in the various experiments. The

shortest level of spatial correlation found by Jeong et al. [1]

corresponds to groups of between 7 and 15 genes that exhibit

an apparently coherent transcriptional activity. These

groups are larger than operons and are likely to reflect small

clusters of co-regulated genes, of between roughly three and

five operons (assuming about three genes per operon),

including the clusters of highly expressed genes mentioned

above. This is the first level of the ‘bigger picture’ of spatial

correlations, and is also the most clearly affected by DNA

supercoiling, given that correlations at this level are signifi-

cantly reduced by the addition of norfloxacin, a gyrase and

topoisomerase IV inhibitor (data shown in circle 5 in Figure

1). Having said that, it should also be pointed out that all the

correlations, including the longer range ones, were affected

by gyrase mutations (circle 6 in Figure 1). 

The results reported by Jeong et al. [1] are slightly different

from previous findings by Sousa et al. [4], who looked at the

expression of a reporter gene when it was inserted at differ-

ent positions around the chromosome. Sousa et al. [4] found

that gene expression varies along the chromosome in a

somewhat linear manner, forming a gradient in which the



more highly expressed genes are localized near the replica-

tion origins and the region around the replication terminus

contains few highly expressed genes. This was thought to be

a result of gene dosage associated with the distance to the

origin of replication: during the replication of the chromo-

some, there are more likely to be multiple copies of genes

that are close to the replication origin. As can be seen in

Figure 1, regions with highly expressed genes are not

limited to the area close to the origin but are distributed in

clumps throughout the chromosome, although there are few

highly expressed regions around the replication terminus.

Thus, in contrast to the predictions of Sousa et al. [4], the

experimental results of Jeong et al. [1] show that a gene

does not necessarily have to be located close to the origin of

replication to be highly expressed but its expression level is

rather dependent on its location within a smaller confined

sub-domain. 

The long-range correlations (several hundred thousand

base-pairs) found by Jeong et al. [1] are more interesting

than the short-range correlations and also have precedents

in eukaryotic systems, where such clustering of highly
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Figure 1 
Expression atlas for the experimental data of Jeong et al. [1] and Peter et al. [2]. The atlas was constructed using the Genewiz software [21]. DNA
topoisomerase genes are underlined, and the replication origin and terminus are marked in bold. The outer circle (1) shows the change in expression of
genes in response to supercoiling (log p values), where more negative values correspond to genes that are more significantly influenced by DNA
relaxation; and circle (2) shows the correlation of these expression values with DNA supercoiling, where high absolute values correspond to gene-
expression levels that show most correlation or anti-correlation with measured levels of DNA relaxation; both sets of data are from Peter et al. [2].
Shown in the next four circles (3-6) are the expression values of chosen experimental conditions from Jeong et al. [1]: (3) wild-type cells in rich medium
(LB), (4) minimal medium (M9), (5) following 30 minutes of treatment with the gyrase inhibitor norfloxacin, and (6) cells carrying a mutation (GyrAD82G)
in a gyrase gene, respectively. Circle (7) shows the location of protein coding sequences on the positive strand (CDS+), on the negative strand (CDS-),
and the rRNA and tRNA genes. Circle (8) shows a running average of the absolute value of the nucleosomal position preference [22], and circle (9) the
AT content (�3 standard deviations from chromosomal average). Expression data from Jeong et al. [1] were centered and scaled. Circle (10) shows
distance along the chromosome, in megabases (M), counting from the beginning of the GenBank sequence. 
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expressed genes was postulated a very long time ago for the

Drosophila polytene chromosomes [5]. More recently, there

have been two studies on gene expression in human chromo-

somes that showed clustering of highly expressed genes

[6,7]. The topic of chromatin structure and gene expression

in eukaryotes has generated considerably more interest (and

publications) than in bacteria. In fact, at the time of writing

this article, a paper was recently published showing that the

‘upstream binding factor’ for RNA polymerase I causes the

chromatin in mammalian cells to form a more decondensed,

open structure, allowing access to the polymerase enzyme

for transcription [8]. Although most animals have on the

order of a thousand times as much DNA as bacteria, the level

of compaction by chromatin is similar in both (about 7000-

fold). But it is likely that the DNA compaction is more

dynamic in bacteria, because of the higher coding density of

the chromosome. Furthermore, transcription and transla-

tion are coupled in bacteria, most likely for topological

reasons [9]. The long-range correlations found by Jeong et

al. [1] are consistent with a role for chromatin structure in

regulating gene expression in bacteria, showing once again

that what is true for elephants can also apply to E. coli.

