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Abstract: Mathematical modeling is a powerful and inexpensive approach to provide a quantitative basis for improvements that 
minimize the negative effects of bioreactor heterogeneity. For a model to accurately represent a heterogeneous system, a flow model 
that describes how mass is channeled between different zones of the bioreactor volume is necessary. In this study, a previously 
developed compartment model approach based on data from flow-following sensor devices was further developed to account for 
dynamic changes in volume and flow rates and thus enabling simulation of the widely used fed-batch process. The application of 
the dynamic compartment model was demonstrated in a study of an industrial fermentation process in a 600 m 

3 bubble column 

bioreactor. The flow model was used to evaluate the mixing performance by means of tracer simulations and was coupled with 

reaction kinetics to simulate concentration gradients in the process. The simulations showed that despite the presence of long mixing 
times and significant substrate gradients early in the process, improving the heterogeneity did not lead to overall improvements in 

the process. Improvements could, however, be achieved by modifying the dextrose feeding profile. 

Keywords: Flow-following sensor devices, Compartment model, Gradients, Bubble column bioreactor, Large-scale, Mixing, Fermenta- 
tion process 

Introduction 

Maximizing the rate, titer, and mass yield ( i.e., kilogram of product 
per kilogram of substrate ) of fermentations are key economic con- 
siderations in industrial bioprocesses ( McClure et al., 2016 ) . Yield 
on substrate, such as dextrose ( industrial glucose ) , can represent 
up to 65–85% of the variable cost of manufacture for commercial 
fermentation processes and therefore has a critical impact on 
economics of the overall biomanufacturing process ( Sanford 
et al., 2016 ) . A reduced yield may be observed in fermentation 
processes when operated in full-scale bioreactors compared to 
the laboratory-scale bioreactors, in which the processes have 
been developed ( Enfors et al., 2001 ; George et al., 1998 ) . This yield 
gap, which occurs on process scale-up, has been attributed to 
heterogeneities in process variables, such as pH, dissolved gases 
( O 2 and CO 2 ) , and substrate concentration ( Wehrs et al., 2019 ) . 
Heterogeneity is present because it is technically infeasible to 
completely homogenize the fermentation broths of large-scale 
bioreactors ( �10 000 L ) , and an axial gradient in the hydrostatic 
pressure exists due to the large liquid volumes, which affects the 
gas transfer in the broth ( Vrábel et al., 2000 ; Wehrs et al., 2019 ) . 

Optimal operation of fermentation processes under heteroge- 
neous conditions is not trivial and requires deep understanding 
about the extent of the heterogeneity and its impact on the pro- 
duction organism. Mathematical modeling serves as an important 
tool to obtain this understanding and provide a quantitative basis 
for process optimization, design, and control ( Gernaey et al., 
2010 ) . Modeling of large-scale fermentation processes is chal- 
lenging because of the complexity involved when combining 
Nomenclature 

C Concentration ( kg m 

−3 ) 
C probe Probe clearance ( m ) 
D Reactor diameter ( m ) 
F Mass flow rate ( kg s −1 ) 
H L Liquid height ( m ) 
k L a Mass transfer coefficient ( hr −1 ) 
P Pressure ( Pa ) 
Q Volumetric flow rate ( m 

3 s −1 ) 
r Specific rate ( kg kg −1 hr −1 ) 
q Volumetric rate ( kg m 

−3 hr −1 ) 
T Temperature ( K ) 
V Volume ( m 

3 ) 
v s Superficial gas velocity ( m s −1 ) 
Y Mass yield coefficient ( kg kg −1 ) 
ε Gas fraction ( - ) 
μ Specific growth rate ( hr −1 ) 
ρp Particle density ( kg m 

−3 ) 
ρ l Liquid density ( kg m 

−3 ) 
ρf Fluid density ( kg m 

−3 ) 
Subscripts Description 

m Maintenance 
0 Initial condition 
p Product 
x Cell biomass 
s Substrate 
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Fig. 1 Illustration of the bubble column bioreactor with annotations of 
the dimensions that are relevant for the modeling. 
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ixing, mass/heat transfer, and reactions over a wide range of
ime and length scales ( Pigou & Morchain, 2015 ) . The combination
f numerical derivation of flows and phase interactions using
omputational fluid dynamics ( CFD ) and metabolic models has
roven a powerful tool to study gradients in large-scale bioreac-
ors ( Bach, 2019 ; Haringa et al., 2016 ; Kuschel et al., 2017 ; Larsson
t al., 1996 ; Morchain et al., 2014 ; Siebler et al., 2019 ) . However,
ccurate CFD-modeling of gas–liquid interactions and viscosities
f non-Newtonian fluids is challenging, and simulations coupled
ith metabolic models are computationally demanding ( Haringa
t al., 2016 ; Nauha et al., 2018 ) . This makes simpler flow models
ith lower associated computation times, such as compartment
odels, attractive for modeling of large-scale bioreactors. Indeed,
FD has lately been applied extensively to develop compartment
odels of bioreactors ( Bezzo & Macchietto, 2004 ; Delafosse et al.,
014 ; Nauha et al., 2018 ; Nørregaard et al., 2019 ; Tajsoleiman
t al., 2019 ) . However, such models cannot be effectively applied
or long-lasting processes with dynamic changes to the flow field,
olume, and fermentation broth rheology, which is the situation
f the widely used fed-batch process. Jourdan et al. propose a
olution that involves a set of discrete steady-state CFD simula-
ions accompanied by an algorithm for automatic conversion into
ompartment models ( Jourdan et al., 2019 ) . A solution with such
 dynamic compartment model has been presented in a study
f heterogeneity in an industrial aerobic fed-batch fermentation
rocess with Saccharomyces cerevisiae ( Nadal-Rey et al., 2021 ) .
espite providing detailed insights with a purely computational
ethodology, the approach is still time-consuming if the process

