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Abstract
The expected possession value (EPV) of a soccer possession represents the likelihood of 
a team scoring or conceding the next goal at any time instance. In this work, we develop 
a comprehensive analysis framework for the EPV, providing soccer practitioners with the 
ability to evaluate the impact of observed and potential actions, both visually and analyti-
cally. The EPV expression is decomposed into a series of subcomponents that model the 
influence of passes, ball drives and shot actions on the expected outcome of a possession. 
We show we can learn from spatiotemporal tracking data and obtain calibrated models for 
all the components of the EPV. For the components related with passes, we produce vis-
ually-interpretable probability surfaces from a series of deep neural network architectures 
built on top of flexible representations of game states. Additionally, we present a series of 
novel practical applications providing coaches with an enriched interpretation of specific 
game situations. This is, to our knowledge, the first EPV approach in soccer that uses this 
decomposition and incorporates the dynamics of the 22 players and the ball through track-
ing data.

Keywords Deep learning · Sports analytics · Spatiotemporal statistics · Convolutional 
neural networks

1 Introduction

Professional sports teams have started to gain a competitive advantage in recent decades by 
using advanced data analysis. However, soccer has been a late bloomer in integrating ana-
lytics, mainly due to the difficulty of making sense of the game’s complex spatiotemporal 
relationships. To address the nonstop flow of questions that coaching staff deal with daily, 

Editor: Jesse Davis.

 * Javier Fernández 
 javier.fernandezr@fcbarcelona.cat; javier.fernandez.de.la.rosa@upc.edu

1 FC Barcelona and Polytechnic University of Catalonia, Barcelona, Spain
2 Simon Fraser University, Burnaby, Canada
3 Zelus Analytics, Austin, USA

http://orcid.org/0000-0002-6297-042X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05989-6&domain=pdf


1390 Machine Learning (2021) 110:1389–1427

1 3

we require a flexible analysis framework. Such a framework should capture the complex 
spatial and contextual factors that rule the game while providing practical interpretations 
of real game situations. Some of these questions are: “which were the most relevant actions 
leading to goals?”, “in which moments of the match did we have a higher chance of scoring 
and conceding goals?”, “how should we defend against our next opponent to concede fewer 
spaces in the midfield?”, or “which are the more frequently open players to receive valu-
able passes from our creative midfielder?”.

This paper addresses the problem of estimating the expected value of soccer possessions 
(EPV) and proposes a decomposed learning approach that allows us to obtain fine-grained 
visual interpretations from neural network-based components. The EPV is essentially an 
estimate of which team will score the next goal at any given time, given all the spatiotem-
poral information available (e.g., the locations of the players and the ball, and observed 
actions). Let G ∈ {1,−1, 0} , where the values represent the team in control of the ball scor-
ing next, the other team scoring next, or the match half ending, respectively; the EPV cor-
responds to the expected value of G. The frame-by-frame estimation of EPV constitutes a 
one-dimensional time series that provides an intuitive description of how the possession 
value changes in time, as presented in Fig. 1. While this value alone can provide precise 
information about the impact of observed actions, it does not provide sufficient practical 
insight into either the factors that make it fluctuate or which other advantageous actions 
could be taken to boost EPV further. To reach this granularity level, we formulate EPV as 
a composition of the expectations of three different on-ball actions: passes, ball drives, and 
shots. Each of these components is estimated separately, producing an ensemble of models 
whose outputs can be merged to produce a single EPV estimate. Additionally, by inspect-
ing each model, we can obtain detailed insight on the impact that each of the components 
has on the final EPV estimation.

We propose two different approaches to learn each of the separated models, depending 
on whether we need to estimate a field-wide probability surface or producing only a single-
valued prediction. We propose several deep neural architectures capable of producing full 

Fig. 1  Evolution of the expected possession value (EPV) from the perspective of FC Barcelona during a 
match against Real Betis in La Liga season 2019/2020
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prediction surfaces from low-level features for the first case. We show that it is possible to 
learn these surfaces from very challenging learning set-ups where only a single-location 
ground-truth correspondence is available for estimating the whole surface. Producing these 
surfaces allows the components related to passes to estimate either the expected value or 
the probability of attempting a pass to any other location on the field. On the other hand, 
for the components related to ball drive or shot actions, we use shallow neural networks 
on top of a broad set of novel spatial and contextual features, to produce single estima-
tions of the expected value or the success probability of these actions. From a practical 
standpoint, we are splitting out a complex model into more easily understandable parts so 
the practitioner can both understand the factors that produce the final estimate and evaluate 
the effect that other possible actions may have had. This type of modeling allows for easier 
integration of complex prediction models into the decision-making process of groups of 
individuals with a non-scientific background. Additionally, each of the components can be 
used individually, multiplying the number of potential applications. For example, we can 
help a coach identify situations where players took a shot with few chances of scoring but 
had passing opportunities with a higher scoring chance in the next seconds to show them 
to the players. As another example, we could identify situations where a player has passing 
options with high expected value but he is not taking profit from them, so the coach can 
analyze together with the player how to approach these situations in future matches.

The main contributions of this work are the following:

• We propose a framework for estimating the instantaneous expected outcome of any 
soccer possession, which allows us to provide professional soccer coaches with rich 
numerical and visual performance metrics.

• We show that by decomposing the target EPV expression into a series of sub-compo-
nents and estimating these separately, we can obtain accurate and calibrated estimates 
and provide a framework with greater interpretability than single-model approaches 
(Cervone et al. 2016; Bransen and Van Haaren 2018).

• We develop a series of deep learning architectures to estimate the expected possession 
value surface of potential passes, pass success probability, pass selection probability 
surfaces, and show these three networks provide both accurate and calibrated surface 
estimates.

• We present a handful of novel practical applications in soccer that are directly derived 
from this framework.