DNA supercoiling and gene expression 
More than 20 years ago, it was postulated that supercoiling

could be used to regulate gene expression in E. coli [10], and

about a decade later (before microarray technology was

readily available) the influence of supercoiling on the con-

centration of 88 proteins in E. coli was demonstrated [11]. In

the recent article by Peter et al. [2], the influence of DNA

supercoiling on transcription was studied using DNA

microarrays to systematically probe the expression profiles

of all E. coli genes. The authors [2] demonstrated that super-

coiling may act as a ‘transcription factor’ and that it can have

either a negative or a positive effect on the transcription of a

specific gene. They identified 306 ‘supercoiling-sensitive

genes’, and the expression of most of these genes correlates

very well with the amount of chromosomal relaxation in

each experiment. The fact that most of these supercoiling-

sensitive genes were localized in regions of high density

‘clumps’ that were affected by DNA relaxation agrees well

with the findings by Jeong et al. [1] that short-range correla-

tions are dependent on negative supercoiling.

The outermost two circles in Figure 1 are based on the data

of Peter et al. [2] and show the locations of supercoiling-

sensitive genes (log p values; circle 1) and the correlation

with chromosomal relaxation (circle 2). Anti-correlations

corresponding to regions where expression decreases upon

DNA relaxation were also found. As reported by Peter et al.

[2], chromosomal regions with significant numbers of

supercoiling-sensitive genes generally overlap with regions

that are more correlated or anti-correlated with the level of

chromosomal relaxation than regions with no supercoiling-

sensitive genes.

Some of the chromosomal regions that are mostly correlated

with supercoiling overlap with regions showing differential

expression patterns among the experimental conditions used

by Jeong et al. [1]. For example, gyrA and gyrB at 2.33

megabases and 3.88 megabases on the chromosome, respec-

tively, are highly expressed in DNA-relaxed cells (wild-type

cells grown with norfloxacin; circle 6 in Figure 1) but hardly

expressed in wild-type cells grown in rich (LB; circle 3) or

minimal (M9; circle 4) media. Because of the experimental

conditions used in the two studies, however, this picture is

expected for the gyrase genes. These genes are known to be

sensitive to supercoiling and are involved in maintaining a

precise level of supercoiling in the cell. Thus, the inhibition of

these proteins is very likely to increase their mRNA expression.

Surprisingly, a substantial number of additional genes were

also affected by gyrase inhibition, indicating that this change in

expression has to be due to the effect that gyrase inhibition has

on DNA supercoiling - that is, chromosomal relaxation. 

Peter et al. [2] also found that supercoiling-sensitive genes

whose expression increased upon DNA relaxation were sig-

nificantly more AT-rich in their upstream and coding regions

compared with the corresponding regions of genes not sensi-

tive to supercoiling; the opposite was true for supercoiling-

sensitive genes whose expression decreased upon DNA

relaxation. This may, however, be due to the fact that AT-rich

regions tend to be more curved than AT-poor regions. Super-

coiling-sensitive genes may, therefore, be expected to be

more AT-rich in upstream regions than genes that are regu-

lated by means other than supercoiling. Nonetheless, these

small local variations in upstream regions are not visible on

the genome-scale atlas plot (Figure 1, circle 9). Because these

supercoiling-sensitive genes are localized to specific regions,

one would expect that in some cases a region would appear

AT-rich if all of its supercoiling-sensitive genes were signifi-

cantly AT-rich in their upstream regions.

A bit more context is needed here - at the risk of complicat-

ing the picture, there are two additional pieces of informa-

tion that can help build a clearer picture of what is going on

in terms of chromatin structure. The first is DNA curvature

and the second is a bit more detail about DNA supercoiling.