s to be sufficiently resolved in time and potentially suffers from
naccuracies when unvalidated CFD models of such complexity
re applied. 
Detailed measurements from large-scale processes can be ob-

ained by flow-following sensor devices, which have recently been
emonstrated in a study that examines hydrodynamics in a
 077 m 

3 activated sludge basin at a wastewater treatment plant
 Reinecke & Hampel, 2017 ) . Such sensor devices provide a de-
ailed representation of the spatial distribution of variables with
imple experimental procedures because the sensor devices au-
onomously store or/and transmit data while they are carried
long with the agitation or convection-induced fluid motion. Rei-
ecke et al. have shown that axial velocity fields can be obtained
rom the measurements of hydrostatic pressure collected by the
ensor devices ( Reinecke et al., 2012 ) . These axial velocity fields
an be used to develop simple flow models in the form of compart-
ent models, which has been previously demonstrated in a study
f a pilot-scale stirred vessel ( Bisgaard et al., 2021 b ) . The devel-
ped compartment model approach includes automatic compart-
entalization and determination and the assignment of inter-
ompartment flow rates between the compartments. 
This paper presents a methodology for developing compart-
ent models based on data from flow-following sensor devices,
hich is tailored for application in large-scale fed-batch fermen-
ations. The methodology is based on the compartment model
pproach presented in a previous study ( Bisgaard et al., 2021 b ) ,
hich is expanded to include a dynamic update of volume and

nter-compartmental flow rates in time. The development and ap-
lication of the model are demonstrated in a study of a fermen-
ation process that utilizes an Escherichia coli biocatalyst to pro-
uce 1,3-propanediol in a large-scale bubble column bioreactor.
he goal is to assess and minimize risks associated with mak-
ng physical and functional modifications to the fermenter used
n a commercial manufacturing process. In the absence of data,
ertain changes can have significant negative consequences on
rofitability, product quality, and other important factors related
o 1,3-propanediol production. For the assessment, the developed
ompartment model is coupled with a kinetic model to investigate
he process in terms of mixing performance and concentration
radients. 

aterials and Methods 

ioreactor and Fermentation 

he experiment was performed in a bubble column bioreactor
 DuPont Tate & Lyle Bio Products Company, TN, USA ) with a diam-
ter ( T ) of 5.3 m and a total volume ( V ) of 600 m 

3 ( Fig. 1 ) ( Crater
t al., 2017 ) . The examined bioprocess utilizes a recombinant E.
oli K-12 biocatalyst to convert corn syrup ( > 95% β-D-glucose,
lso known as dextrose ) to 1,3-propanediol ( PDO ) ( Nakamura &
hited, 2003 ) . During the 32-hr fermentation process, which was
perated as a fed-batch ( Guske & Miller, 2009 ) , the gassed liquid
evel increased from an initial level of 16 m ( H L ,0 ) to a final level of
6 m ( H L , end ) from dextrose substrate addition. The initial volume
n the bioreactor consisted of an M9 minimal media ( Antoniewicz
t al., 2007 ) with 10% inoculum from a seed fermenter. The dex-
rose substrate and media were added to the liquid surface with
ow rates according to the profile in Fig. 2 ( top ) , while air was
dded through two inlet spargers at the bottom of the bioreac-
or with the flow rates according to Fig. 2 ( center ) . The increase
n gassed bioreactor volume during the fermentation is shown
n Fig. 2 ( bottom ) . 

escription of the Biocatalyst Used for 
roduction of 1,3-Propanediol 
he dextrose-based fed-batch fermentation process utilized a
enetically modified derivative of E. coli K-12 ( Genbank Accession
umber U00096.3 ) that lacked λ-DNA sequence and F plasmid
 F −) . Biosynthesis of 1,3-propanediol is driven by a predominantly
eterologous carbon pathway that diverts carbon from dihydroxy-
cetone phosphate to form 1,3-propanediol. As reviewed by Naka-
ura and Whited ( 2003 ) , modifications to the host strain include