2  Background

The evaluation of individual actions has been recently gaining attention in soccer analyt-
ics research. Given the relatively low frequency of soccer goals compared to match dura-
tion and the frequency of other events such as passes and turnovers, it becomes challeng-
ing to evaluate individual actions within a match. Several different approaches have been 
attempted to learn a valuation function for both on-ball and off-ball actions related to 
goal-scoring.

Handcrafted features based on the opinion of a committee of soccer experts have been 
used to quantify the likelihood of scoring in a continuous-time range during a match (Link 
et al. 2016). Another approach uses a broad set of attributes to estimate individual actions’ 
value during the development of possessions (Decroos et  al. 2019). These attributes 
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include the origin location, type, body part, the time where the action takes place, and its 
outcome. Here, the game state is represented as a finite set of consecutive observed discrete 
actions and, a Bernoulli distributed outcome variable is estimated through standard super-
vised machine learning algorithms. In a similar approach, possession sequences are clus-
tered based on dynamic time warping distance, and an XGBoost (Chen and Guestrin 2016) 
model is trained to predict the expected goal value of the sequence, assuming it ends with 
a shot attempt (Bransen and Van Haaren 2018). Gyarmati and Stanojevic (2016) calculate 
the value of a pass as the difference of field value between different locations when a ball 
transition between these occurs. Rudd (2011) uses Markov chains to estimate the expected 
possession value based on individual on-ball actions and a discrete transition matrix of 39 
states, including zonal location, defensive state, set pieces, and two absorbing states (goal 
or end of possession). A similar approach named expected threat uses Markov chains and a 
coarsened representation of field locations to derive the expected goal value of transition-
ing between discrete locations (Singh 2019). The estimation of a shot’s expectation within 
the next 10 seconds of a given pass event has also been used to estimate a pass’s reward, 
based on spatial and contextual information (Power et  al. 2017). Beyond the quantifica-
tion of on-ball actions, off-ball position quality has also been quantified, based on the goal 
expectation. In Spearman (2018), a physics-based statistical model is designed to quantify 
the quality of players’ off-ball positioning based on the positional characteristics at the time 
of the action that precedes a goal-scoring opportunity. All of these previous attempts on 
quantifying action value in soccer assume a series of constraints that reduce the scope and 
reach of the solution. Some of the limitations of these past works include simplified rep-
resentations of event data (consisting of merely the location and time of on-ball actions), 
using strongly handcrafted rule-based systems, or focusing exclusively on one specific type 
of action. However, a comprehensive EPV framework that considers both the full spatial 
extent of the soccer field and the space-time dynamics of the 22 players and the ball has not 
yet been proposed and fully validated. In this work, we provide such a framework and go 
one step further estimating the added value of observed actions by providing an approach 
for estimating the expected value of the possession at any time instance.

Action evaluation has also been approached in other sports such as basketball and ice-
hockey by using spatiotemporal data. The expected possession value of basketball pos-
sessions was estimated through a multiresolution process combining macro-transitions 
(transitions between states following coarsened representation of the game state) and 
micro-transitions (likelihood of player-level actions), capturing the variations between 
actions, players, and court space (Cervone et al. 2016). Also, deep reinforcement learning 
has been used for estimating an action-value function from event data of professional ice-
hockey games (Liu and Schulte 2018). Here, a long short-term memory deep network is 
trained to capture complex time-dependent contextual features from a set of low-level input 
information extracted from consecutive on-puck events.

This paper employs two frequently used data types in sports analytics: event data and 
spatiotemporal tracking data. Event data consists of a series of annotated events observed 
during matches, which include the location and time of the start and end of the event, the 
name of the player attempting and receiving the action (when it applies), as well as a large 
set of additional game-related labels, depending on the event. Usually, event data includes 
on-ball actions such as goals, passes, shots, aerial duels, crosses, set-pieces, tackles, drib-
bles, or many other typical soccer actions; and some specialized sources might include 
off-ball actions, such as ball pressure, or team-related information such as lineups and for-
mations. On the other hand, tracking data consists of all the players’ locations on the field 
and the ball. This data is usually provided at a frequency ranging from 10Hz to 25Hz and 
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captured using computer-vision algorithms on top of soccer match videos. This type of 
spatiotemporal data is typically obtained through a semi-automated process where, first, 
ball and player locations are automatically recognized and then manually verified and cor-
rected in case of misidentification. For both data types, the locations are usually normal-
ized according to the team in possession of the ball (e.g., left to right) and are provided 
in 2-dimensional (or 3-dimensional) coordinate systems that can be transformed following 
the length and width of the field dimensions.

3  Structured modeling

In this study, we aim to provide a model for estimating a soccer possession’s expected out-
come at any given time. While the single EPV estimate has practical value itself, we pro-
pose a structured modeling approach where the EPV is decomposed into a series of sub-
components. Each of these components can be estimated separately, providing the model 
with greater adaptability to component-specific problems and facilitating the final esti-
mate’s interpretation. In this section, we provide the theoretical framework for approach-
ing EPV as a Markov decision process, as well as the decomposed modeling approach. 
Additionally, we provide a broad definition of soccer possessions in the context of the EPV.

3.1  Defining possessions in soccer

Although there is no definition of possession within soccer rules, this concept is frequently 
used in game analyses as units encompassing sequences of actions. The standard approach 
is to consider possessions the time slots in which a team controls the ball. However, this 
definition may vary depending on the problem and the analysis approach. We will provide 
a broad concept of possession, which allows us to capture the long-term expected value 
from any given game situation. In the context of the EPV, we only require possessions 
to have three well-defined elements: the starting time, the ending time, and an observed 
outcome. We assume that possessions start from a single initial state represented by kick-
offs (i.e., the first event taking place after a half starts or a goal is scored). Regarding the 
outcome, we assume three possible absorbing states: one of the two teams scores a goal 
or that a match half ends. When we reach an absorbing state, we will say the possession 
resets. The starting and ending time of the possession is defined by the time either an initial 
or absorbing state is reached, respectively. To facilitate the learning process, an additional 
absorbing state could be introduced to reset the possession when a goal is not observed 
after a fixed amount of time � . Notice that when � = ∞ we return to the original defini-
tion of three absorbing states. With this broad definition of possessions, we include both 
teams’ events within the possession time range and set the possession’s outcome according 
to the next team scoring a goal, or a match half ends. In this theoretical definition, posses-
sions are not necessarily associated with a specific team. It provides a loose approach to the 
game’s fluid nature that involves frequent switches of the ball control between the teams.