DNA has sequence-dependent structures, just like proteins,

and certain sequences tend to coil in three-dimensional

space. These ‘DNA curves’ are correlated with phased tracts

of A residues, and have been found to be localized at the tips

of supercoils [12]. The DNA in E. coli is known to be super-

coiled, and curved DNA (which tends to be AT-rich) can

result in the placement of certain DNA sequences at the

apical tips of supercoils, as shown in Figure 2. The supercoils

can be divided into two types: plectonemic and toroidal,

depending on the shape (Figure 2). Roughly half of the

supercoils in E. coli are toroidal - the DNA is wrapped

around proteins and it is ‘restrained’, although this is

transient in bacteria (but permanent in the form of stable

nucleosomes in eukaryotes). The other half of the supercoils
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are plectonemic (unrestrained) and are under torsional

stress, which can be relieved by formation of a bubble in the

DNA helix. The ratio between plectonemic and toroidal

supercoiling might vary along the chromosome and also with

time, because, for example, an RNA polymerase can wrap

DNA around it (a restrained toroidal supercoil) and then

release the DNA later, creating an unrestrained supercoil.

Furthermore, a region that in one set of experimental condi-

tions contains mainly restrained supercoils can suddenly

have most of the supercoils become ‘free’ (plectonemic) in

the absence of chromatin proteins. 

From a DNA topology perspective, the plectonemic supercoils

contain more potential energy, in terms of driving superhelical-

dependent transitions (such as melting of the DNA helix).

Thus, if there were regions along the chromosome that con-

tained lots of binding sites for proteins involved in chromatin

structure, most of the supercoiling would be transiently

restrained, and hence less free energy would be available for

transcription. In addition, the chromatin proteins can physi-

cally block the RNA polymerase from binding to the DNA.

Because the E. coli chromatin proteins Ihf and Fis show some

sequence specificity, it is possible to predict binding sites

throughout the chromosome. On a global scale, there tends to

be an anti-correlation between these chromatin-binding sites

and regions of highly expressed genes [13]. Finally, on the

more local level of a few kilobases (for example, an operon), it

is possible to predict regions that tend to exclude chromatin

proteins and hence might potentially be highly expressed

[14]. In Figure 1, this ‘nucleosomal position preference’

measure is plotted in circle 8. As expected, regions of low

position preference tend to correspond to the regions with

highly expressed genes found by Jeong et al. [1]. However,

the majority of cellular DNA is compacted transiently by

chromatin proteins, and there are many regions that are not

highly expressed but are nonetheless regulated, with their rel-

ative expression levels dependent on supercoiling.

Originally, it was postulated that the chromosome was

divided into 12-80 topologically isolated loops, so-called

domains, in which chromatin could be relaxed independent

of supercoiling in nearby domains [15]. Later this number

was estimated more exactly at around 50 domains corre-

sponding to a domain size of approximately 100 kb [16].

Recently, Postow et al. [17] presented evidence of an even

smaller domain size of approximately 10 kb on average, cor-

responding to as many as 400 distinct topological domains

in E. coli. This result corresponds very well with the finding

of Jeong et al. [1] that up to 16 genes exhibit apparent

coherent transcriptional activity and the idea that genes

may be organized into confined supercoiled domains with a

size of up to 16 kb.

The fact that the genes identified as sensitive to supercoiling

have a variety of functions supports the hypothesis that

supercoiling may act as a global transcriptional regulatory

mechanism and that the cell may use this mechanism as an

environmental sensor because the topology of the chromo-

some may be affected by the surrounding environment. The

chromatin protein H-NS regulates many environmental

genes, probably through topological changes to DNA [18].

One final aspect of this global view of regulation of transcrip-

tion at the level of chromatin structure is that some of these

environmentally regulated and supercoiling sensitive genes

are involved in bacterial pathogenesis. For example, in Sal-

monella it has been shown that expression of genes involved

in invasion is regulated by DNA supercoiling [19]. Thus, the

global regulation of gene expression by DNA topology could

prove to be an important aspect of understanding the mech-

anisms of bacterial virulence [20].
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