he introduction of glycerol 3-phosphate dehydrogenase ( DAR1 )
nd glycerol 3-phosphate phosphatase ( GPP2 ) genes obtained
rom S. cerevisiae to provide glycerol. Glycerol dehydratase ( dhaB1,
haB2, dhaB3 ) and its reactivating factors ( dhaBX, orfX ) obtained
rom Klebsiella pneumoniae enable the conversion of glycerol to
-hydroxypropionaldehyde, while the synthetic oxidoreductase,
riginally endogenous to E. coli ( yqhD ) , completes the pathway. 
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Fig. 2 Profiles of the feed rate F s ( top ) , gas flow rate Q g at T = 298.15 K 
and P = 101 325 Pa ( middle ) , and total volume V t ( bottom ) during the 
fermentation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-productive or yield-reducing reactions, including acetate
production, were attenuated or eliminated through gene dele-
tions, and oxygen-regulated gene expression ( arcA ) has been dis-
rupted ( Cervin et al., 2010 ; Nakamura & Whited, 2003 ) . Glycerol
is prevented from re-entering central carbon metabolism by dele-
tion of the genes encoding glycerol kinase ( glpK ) and glycerol de-
hydrogenase ( gldA ) . The strain features elimination of D-glucose
transport by the phosphotransferase system ( PTS ) and downregu-
lation of glyceraldehyde 3-phosphate dehydrogenase ( gapA ) . The
PTS system is replaced with a synthetic system comprising galac-
tose permease ( galP ) and glucokinase ( glk ) , genes endogenous to
E. coli . The galP and glk system has been observed to significantly
increase the rate of substrate uptake and improve the yield of 1,3-
propanediol from glucose ( Antoniewicz et al., 2007 ; Nakamura &
Whited, 2003 ) . 

Mixing Time of a Chemical Tracer 
The 95% mixing time ( t m95 ) was determined experimentally using
the chemical tracer method of Hadjiev et al. ( 2006 ) and reported
previously by Guske & Miller ( 2009 ) . The mixing time was mea-
sured using a 100 L pulse injection of 2 M NaOH that was added
to the top surface of the bubble column bioreactor at an addi-
tion rate of 10.5 L/s. Mixing time measurements were initiated
at the start of the NaOH pulse and followed by measurements
of the pH value sampled at 1 Hz using an in situ Mettler-Toledo
pH sensor ( Metter-Toledo model InPro3100 ) . The pH sensor was
located within 10 cm of the bioreactor wall and 5.85 m above
the bottom drain valve of the reactor. Simulated bioreactor run
conditions at a fermentation elapsed time of 15 hr for the 1,3-
propanediol bioprocess were used to assess mixing time follow-
ing the pulse of 2 M NaOH. The reactor was filled with 490 m 

3 of
reverse osmosis-grade water and a total of 10 separate measure-
ments were performed using the following conditions: an airflow
of 4.75 Nm 

3 /s, a bioreactor back pressure of 21 kPa, and liquid
temperature 33°C. The mean for the 10 independent measure-
ments is reported as the ‘‘measured mixing time at 15 hours’’ 
( Fig. 5 ) . The standard error for measurements was found to be
within the error range ( 3–5% ) previously reported by Hadjiev et al.
( 2006 ) . 

Measurement of Variables 
Samples from the bioreactor were taken during the fed-batch fer- 
mentation and analyzed for biomass concentration, fermentation 
analytes by high-performance liquid chromatography ( HPLC ) , and 
glucose by enzyme-linked amperometric electrode using a Yel- 
low Springs Instruments ( YSI, Yellow Springs, OH, USA ) model 
2950D biochemistry analyzer. Biomass concentration was de- 
termined by measuring the optical density of the broth sam- 
ple at 550 nm, assuming 3.0 g/L/OD550 cell dry weight and 
25.3 g/C-mol for molecular weight of dry biomass ( Antoniewicz 
et al., 2007 ) . Online process data collected from the bioreactor 
included dissolved oxygen ( DO ) using in situ probes installed in 
the bioreactor at the vessel wall exactly 5.85 m from the bot-
tom drain valve. Digital optical DO sensors ( Mettler-Toledo, model 
InPro6860i, Columbus, OH, USA ) and pH sensors ( Metter-Toledo 
model InPro3100 ) were sampled at a measurement frequency of 
1 Hz. 

For HPLC analysis, broth samples were centrifuged at 10 000 g 
for 10 min, and the supernatant was filtered into a 2 mL autosam-
pler vial using a 25 mm 0.45 μm Agilent Captiva layered syringe
filter ( glass microfiber pre-filter, PTFE membrane; part number 
#5190-5129 ) . A modification of the method by Zaky et al. ( 2017 )
was utilized for the analysis of samples using an Agilent 1260 
HPLC with refractive index ( RI ) and ultraviolet ( UV ) detector for 
carbohydrates/alcohols and organic acids, respectively. This iso- 
cratic method was modified for simultaneous separation of car- 
bohydrates, alcohols, and organic acids that were present in the 
fermentation broth samples. This system consisted of two—Hi- 
Plex H, 300 mm × 7.7 mm Organic Analysis Column ( Agilent Part 
Number PL1170-6830, Santa Clara, CA, USA ) analytical columns 
that were connected in series. A guard column was installed be- 
fore the analytical column and consisted of a Cation-H Cartridge 
30 × 4.6 mm Guard Column ( Bio-Rad Part Number 125-0129, Her- 
cules, CA, USA ) . Instrument conditions were as follows: mobile 
phase consisting of 10.0 mM sulfuric acid ( Sigma Catalog # S1526 )
in HPLC-grade water, isocratic pump flow rate of 0.60 mL/min, col- 
umn temperature of 70°C, injection volume of 10 μL, UV wave- 
length of 210 nm, RI temperature of 55°C, and a run time of
55 min. 