Some other approaches of action-value models provide different definitions for initial 
and absorbing states. Usually, the initial state of possessions is defined by a change in the 
ball control between teams. Regarding the outcome of the possession, several approaches 
have been proposed, such as the next shot observed within a fixed amount of time (Power 
et al. 2017), a goal being observed after a fixed amount of on-ball actions (Decroos et al. 
2019), or the expected goals of a shot observed within the ball control of a given team 
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(Bransen and Van Haaren 2018). All of these alternative definitions share the main char-
acteristics of the broader definition provided in this section. Having this, both the decom-
posed approach, presented in Sect. 3.3, and the inference of these components presented in 
Sect. 5, could be developed following any of these different definitions of possessions.

3.2  EPV as a Markov decision process

This problem can be framed as a Markov decision process (MDP). Let a player with pos-
session of the ball be an agent that can take any action of a discrete set A from any state of 
the set of all possible states S; we aim to learn the state-value function EPV(s), defined as 
the expected return from state s, based on a policy �(s, a) , which defines the probability of 
taking action a at state s. By approaching the EPV in this way, we are essentially focusing 
on the problem of estimating the long-term reward (EPV) that a team in possession of the 
ball might expect, according to the game situation (state) at any given time. To estimate 
this, we need to represent the game state with soccer spatiotemporal data, define the series 
of discrete actions that a player can take at any time (A), and estimate how probable it 
is that a player takes that action ( �(s, a) ), given the game state. In contrast with typical 
MDP applications, our aim is not to find the optimal policy � (i.e., what is the best action 
the player can take), but to estimate the expected possession value (EPV) from an average 
policy learned from historical data (i.e., which are the most likely actions).

Let Γ be the set of all possible soccer possessions, and r ∈ Γ represents the full path of 
a specific possession. Let Ψ be a high dimensional space, including all the spatiotemporal 
information and a series of annotated events, Tt(r) ∈ Ψ is a snapshot of the spatiotemporal 
data after t seconds from the start of the possession. And let G(r) be the outcome of a pos-
session r, where G(r) ∈ {1,−1, 0} , with 1 being a goal is scored by the team in control of 
the ball, −1 being a goal is conceded, and 0 being that the match half ends.

Definition 1 The expected possession value of a soccer possession at time t is 
EPVt = �[G|Tt]

Note that since the probability of a team scoring equals the opponent team conceding 
probability and vice versa, we can estimate and express the EPV from either team’s per-
spective. Following this, G could equivalently be parameterized as the home team scoring 
next, the away team scoring next, or the half ends. However, we stick to the perspective of 
the controlling team throughout for ease of narrative.

Definition 1 shares similarities with previous approaches in other sports, such as basket-
ball (Cervone et al. 2016) and American football (Yurko et al. 2020), from which part of 
the notation used in this section is inspired. Following this definition, we can observe that 
the EPV is an integration over all the future paths a possession can take at time t, given the 
available spatiotemporal information at that time, Tt . Note that Tt is essentially a subset of 
data from all the possible spatiotemporal information that could be available ( Ψ ), taken at 
time t. At this modeling stage, we want to express that, while Tt(r) could take many dif-
ferent shapes depending on the implementation and data sources available, it essentially 
represents the available data that the outcome of the possession G will be conditioned to, 
when estimating EPVt = �[G|Tt].

This model is designed to be applied on top of spatiotemporal tracking data and assum-
ing the data is accompanied and synchronized with event data, consisting of annotated 
events observed during the match, indicating the location, time, and other possible tags. 
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Let Ψ be the infinite set of possible tracking data snapshots; this modeling approach defines 
a continuous state space, represented by Ψ.

3.3  A decomposed model

To obtain the desired structured modeling of EPV described in Sect. 3.2, we will further 
decompose Definition 1 following the law of total expectation and considering the set of 
possible actions that can be attempted at any given time. While the set of possible actions 
is infinite, in theory, there is a small discrete set of actions that soccer practitioners fre-
quently refer to when describing the game, including passes, shots, ball touches, take-on, 
and aerial duels, among many others. In general, we consider that the smaller set of actions 
that encompasses most observable soccer actions are passes, ball drives, and shots. Argu-
ably, most named soccer actions are concepts derived from these three main mentioned 
actions. In this work, we will consider a pass any action where a player intends to transfer 
the ball’s control to a teammate (including successful and missed passes). Shots are all the 
actions where a player kicks the ball intending to score a goal. We will broadly define a 
ball drive as the action of a player maintaining control of the ball before the next action is 
observed or the game stops (e.g., dead ball or half end).

We assume that the space of possible actions A = {�, �, �} is a discrete set where � , � , 
and � represent pass, ball drive, and shot attempt actions, respectively. We can rewrite Defi-
nition 1 as in Equation 1.

Additionally, to consider that passes can go anywhere on the field, we define Dt to be the 
selected pass destination location at time t and ℙ(Dt|Tt) to be a transition probability model 
for passes. Let L be the set of all the possible locations in a soccer field, then Dt ∈ L . On 
the other hand, for ball drives ( � ) and shots ( � ) we do not consider the destination location 
of the action. Following this, we can rewrite Definition 1 as presented in Equation 2. This 
expression ensures that both the components estimating the expected value of passes and 
the pass selection probability are conditioned to consider every possible destination loca-
tion on the field.