Flow-Following Sensor Devices 
The bubble column bioreactor was examined using flow-following 
sensor devices ( Freesense ApS, Denmark ) ( Freesense ApS, 2022 ) ,
which were introduced to the bioreactor prior to steam steriliza- 
tion. The sensor devices measuring 55 mm in diameter had their 
density adjusted based on initial calculations of the fluid density,
motivated by results from Middleton ( 1979 ) , which showed that 
large particles behave more like the liquid when the density of the
particle resembles the density of the gas–liquid dispersion. Sensor 
devices with the following densities were used in the experiment: 
two sensor devices with a density ( ρp ) of 850 kg/m3, three sen-
sor devices with a density of 900 kg/m 

3 , and three sensor devices
with a density of 950 kg/m 

3 . The sensor devices were configured
to collect and store measurements of the pressure and tempera- 
ture at a sampling rate of 1 Hz during the entire duration of the
fermentation process. 
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Fig. 3 Schematic representation of the dynamic compartment model 
with K compartments at the final volume. Mass is exchanged between 
the ideally mixed compartments with the flow rate Q , denoted by the 
bidirectional vertical arrows. The total volume and the flow rates are 
updated in time in discrete model update steps ( j = 1,…, J ) . The dashed 
horizontal arrows denote transfer of mass between model update steps. 
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rocessing of sensor device data 
he axial position ( z ( t ) ) and axial velocity ( v z ( t ) ) were derived
rom measurements of hydrostatic pressure, using Pascal’s law,
resented in Equation 1 . 

z ( t ) = 

P max − P ( t ) 
ρ f · g 

. ( 1 ) 

In the equation, z ( t ) denotes the axial position at time t , P ( t )
s the measured pressure at time t , P max is the maximum mea-
ured pressure ( which occurs at the bottom of the reactor ) , ρf is
he fluid density, and g is the gravitational acceleration. Further
etails on the derivation of the axial position and the axial ve-
ocity are presented in a previous study ( Bisgaard et al., 2021 a ) .
hree contributions to variations in the measured pressure dif-
erence ( P max –P ( t ) ) had to be considered before the conversion of
ressure to the axial position. Firstly, contributions from varia-
ions in head space pressure due to aeration, which result in a
hift in P max . Secondly, contributions from volume increase due
o substrate addition, which result in an increase in P max , and
hirdly, contributions from variations in the volume resulting from
hanges in the fluid density. The contributions to the pressure dif-
erence resulting from the head-space pressure and the volume
hanges were compensated by subtraction of a baseline obtained
rom a rolling-maximum filter with a 1-hr window size, which was
urther smoothed by a rolling-averaging filter. The baseline repre-
ents the dynamic changes in the pressure at the bottom of the
eactor over the duration of the fermentation process. This ap-
roach assumes that the sensor devices reach the top and bot-
om of the bioreactor in this 1-hr timeframe and that negligible
hanges to the liquid height occur within this 1-hr period, which
s both reasonable assumptions. Changes to the fluid density are
ainly attributed to changes in the gas hold-up, which was es-

imated for a heterogeneous flow regime by the correlation from
an’t Riet & Tramper ( 1991 ) in Equation 2 . 

ε = 

v s 

0 . 25 + 0 . 45 ( g v s D ) 
1 
3 

. ( 2 ) 

The fluid density of the gas–liquid dispersion was then
alculated from ρf = ( 1–ε ) ρ l −ερg ( Hofmeester, 1988 ) , with

l = 1030 kg/m 

3 . For further details on the estimated fluid den-
ity, refer to ‘‘Supplementary Materials’’. The sensor devices with
ensities of 950 kg/m 

3 were found to be closest to the mean fluid
ensity for the largest part of the process. Hence, data from these
ensor devices were used to generate the compartment model.
egardless, it was found that the sensitivity of the mixing time
redictions from compartment models developed based on data
rom sensor devices with different densities was low ( refer to
‘Supplementary Materials’’ ) . Instantaneous pressure measure- 
ents from the sensor devices were used to correct the super-
cial gas velocities and calculate the instantaneous gas hold-up
nd fluid density. Ultimately, the instantaneous fluid density was
sed in the calculation of the axial position and axial velocities by
ascal’s law ( Equation 1 ) . 

odeling 

ynamic Compartment Model 
he dynamic compartment model is based on axial compart-
ents ( k = 1,…, K ) with volumes ( V k ) , which are interlinked by
idirectional axial flows ( Q k ) . The derivation of the volumes and
he flow rates of the axial flows between the compartments are
escribed in detail in a previous paper ( Bisgaard et al., 2021 b ) .
n contrast to the preceding study, in which steady experimen-
al conditions were examined, the total volume and the flow rates
etween compartments are functions of time. As the sensor de-
ices provide Lagrangian-type measurements, i.e., measurements
hat are functions of time and instantaneous position, the mea-
urements are discretized in both space ( compartments ) and time
y averaging of the measured variables. Discretization in time is
erformed by introducing compartment model update steps, de-
oted by j = 1 ,…, J . From one compartment model update step
o another, the total reactor volume of the model is updated by
odifying the liquid height, using Equation 1 with the pressure dif-

erence between the maximum and minimum pressure encoun-
ered during the update step. Furthermore, all inter-compartment
ow rates are updated according to the changes in axial veloc-
ty at each update step. The compartment volumes and inter-
ompartment flow rates are scaled with the average liquid frac-
ion ( 1–ε ) to account for the dynamic gas-holdup, which affects
he effective compartment interface area and compartment vol-
me and therefore the flow rates at the compartment interfaces
nd the concentrations in the compartments. Within each update
tep, the total volume and the flow rates between compartments
re assumed constant. A schematic representation of the dynamic
ompartment model is shown in Fig. 3 . 
The horizontal dashed lines represent the transfer of mass be-

ween the update steps, which are addressed in ‘‘Fermentation
imulations’’ Section. Pressures and temperatures measured by
he sensor devices are also assigned to compartments, which are
ltimately used for the calculation of the gas mass transfer coeffi-
ient k L a . An update frequency of 1 hr and an initial compartment
eight of 0.5 m were found to be appropriate based on a require-
ent of a minimum of 30 measurements of the axial velocity at
ny compartment interface in the model. 
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Fig. 4 Automatic zoning of the volumes in the compartment model. The compartments are presented as purple squares, separated by black lines at 
the compartment interfaces. The diamonds at the interfaces represent the flow rates according to the color bar. At high flow rates, more of the initial 
compartments are merged to larger compartments, e.g., at t ≈ 15 hr, while fewer of the initial compartments are combined at the low flow rates at the 
end of the process, e.g., t ≈ 30 hr, especially toward the top and bottom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial compartments were combined into the zones de-
picted in Fig. 4 , based on the automatic zoning procedure pre-
sented in a previously published paper ( Bisgaard et al., 2021 b ) . The
auto-zoning model parameter, the local critical residence time
( τ crit ) , was modified from τ crit = 0.95 s found in Bisgaard et al.
( 2021 b ) to τ crit = 1.5 s to obtain a better fit with experimental mix-
ing time data ( presented in ‘‘Mixing’’ Section ) . The critical local
residence time is a threshold parameter that decides on the vol-
ume of compartments for which the assumption of ideal mixing is
appropriate. The local residence time, which is defined by the vol-
ume to flow rate ratio in the compartment, must not exceed the
critical local residence time for the assumption of perfect mixing
to be appropriate. 

Fermentation Modeling 

The fermentation process was modeled with differential Equations
3–6 . The concentration of variable i is denoted C i , while r i denotes
the specific rate of change of variable i . Biomass, substrate, prod-
uct, and oxygen are denoted by subscripts x , s , p , and o , respec-
tively. The index j refers to the compartment model update step,
which implies that properties with index j are updated at discrete
time steps. 

dC x 
dt 

= μC x , ( 3 )

dC s 
dt 

= −r s C x + F s, j,k = K , ( 4 )

dC p 
dt 

= r p C x , ( 5 )

dC o 
dt 

= k L a ( j, k ) 
(
C ∗o, j −C o 

)
− r o C x . ( 6 )

The feed addition was modeled by the mass flow rate term
F s ( , j , k = K ) , which adds substrate to the top compartment ( k = K )
according to the feed rate profile in Fig. 2 ( top ) . The feed rate is
updated for each compartment update step ( j ) but is constant
throughout the update step and does not induce changes to the
volume during the step. 

The mass transfer coefficient, k L a ( j, k ) , was modeled with a sim-
ple linear relationship with the superficial gas velocity k L a = 0.288
v s ( Guske & Miller, 2009 ) . The superficial gas velocity ( v s ) was cal-
culated based on the airflow in Fig. 2 ( middle ) , which was cor-
rected by the average pressure and temperature measured by the
sensor device in the corresponding compartments. The saturated
molar oxygen concentration ( C * o, j ) was estimated by multiplying 
the average total pressure in the compartments by the mole frac- 
tion of oxygen in the air ( x O2 = 0.2095 ) , followed by the application
of Henry’s law with the assumption that the way oxygen solubi- 
lizes in the fermentation broth is similar to pure water. This is
a rough assumption because the solubility of oxygen in the cul- 
ture medium containing various salts differs from the solubility 
in pure water and may keep changing throughout the fermenta- 
tion. A temperature-compensated Henry’s coefficient for oxygen 
in water of H 

cp ( T = 306 K ) = 0.0015 mol/L/atm was used for the
calculation ( Sander, 2015 ) . 

Specific rates 
The biomass-specific growth rate ( μ) was modeled using Monod 
kinetics with product inhibition ( Equation 7 ) as proposed in Ross 
et al. ( 1994 ) . Here, K p is the critical product concentration for
which µ = 0. Negative values for the growth rate are allowed for
C p > K p , corresponding to cell death. Because the strain is inca-
pable of regulating its metabolism to anaerobic growth condi- 
tions ( ‘‘Description of the Biocatalyst Used for Production of 1,3- 
Propanediol’’ Section ) , a term C o / ( C o + K o ) is added to account for
situations where oxygen becomes growth limiting. 