The expected value of passing actions, �[G|D,A = �] , can be further extended to include 
the two scenarios of producing a successful or a missed pass (turnover). We model the 

(1)

(2)
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outcome of a pass as O� , which takes a value of 1 when a pass is successful or 0 in case of 
a turnover. We can then rewrite this expression as in Equation 3. In this step, we are enforc-
ing the expression to consider the impact of the action-outcome, as well as conditioning 
this outcome to the selected destination location.

Equation 4 represents an analogous definition for ball drives, having O� be a random vari-
able taking values 0 or 1, representing a successful ball drive or a loss of ball control fol-
lowing that ball drive, which we will refer as a missed ball drive.

Finally, the expression �[G|A = �] is equivalent to an expected goals model, a popular met-
ric in soccer analytics (Lucey et al. 2014; Eggels 2016) which models the expectation of 
scoring a goal based on shot attempts. In Fig. 2 we present how the outputs of the differ-
ent components presented in this section are combined to produce a single EPV estima-
tion, while also providing numerical and visual information of how each part of the model 
impacts the final value. All the proposed components represent concepts that are familiar to 
soccer practitioners. Ideas such as identifying that a particular pass might have higher scor-
ing value or lower likelihood to be completed, that certain shot attempts are more likely 
to become goals than others, or that the next action to select might be impacted by the 
location of the 22 players and the ball, are part of the analysis mindset of professional 
soccer coaches. By providing coaches with a tool for both analytical and visual interpreta-
tion capabilities that considers these familiar concepts, we expect to ease the integration of 
data-driven analysis within professional coaching staff.

4  Spatiotemporal feature extraction

Each of the decomposed EPV formulation components presents challenging tasks and 
requires sufficiently comprehensive representations of the game states to produce accurate 
estimates. We build these state representations from a wide set of low-level and fine-grained 
features extracted from tracking data. While low-level features are straightforwardly 

(3)

(4)

Fig. 2  Diagram representing the estimation of the expected possession value (EPV) for a given game situ-
ation through the composition of independently trained models. The final EPV estimation of 0.0239 is pro-
duced by combining the expected value of three possible actions the player in possession of the ball can 
take (pass, ball drive, and shot) weighted by the likelihood of those actions being selected. Both pass expec-
tation and probability are modeled to consider every possible location of the field as a destination; thus the 
diagram presents the predicted surfaces for both successful and unsuccessful potential passes, as well as the 
surface of destination location likelihood

▸
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obtained from this data (i.e., a player’s location and speed), fine-grained features are built 
through either statistical models or handcrafted algorithms developed in collaboration with 
a group of soccer match analysts from FC Barcelona. Figure 3 presents a visual representa-
tion of a game situation where we can observe the available players and ball locations and a 
subset of features derived from that tracking data snapshot. Conceptually, we split the fea-
tures into two main groups: spatial features and contextual features. Both feature types are 
described in Sects. 4.1 and 4.2. The full set of features and their usage within the different 
models presented in this work are detailed in “Appendix 1”.

4.1  Spatial features

We consider spatial features directly derived from the spatial location of the players and 
the ball in a given time range. These can be obtained for any game situation regardless of 
the context and comprise mainly physical and spatial information. Table 1 details a set of 
concepts where the specific list of features presented in “Appendix 1” are derived from. 
The main spatial features obtained from tracking data are related to the location of players 
from both teams, the velocity vector of each player, the ball’s location, and the location of 
the opponent’s goal at any time instance. From the player’s spatial location, we produce 

Fig. 3  Visual representation of a tracking data snapshot of spatial and contextual features in a soccer match 
situation. Blue and red dots represent players of the attacking and defending team, respectively, while the 
green dot represents the ball location. The blue and red surface represents the pitch control of each team 
along the field. The grey rectangle covering the red dots represents the defending team’s formation block. 
The green vertical lines represent the defending team’s vertical dynamic pressure lines, while the polygons 
with solid yellow lines represent the players clustered in each pressure line. The black dotted rectangles 
represent the relative locations between dynamic pressure lines. Dotted yellow lines and associated text 
describe the main extracted features (Color figure online)
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a series of features related to the control of space and players’ density along the field. 
The statistical models used for pitch control and pitch influence evaluation are detailed in 
“Appendix 2”.

4.2  Contextual features

To provide a more comprehensive state representation, we include a series of features 
derived from soccer-specific knowledge, which provides contextual information to the 
model. Table  2 presents the main concepts from which multiple contextual features are 
derived.

The concept of dynamic pressure lines refers to players being aligned with their team-
mates within different alignment groups. For example, a typical conceptualization of pres-
sure lines in soccer would be the groups formed by the defenders, the midfielders, and the 
attackers, which tend to be aligned to keep a consistent formation. The details on the calcu-
lation of dynamic pressure lines are presented in “Appendix 3”. By identifying the pressure 
lines, we can obtain every player’s opponent-relative location, which provides high-level 
information about players’ expected behavior. For example, when a player controls the 
ball and is behind the opponent’s first pressure line, we would expect a different pressure 
behavior and turnover risk than when the ball is close to the third pressure line and the 
goal. Also, the soccer experts that accompanied this study considered passes that break 
pressure lines to significantly impact the increase of the goal expectation of the possession.