μ = μmax ·
(

C s 
C s + K s 

)
·
(

C o 
C o + K o 

)
·
(
1 − C p 

K p 

)
. ( 7 ) 

The production of PDO is modeled by the Luedeking–Piret 
model ( Luedeking & Piret, 1959 ) , which states a linear relationship
between specific product formation rate ( r p ) and both biomass 
concentration and specific growth rate ( Equation 8 ) . The PDO pre- 
cursor, glycerol, is assumed not to be accumulating in the broth 
because the rate-limiting step is expected to be earlier in the path-
way. Modeling of glycerol is therefore omitted. 

r p = Y px μ + r x,p . ( 8 ) 

Specific uptake rates of substrate ( rs , Equation 9 ) and oxygen 
( r o , Equation 10 ) are modeled by division of the specific rates with
corresponding stoichiometric yield coefficients Y sx , Y ps , and Y so .
Terms for substrate and oxygen uptake for biomass maintenance 
were included as the specific rates r m, s and r m, o . 

r s = 

μ

Y xs 
+ 

r p 
Y ps 

+ r m,s , ( 9 ) 
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Fig. 5 The simulated mixing time with τ crit = 0.95 s ( blue line ) and 
τ crit = 1.5 s ( orange line ) , and the measured mixing time at t = 15 hr 
( green circle ) . 
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r s 
Y so 

+ r m,o . ( 10 ) 

The genetic modifications of the E. coli K-12 strain are expected
o have an impact on the model parameters when compared
o the model parameters of the wild-type E. coli, e.g., the pa-
ameters presented in the paper by Xu et al. ( 1999 ) . The model
arameters were therefore fitted by minimizing the sum of
quared errors ( SSE ) between the simulated and the measured
alues of biomass, substrate, and oxygen, using the Nelder–Mead
ptimization algorithm from the Python library, Scipy. For the
SE between simulated and measured biomass, product, and
ubstrate concentration, the average concentration of compart-
ents across the liquid height was used, while for the DO, the
xygen concentration at the compartment closest to the DO
robe location ( C probe = 5.85 m ) was used. The fitted values were
ot constrained by a stoichiometric equation. A table with the
tted parameters and the variables used in the modeling are
resented in ‘‘Supplementary Materials’’. 

imulations 
ixing time simulations 
he tracer concentration transients were simulated at each com-
artment model update step by initializing an arbitrary tracer
oncentration in the top compartment volume and numerically
olving the ordinary differential equations using the LSODA solver
mplementation from Python’s Scipy library. The time to reach
5% homogeneity ( t m95 ) was determined from the logarithmic root
ean square variance of the normalized responses in all the mod-
led compartments. The homogenized concentration ( C inf ) was
aken as the concentration of the tracer after 10 min. The process
as repeated for a set of different feeding points. 

ermentation simulations 
he fermentation process was simulated by solving the model
tates using an ordinary differential equation solver ( LSODA algo-
ithm, Python’s Scipy library ) . The compartment volumes at spe-
ific liquid heights are subject to change between compartment
odel update steps ( Fig. 4 ) . Therefore, the final concentrations of

he simulated variables at each update step had to be processed
efore being used as initial conditions for the next compartment
pdate step. This was done by first converting concentrations to
asses by multiplication with the corresponding compartment
olumes of the current update step. Second, the masses were
iluted into temporary compartments resembling the compart-
ents of the current step, but with volumes that have been scaled
ith the ratio between the total volume of the next update step
nd the current update step ( V j + 1 / V j ) . Finally, the masses of the
imulated variables in the following update step were calculated
ased on the volume ratio between the temporary update step
nd the following step, e.g., if a compartment of the temporary
pdate step is divided in two by an interface in the middle at the
ollowing update step, the mass from the current step is divided
fty–fifty into the compartments of the following update step. 

esults and Discussion 

ixing 

he results from the mixing time simulations with two different
alues of the model parameter τ crit ( τ crit = 0.95 s and τ crit = 1.5 s ) ,
ogether with the measured mixing time at t = 15 hr, is presented
n Fig. 5 . 
As mentioned previously, a value for the parameter τ crit of 1.5 s
as used instead of the previously fitted value of τ crit = 0.95 s