Table 1  Description of a set of spatial concepts derived from tracking data

Concept type Description

(x,y) location Location of a player, the ball, or attempted action, normal-
ized in the [0,1] range, relative to the pitch’s dimensions. 
The location (0,0) corresponds to the top-left corner

Pitch control Probability of controlling the ball in a specific location
Pitch influence Degree of influence of a set of players in a specific location
Distance between locations Distance in meters between two locations
Angle between locations Angle in degrees between two locations
Player’s velocity Player’s velocity vector in the last second

Table 2  Description of a set of contextual concepts derived from tracking data

Concept type Description

Possession Possessions start and end times are identified to segment each match in 
episodes or sequences of actions

Dynamic pressure lines Relative positioning of players according to the team’s current formation or 
the opponents. These formations change dynamically and are calculated in 
time ranges of a few seconds

Outplayed players Number of players that are surpassed after an action is attempted
Interceptability Features related to the likelihood of intercepting the ball
Baseline event-based models Models built on top of event data, which are used as a baseline to enrich the 

learning of tracking data-based models
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From the concept of outplayed players, we can derive features such as the number of 
opponent players to overcome after a given pass is attempted or the number of teammates 
in front of or behind the ball, among many similar derivatives. In combination with the 
opponent’s formation block location, we can obtain information about whether the pass is 
headed towards the inside or outside of the formation block and how many players are to 
be surpassed. Intuitively, a pass that outplays several players and that is headed towards the 
inside of the opponent block is more likely to produce an increase of the EPV, than a pass 
back directed outside the opponent’s block that adds two more opponent players in front of 
the ball. On the other hand, the interceptability concept is expected to play an essential role 
in capturing opponents’ spatial influence near a shooting option, allowing us to produce 
a more detailed expected goals model. Mainly, we derive features related to the number 
of players pressing the shooter closely and the number of players in the triangle formed 
between the shooter and the posts.

The described spatial and contextual features represent the main building blocks for 
deriving the set of features used for each implemented model. In Sect. 5, we describe in 
great detail the characteristics of these models.

5  Separated component inference

In this section we describe the approaches followed for estimating each of the components 
described in Equations 1, 2, 3 and 4. In general, we use function approximation methods 
to learn models for these components from spatiotemporal data. Specifically, we want to 
approximate some function f ∗ that maps a set of features x, to an outcome y, such that 
y = f ∗(x) . To do this, we will find the mapping y = f (x;�) to learn the values of a set of 
parameters � that result in an approximation to f ∗.

Customized convolutional neural network architectures are used for estimating prob-
ability surfaces for the components involving passes, such as pass success probability, the 
expected possession value of passes, and the field-wide pass selection surface. Standard 
shallow neural networks are used to estimate ball drive probability, expected possession 
value from ball drives and shots, and the action selection probability components. This 
section describes the selection of features x, observed value y, and model parameters � for 
each component.

5.1  Estimating pass impact at every location on the field

One of the most significant challenges when modeling passes in soccer is that, in prac-
tice, passes can go anywhere on the field. Previous attempts on quantifying pass success 
probability and expected value from passes in both soccer and basketball assume that 
the passing options a given player has are limited to the number of teammates on the 
field, and centered at their location at the time of the pass (Power et al. 2017; Cervone 
et al. 2016; Hubáček et al. 2018). However, in order to accurately estimate the impact of 
passes in soccer (a key element for estimating the future pathways of a possession), we 
need to be able to make sense of the spatial and contextual information that influences 
the selection, accuracy, and potential risk and reward of passing to any other location on 
the field. We propose using fully convolutional neural network architectures designed to 
exploit spatiotemporal information at different scales. We extend it and adapt it to the 
three related passing action models we require to learn: pass success probability, pass 
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selection probability and pass expected value. While these three problems necessitate 
from different design considerations, we structure the proposed architectures in three 
main conceptual blocks: a feature extraction block, a surface prediction block, and a 
loss computation block. The proposed models for these three problems also share the 
following common principles in its design: a layered structure of input data, the use of 
fully convolutional neural networks for extracting local and global features and learn-
ing a surface mapping from single-pixel correspondence. We first detail the common 
aspects of these architectures and then present the specific approach for each of the 
mentioned problems.

Layers of low-level and field-wide input data To successfully estimate a full predic-
tion surface, we need to make sense of the information at every single pixel. Let the 
set of locations L, presented in Sect. 3.3, be a discrete matrix of locations on a soccer 
field of width w and height h, we can construct a layered representation of the game 
state Y(Tt) , consisting of a set of slices of location-wise data of size w × h . By doing 
this, we define a series of layers derived from the data snapshot Tt that represent both 
spatial and contextual low-level information for each problem. This layered structure 
provides a flexible approach to include all kinds of information available or extract-
able from the spatiotemporal data, which is considered relevant for the specific problem 
being addressed.

Feature extractor block The feature extractor block is fundamentally composed of 
fully convolutional neural networks for all three cases, based on the SoccerMap archi-
tecture (Fernández and Bornn 2020). Using fully convolutional neural networks, we lev-
erage the combination of layers at different resolutions, allowing us to capture relevant 
information at both local and global levels, producing location-wise predictions that 
are spatially aware. Following this approach, we can produce a full prediction surface 
directly instead of a single prediction on the event’s destination. The parameters to be 
learned will vary according to the input surfaces’ definition and the target outcome defi-
nition. However, the neural network architecture itself remains the same across all the 
modeled problems. This allows us to quickly adapt the architecture to specific problems 
while keeping the learning principles intact. A detailed description of the SoccerMap 
architecture is presented in “Appendix 4”.

Learning from single-pixel correspondance Usually, approaches that use fully convolu-
tional neural networks have the ground-truth data for the full output surface. In more chal-
lenging cases, only a single classification label is available, and a weakly supervised learn-
ing approach is carried out to learn this mapping (Pathak et al. 2015). However, in soccer 
events, only a single pixel ground-truth information is available: for example, the destina-
tion location of a successful pass. This makes our problem highly challenging, given that 
there is only one single-location correspondence between input data and ground-truth. At 
the same time, we aim to estimate a full probability surface. Despite this extreme set-up, 
we show that we can successfully learn full probability surfaces for all the pass-related 
models. We do so by selecting a single pixel from the predicted output matrix, during train-
ing, according to the known destination location of observed passes, and back-propagating 
the loss at a single-pixel level.