 Bisgaard et al., 2021 b ) , because of the better fit with experimental
ata. Using a value of τ crit = 0.95 s resulted in a relative error of 45%
t t = 15 hr. Potential sources of errors affecting this include inac-
urate estimation of the fluid density, the assumption about per-
ect radial mixing from an exclusively axial compartment model,
nd overestimation of the bottom volume because it is consid-
red to be cylindric in the model, whereas it is semi-elliptical in
eality. Inaccuracies in the estimated fluid density affect the cal-
ulation of the axial position ( and velocity ) and hence the volume
f the compartments and the derived flow rates between them.
ore details about how inaccuracies in the fluid density affect the
alculated position and the sensor device buoyancy have been ad-
ressed in previous work ( Bisgaard et al., 2020 ) . The buoyancy of
he sensor devices may be affected if a gradient in the fluid den-
ity exists over the liquid height. However, an analysis presented
n ‘‘Supplementary Materials’’ indicates that the buoyancy of the
ensor devices has little impact on the determined mixing times.
ue to the liquid height to diameter ratio, which increases from
 L / T = 3 initially to H L /T = 5 toward the end of the process, it is
xpected that the bottleneck in the mixing process occurs in the
xial direction, and hence the assumption of perfect radial mixing
s acceptable. 
The simulated 95% mixing time is around 100 s in the beginning

f the process and then starts to increase rapidly after 15 hr into
he fermentation process, where it from this point continuously
ncreases up to almost five times the initial mixing time. Because
he gas flow is responsible for the mixing in bubble columns, the
imulated mixing time profile agrees well with what is expected
rom the aeration profile in Fig. 2 and the derived axial flow rates
n Fig. 4 . Furthermore, the volume of the bioreactor increases con-
inuously, which further contributes to the rise in the mixing time.
Simulations with various feeding points were performed to in-

estigate whether a certain feeding location led to improvements
n the mixing time. The mixing time results from simulations
here the tracer was initialized at the bottom, in three compart-
ents in the middle, and at the top are compared in Fig. 6 . 
The top and bottom feeding results in significantly longer 95%
ixing times since the axial flow rates are significantly lower

n these zones compared to the compartments in the middle of
he bioreactor and because the distance that the tracer travels
s twice as long compared to the feeding points in the middle
f the bioreactor. The mixing time obtained when feeding at
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Fig. 6 The simulated mixing time using various feeding points 
( compartments ) in the reactor. Feeding from a point in the middle of the 
liquid height drastically reduces the 95 % mixing time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Simulated ( lines ) and measured ( circles ) concentrations of 
biomass ( C x ) , substrate ( C s ) , dissolved oxygen ( C o ) , and PDO ( C p ) in the 
top, middle, and bottom of the bioreactor. 

Fig. 8 Dynamic compartment model heatmap showing the dissolved 
oxygen concentration ( top ) and substrate concentration ( bottom ) . The 
displayed substrate concentrations have been capped at 0.5 kg/m 

3 to 
emphasize the periods with very low substrate concentrations 
( ≈6–13 hr ) . 

 

 

the 12.5 m feeding point is almost unchanged over the process
duration. This is because the feeding height of 12.5 m is initially
closer to the liquid surface, where the axial mixing is poor. Due
to the volume increase over the course of the process, the feeding
height of 12.5 m advances toward the middle of the liquid height.
Consequently, it can be deduced that the optimal feeding scenario
of a single active sterile feed injection point would be around
12.5 m from the bottom. 

Fermentation 

The simulated concentrations of biomass, substrate, DO, and
product in the bottom, middle, and top of the bioreactor are pre-
sented in Fig. 7 , together with the corresponding measurements
of the variables. 

The simulated concentrations of substrate and DO agree well
with the measured values throughout the process. However, with
the optimal parameter fit, the simulated biomass concentration
is significantly lower than the measured concentration. This may
be explained by the fact that the simulated biomass consists of
active cells only, while measurements of dry cell weight based
on optical density represent both viable and non-viable cells. The
biomass initially presents in the medium was produced during the
seed fermentation prior to this process. PDO reaches a concentra-
tion of 135 kg/m 

3 , which is in agreement with the value reported
by Nakamura and Whited Nakamura & Whited ( 2003 ) . No spatial
variations are observed in the biomass and product concentra-
tion, which is expected due to the lower rates and no continuous
additions. However, gradients are observed in both substrate and
DO concentration, which are visualized in Fig. 8 . 

The top heatmap in Fig. 8 reveals that despite the presence
of oxygen gradients, plenty of oxygen is present throughout the
process; particularly in the important part early in the process,
where product inhibition is low, and growth and production rates
are high. In the case of substrate ( Fig. 8 , bottom ) , a period with low
substrate concentrations between t = 6 hr and t = 13 hr is present.
The low concentrations are especially prevalent toward the bot-
tom of the reactor, where the concentration approaches zero. 

Whether this period of low substrate concentration has an
impact on the process is examined by comparing the productivity
between four cases. The first case is the present situation with
substrate feeding to the liquid surface, the second case includes
substrate feeding at 12.5 m from the bottom, the third case
includes a situation where one-third of the feed is maintained at
the top, while two-thirds of the feed are added at another feeding
point 5 m from the bottom, and finally, the last case includes a
situation with ideal mixing. In practice, the ideal mixing case was 
simulated by simply raising the flow rates in the compartment 
model to extremely high values. The simulation results of pro- 
ductivity ( q p ) and product concentration ( C p ) for the four cases 
are presented in Fig. 9 , together with the improvement/worsening 
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Fig. 9 Productivity, q p ( top, left ) , product concentration, C p ( top, right ) , productivity ratio between the current situation and the three additional 
examined cases ( bottom, left ) , and product concentration ratio between the current situation and the three additional examined cases ( bottom, left ) . 
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n the different cases compared to the current feeding strategy
sing the top feeding point. 
The productivities in the four cases are shown in the top

eft of Fig. 9 . Initially, the productivity increases from less than
 kg/m 

3 /hr to approx. 8 kg/m 

3 /hr due to the favorable growth con-
itions and an increase in the total biomass. From this maximum,
he growth-associated productivity decreases linearly with the in-
ibition of the growth rate by the PDO to reach final productiv-
ty of 1 kg/m 