In the following sections, we describe the design characteristics for the feature extrac-
tion, surface prediction, and loss computation blocks for the three pass-related problems: 
pass success probability, pass selection probability, and expected value from passes. By 
joining these models’ output, we will obtain a single action-value estimation (EPV) for 
passing actions, expressed by �[G|A = �, Tt] . The detailed list of features used for each 
model is described in “Appendix 1”.
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5.1.1  Pass success probability

From any given game situation where a player controls the ball, we desire to estimate the 
success probability of a pass attempted towards any of the other potential destination loca-
tions, expressed by ℙ(A = �,Dt|Tt) . Figure  4 presents the designed architecture for this 
problem. The input data at time t is conformed by 13 layers of spatiotemporal information 
obtained from the tracking data snapshot Tt consisting mainly of information regarding the 
location, velocity, distance, and angles between the both team’s players and the goal. The 
feature extraction block is composed strictly by the SoccerMap architecture, where rep-
resentative features are learned. This block’s output consists of a 104 × 68 × 1 pass prob-
ability predictions, one for each possible destination location in the coarsened field repre-
sentation. In the surface prediction block a sigmoid activation function � is applied to each 
prediction input to produce a matrix of pass probability estimations in the [0,1] continuous 
range, where �(x) = ex

ex+1
 . Finally, at the loss computation block, we select the probability 

output at the known destination location of observed passes and compute the negative log 
loss, defined in Equation 5, between the predicted ( ̂y ) and observed pass outcome (y).

Note that we are learning all the network parameters � needed to produce a full surface pre-
diction by the back-propagation of the loss value between the predicted value at that loca-
tion and the observed outcome of pass success at a single location. We show in Sect. 6.6 
that this learning set is sufficient to obtain remarkable results.

(5)L(ŷ, y) = −(y ⋅ log(ŷ) + (1 − y) ⋅ log(1 − ŷ))

Fig. 4  Representation of the neural network architecture for the pass probability surface estimation, for a 
coarsened representation of size 104×68. Thirteen layers of spatial features are fed to a SoccerMap feature 
extraction block, which outputs a 104×68× 1 prediction surface. A sigmoid activation function is applied to 
each output, producing a pass probability surface. The output at the destination location of an observed pass 
is extracted, and the log loss between this output and the observed outcome of the pass is back-propagated 
to learn the network parameters
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5.1.2  Expected possession value from passes

Once we have a pass success probability model, we are halfway to obtaining an estima-
tion for �[G|A = �,Dt, Tt] , as expressed in Equation  3. The remaining two components, 
�[G|A = �,Op = 1,Dt, Tt] and �[G|A = �,Op = 0,Dt, Tt] , correspond to the expected value 
of successful and unsuccessful passes, respectively. We learn a model for each expression 
separately; however, we use an equivalent architecture for both cases. The main difference 
is that one model must be learned with successful passes and the other with missed passes 
exclusively to obtain full surface predictions for both cases.

The input data matrix consists of 16 different layers with equivalent location, velocity, 
distance, and angular information to those selected for the pass success probability model. 
Additionally, we append a series of layers corresponding to contextual features related to 
outplayed players’ concepts and dynamic pressure lines. Finally, we add a layer with the 
pass probability surface, considering that this can provide valuable information to estimate 
the expected value of passes. This surface is calculated by using a pre-trained version of a 
model for the architecture presented in Sect. 5.1.1.

The input data is fed to a SoccerMap feature extraction block to obtain a single pre-
diction surface. In this case, we must observe that the expected value of G should reside 
within the [−1, 1] range, as described in Sect. 3.2. To do so, in the surface prediction block, 
we apply a sigmoid activation function to the SoccerMap predicted surface obtaining an 
output within [0, 1]. We then apply a linear transformation, so the final prediction surface 
consists of values in the [−1, 1] range. Notably, our modeling approach does not assume 
that a successful pass must necessarily produce a positive reward or that missed passes 
must produce a negative reward.

The loss computation block computes the mean squared error between the predicted 
values and the reward assigned to each pass, defined in Equation 6. The model design is 
independent of the reward choice for passes. In this work, we choose a long-term reward 
associated with the observed outcome of the possession, detailed in Sect. 6.2.

5.1.3  Pass selection probability

Until now, we have models for estimating both the probability and expected value surfaces 
for both successful and missed passes. In order to produce a single-valued estimation of the 
expected value of the possession given a pass is selected, we model the pass selection prob-
ability ℙ(A = �,Dt|Tt) as defined in Equation 1. The values of a pass selection probability 
surface must necessarily add up to 1, and will serve as a weighting matrix for obtaining the 
single estimate.

Both the input and feature extraction blocks of this architecture are equivalent to those 
designed for the pass success probability model (see Sect.  5.1.1). However, we use the 
softmax activation function presented in Equation  7 for the surface prediction block, 
instead of a sigmoid activation function. We then extract the predicted value at a given 
pass destination location and compute the log loss between that predicted value and 1, 
since only observed passes are used. With the different models presented in Sect. 5.1, we 

(6)MSE(ŷ, y) =
1

N

N∑

i

(yi − ŷi)
2
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can now provide a single estimate of the expected value given a pass action is selected, 
�[G|A = �, Tt].

5.2  Estimating ball drive probability

We will focus now on the components needed for estimating the expected value of ball 
drive actions. In this work’s scope, a ball drive refers to actions where a player keeps 
control of the ball. For this implementation, ball drives lasting more than 1 second are 
split into a set of individual ball drives of 1-second duration. While keeping the ball, the 
player might sustain the ball-possession or lose the ball (either because of bad control, an 
opponent interception, or by driving the ball out of the field, among others). The prob-
ability of keeping control of the ball with these conditions is modeled by the expression 
ℙ(O� = 1|A = �, Tt).

We use a standard shallow neural network architecture to learn a model for this prob-
ability, consisting of two fully-connected layers, each one followed by a layer of ReLu acti-
vation functions, with a single-neuron output preceded by a sigmoid activation function. 
We provide a state representation for observed ball drive actions that are composed of a set 
of spatial and contextual features, detailed in “Appendix 1”. Among the spatial features, 
the level of pressure a player in possession of the ball receives from an opponent player is 
considered to be a critical piece of information to estimate whether the possession is main-
tained or lost. We model pressure through two additional features: the opponent’s team 
density at the player’s location and the overall team pitch control at that same location. 
Another factor that is considered to influence the ball drive probability is the player’s con-
textual-relative location at the moment of the action. We include two features to provide 
this contextual information: the closest opponent’s vertical pressure line and the closest 
possession team’s vertical pressure line to the player. These two variables are expected to 
serve as a proxy for the opponent’s pressing behavior and the player’s relative risk of losing 
the ball. By adding features related to the spatial pressure, we can get a better insight into 
how pressed that player is within that context and then have better information to decide 
the probability of keeping the ball. We train this model by optimizing the loss between 
the estimated probability and observed ball drive actions that are labeled as successful or 
missed, depending on whether the ball carrier’s team can keep the ball’s possession during 
after the ball drive is attempted.

5.3  Estimating ball drive expectation

Finally, once we have an estimate of the ball drive probability, we still need to obtain 
an estimate of the expected value of ball drives, in order to model the expression 
�[G|A = �, Tt] , presented in Equation  4. While using a different architecture for feature 
extraction, we will model both �[G|A = �,O� = 1, Tt] and �[A = �,O� = 0, Tt] , following 
an analogous approach of that used in Sect. 5.1.2.

Conceptually, by keeping the ball, players might choose to continue a progressive run or 
dribble to gain a better spatial advantage. However, they might also wait until a teammate 
moves and opens up a passing line of lower risk or higher quality. By learning a model 

(7)softmax(v)i =
evi

∑K

j=1
evi

for i = 0,… ,K
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for the expression �[G|A = �, Tt] we aim to capture the impact on the expected possession 
value of these possible situations, all encapsulated within the ball drive event. We use the 
same input data set and feature extractor architecture used in Sect. 5.2, with the addition of 
the ball drive probability estimation for each example. Similarly to the loss surface predic-
tion block of the expected value of passes (see Sect. 5.1.2), we apply a sigmoid activation 
function to obtain a prediction in the [0, 1] range, and then apply a linear transformation to 
produce a prediction value in the [−1, 1] range. The loss computation block computes the 
mean squared loss between the observed reward value assigned to the action and the model 
output.

5.4  Expected goals model

Once we have a model for the expected values of passes and ball drives, we only need to 
model the expected value of shots to obtain a full value state-value estimation for the action 
set A. We want to model the expectation of scoring a goal at time t given that a shot is 
attempted, defined as �[G|A = �] . This expression is typically referred to as expected goals 
(xG) and is arguably one of the most popular metrics in soccer analytics (Eggels 2016). 
For estimating this expected goals model we include spatial and contextual features related 
derived from the 22 players’ and the ball’s locations, to account for the nuances of shooting 
situations.

Intuitively, we can identify several spatial factors that influence the likelihood of scoring 
from shots, such as the level of defensive pressure imposed on the ball carrier, the inter-
ceptability of the shot by close opponents, or the goalkeeper’s location. Specifically, we 
add the number of opponents that are closer than 3 meters to the ball-carrier to quantify the 
level of immediate pressure on the player. Additionally, we account for the interceptability 
of the shot (blockage count) by calculating the number of opponent players in the triangle 
formed by the ball-carrier location and the two posts. We include three additional features 
derived from the location of the goalkeeper. The goalkeeper’s location can be considered 
an important factor influencing the scoring probability, particularly since he has the consid-
erable advantage of being the only player that can stop the ball with his hands. In addition 
to this spatial information, we add a contextual feature consisting of a boolean flag indicat-
ing whether the shot is taken with the foot or the head, the latter being considered more 
difficult. Additionally, we add a prior estimation of expected goal as an input feature to this 
spatial and contextual information, produced through the baseline expected goals model 
described in “Appendix 5”. The full set of features is detailed in “Appendix 1”.

Having this feature set, we use a standard neural network architecture with the same 
characteristics as the one used for estimating the ball drive probability, explained in 
Sect. 5.2, and we optimize the mean squared error between the predicted outcome and the 
observed reward for shot actions. The long-term reward chosen for this work is detailed in 
Sect. 6.2.

5.5  Action selection probability

Finally, to obtain a single-valued estimation of EPV we weigh the expected value of each 
possible action with the respective probability of taking that action in a given state, as 
expressed in Equation 1. Specifically, we estimate the action selection probability ℙ(A|Tt) , 
where A is the discrete set of actions described in Sect.  3.2. We construct a feature set 
composed of both spatial and contextual features. Spatial features such as the ball location 
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and the distance and angle to the goal provide information about the ball carrier’s relative 
location in a given time instance. Additionally, we add spatial information related to the 
possession, and team’s pitch control and the degree of spatial influence of the opponent 
team near the ball. On the other hand, the location of both teams’ dynamic lines relative 
to the ball location provides the contextual information to the state representation. We also 
include the baseline estimation of expected goals at that given time, which is expected to 
influence the action selection decision, especially regarding shot selection. The full set of 
features is described in “Appendix 1”. We use a shallow neural network architecture, analo-
gous to those described in Sects. 5.2 and 5.3. This final layer of the feature extractor part 
of the network has size 3, to which a softmax activation function is applied to obtain the 
probabilities of each action. We model the observed outcome as a one-hot encoded vec-
tor of size 3, indicating the action type observed in the data, and optimize the categorical 
cross-entropy between this vector and the predicted probabilities, which is equivalent to the 
log loss.