3 /hr. The values obtained here are therefore slightly
igher than the productivity of 3.5 kg/m 

3 /hr reported in the liter-
ture ( Nakamura & Whited, 2003 ) . Despite the observed improve-
ent in mixing performance when feeding to the middle of the

iquid height ( ‘‘Mixing’’ Section ) , only insignificant improvements
o productivity and product concentration in the period of 6–13 hr
ere observed ( Fig. 9 , bottom left and right ) . The case with multi-
le feeding points showed to be slightly better in the same period,
hile the case of ideal mixing has the greatest improvements in
he period. However, the improvements in any of the cases are
< 1% and only result in insignificant improvements in the prod-
ct concentration ( Fig. 9 , bottom right ) . Furthermore, after the pe-
iod of improved production ( 6–13 hr ) , a period of lower produc-
ion compared to the current feeding strategy is present. This is
 result of a higher product concentration compared to biomass
n the three examined cases compared to the current situation,
hich leads to an increased product inhibition. Ultimately, the
xamined cases result in less product compared to the current
ituation if the process duration is maintained, but with negligi-
le differences. This underlines the robustness of the process due
o the genetic modifications of the production strain, which allow
he cell population to grow at high respiration and substrate up-
ake rates without excretion of acetate to the medium. Therefore,
he average substrate concentration can be maintained at a rela-
ively high level throughout the process, avoiding problems with
ixing limitations in the process. 
As the substrate is completely consumed in the period from

 to 13 hr and plenty of substrate is available later ( > 13 hr ) , an
djustment to the feed rate profile of the process may lead to im-
rovements. The results from a case where the feed rate was in-
reased with 0.07 kg/s for a 7-hr period between 6 and 13 hr and
hen reduced the same amount for a period between 23 and 30 hr
re presented in Fig. 10 . 
In this case, the productivity is improved with up to 15% in the

eriod from 6 to 13 hr, which results in a 2.5% higher product con-
entration 13 hr into the process. However, due to product inhibi-
ion, this advantage is reduced over time, resulting in just minor
mprovements after 32 hr. 
A more general optimization could aim to optimize the pro-

uctivity while minimizing the total substrate addition. However,
atch-to-batch variations occur in the uptake rates, and it may
ot be desirable to push the feed addition to the limit. The model
resented in this paper is rather simplistic, while further improve-
ents to kinetic model would include the modeling of CO 2 , which
as an inhibitory effect on growth and production, and modeling
he PDO precursor glycerol, which is known to be present at sig-
ificant concentrations when the broth is transferred from the
eed reactor to the production reactor. The model assumes in-
tant adaptation of the cells to the reactant concentrations with
o record of previous conditions. In reality, the cells may respond
egatively to exposure to fluctuating conditions, e.g., between the
onditions with plenty of substrate in the top of the reactor and
ubstrate-depleted zones in the bottom of the reactor. Therefore,
he effect of the gradients in the process may be underestimated.

onclusion 

 data-based compartment model approach was expanded to a
ynamic version, which enables modeling of the extensively used
ed-batch process. The dynamic model introduces a set of discrete
ompartment model update steps, for which the total volume and
nter-compartment flow rates are updated in time. With an ad-
ustment to the model parameter τ crit , the dynamic compartment
odel predicted the flow dynamics and mixing performance dur-

ng the entire process. Based on mixing times obtained from sim-
lations with various tracer injection points, it was concluded
hat addition to the middle of the liquid height was optimal with
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Fig. 10 Productivity, q p ( top, left ) , product concentration, C p ( top, right ) , productivity ratio between the current situation and a case with a modified 
feeding profile ( bottom, left ) , and product concentration ratio between the current situation and the examined case ( bottom, left ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respect to homogenization of the tracer. The dynamic compart-
ment model was then coupled with kinetic models for growth,
production, and consumption to perform simulations of concen-
trations of biomass, substrate, product, and DO over the course of
the fed-batch fermentation. The simulations revealed that rela-
tively long mixing times ( t m ≈ 125 s ) and critically low substrate
concentrations were present at the bottom of the reactor between
6 and 13 hr into the process. However, model predictions indicated
that improving the homogeneity during this period did not result
in improvements to the process. Reallocating dextrose from later
in the process to this period increased the productivity in the pe-
riod with up to 15%, which resulted in a final concentration that
was slightly higher than the base case. The dynamic compart-
ment model provides a simple model framework for performing
this type of simulation with a low computational demand. This
makes it highly suitable for solving optimization problems, such
as fitting of model parameters or optimization of feeding locations
and/or rates. 

Supplementary Material 
Supplementary material is available online at JIMB ( www.academic.
oup.com/jimb ) . 
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