6  Experimental setup

6.1  Datasets

We build different datasets for each of the presented models based on optical tracking 
data and event data from 633 English Premier League matches from the 2013/2014 and 
2014/2015 season, provided by STATS LLC. This tracking data source consists of every 
player’s location and the ball at a 10Hz sampling rate, obtained through semi-automated 
player and ball tracking performed on match videos. On the other hand, event data con-
sists of human-labeled on-ball actions observed during the match, including the time and 
location of both the origin and destination of the action, the player who takes action, and 
the outcome of the event. Following our model design, we will focus exclusively on the 
pass, ball drive, and shot events. Table 3 presents the total count for each of these events 
according to the dataset split presented below in Sect. 6.3. The definition of success varies 
from one event to another: a pass is successful if a player of the same team receives it, a 
ball drive is successful if the team does not lose control of the ball after the action occurs, 
and a shot is labeled as successful if a goal is scored from that shot. Given this data, we 
can extract the tracking data snapshot, defined in Sect. 3.2, for every instance where any of 
these events are observed. From there, we can build the input feature sets defined for each 
of the presented models. For the detailed list of features used, see “Appendix 1”. For each 
sample, the players’ and the ball locations are normalized so the team taking the action is 
attacking from left to right (i.e., scores goals in the rightmost goal, and concedes goals in 
the leftmost goal of the field).

Table 3  Total count of events 
included within the tracking data 
of 633 English Premier League 
matches from the 2013/2014 and 
2014/2015 season

Data type # Total # Training # Validation # Test % Success

Match 633 379 127 127 –
Pass 480,670 288,619 96,500 95,551 79.64
Ball drive 413,123 284,759 82,271 82,093 90.60
Shot 13,735 8240 2800 2695 8.54
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6.2  Defining the estimands

Each of the components of the EPV structured model has different estimands or out-
comes. For both the pass success and ball drive success probability models, we define a 
binomially distributed outcome, according to the definition of success provided in 6.1. 
These outcomes correspond to the short-term observed success of the actions. For the 
pass selection probability, we define the outcome as a binomially distributed random 
variable. A value of 1 is given for every observed pass in its corresponding destination 
location. We define the action selection model’s estimand as a multinomially distributed 
random variable that can take one of three possible values, according to whether the 
selected action corresponds to a pass, a ball drive, or a shot.

For the EPV estimations of passes, ball drives, and shot actions, respectively, we 
define the estimand as a long-term reward, corresponding to the outcome of the pos-
session where that event occurs. We follow the definition of possession presented 
in Sect.  3.1, where possession starts with a kick-off event and ends when a goal is 
observed, or a match half ends. By doing this, we allow the ball to either go out of the 
field or change control between teams an undefined number of times until the next goal 
is observed. Once a goal is observed, all the actions between the goal and the previous 
one are assigned an outcome of 1 if the action is taken by the scoring team or −1 other-
wise. If the match half ends before observing the next goal, the actions’ outcome value 
is set to 0. Following this, each action gets assigned a long-term reward as an outcome.

Additionally, we will include the possession resetting state described in Sect.  3.1 
to limit possessions’ time extent. There is a low frequency of goals in matches (2.8 
goals on average in our dataset) compared to the number of observed actions (1,433 
on average). Given this, the definition of the time extent of possession is expected to 
influence the balance between individual actions’ short-term value and the long-term 
expected outcome after that action is taken. Let � be the constant representing the time 
in seconds between each action and the next goal; all the actions observed more than � 
time from the observed goal received a reward of 0. For this work, we choose � = 15s , 
which corresponds to the average duration of standard soccer possessions in the avail-
able matches. Note this is equivalent to assuming that the current state of possession 
only has � seconds impact.

For the implementation of this model we will use only passes, ball drives and shot 
actions that are observed within an open-play phase of the possession, and ignore the 
actions occurring during set-pieces. We will say that an action belongs to a set-piece if 
it is observed 5 seconds or less from the start of a direct or indirect free-kick, a corner 
kick, a throw-in or a penalty kick. All the other actions are considered to occur in open-
play. It is important to remark that all the goals available in the dataset are used in this 
implementation, including those occurring within a set-piece time range. This means 
that if a goal is scored in a corner kick, all the actions preceding the goal will be labeled 
with −1 , 1 or 0 (according to the definition of possession described above), except for 
those that are 5 seconds or less closer to the goal. By doing this, our implementation 
focuses on learning the expected value of open-play actions, and leaves for future work 
the modeling of set-pieces, since these involve different spatiotemporal dynamics.
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6.3  Model setting

We randomly sample the available matches and split them into training (379), valida-
tion (127), and test sets (127). From each of these matches, we obtain the observed 
on-ball actions and the tracking data snapshots to construct the set of input features 
corresponding to each model, detailed in “Appendix 1”. The events are randomly shuf-
fled in the training dataset to avoid bias from the correlation between events that occur 
close in time. We use the validation set for model selection and leave the test set as a 
hold-out dataset for testing purposes. We train the models using the adaptive moment 
estimation algorithm (Kingma and Ba 2014), and set the �1 and �2 parameters to 0.9 
and 0.999 respectively. For all the models we perform a grid search on the learning rate 
( {1e−3, 1e−4, 1e−5, 1e−6} ), and batch size parameters ( {16, 32} ). We use early stopping 
with a delta of 1e−3 for the pass success probability, ball drive success probability, and 
action selection probability models, and 1e−5 for the rest of the models.

6.4  Model calibration

We include an after-training calibration procedure within the processing pipeline for the 
pass success probability and pass selection probability models, which presented slight cali-
bration imbalances on the validation set. We use the temperature scaling calibration method 
for both models, a useful approach for calibrating neural networks (Guo et al. 2017). Tem-
perature scaling consists of dividing the vector of logits passed to a softmax function by 
a constant temperature value Tp . This product modifies the scale of the probability vector 
produced by the softmax function. However, it preserves each element’s ranking, impact-
ing only the distribution of probabilities and leaving the classification prediction unmodi-
fied. We apply these post-calibration procedures exclusively on the validation set.

6.5  Evaluation metrics

For the pass success probability, keep ball success probability, pass selection probability, 
and action selection models, we use the cross-entropy loss. Let M be the number of classes, 
N the number of examples, yij the estimated outcome, and ŷij the expected outcome, we 
define the cross-entropy loss function as in Equation 8. For the first three models, where 
the outcome is binary, we set M = 2 . We can directly observe that for this set-up, the cross-
entropy is equivalent to the negative log-loss defined in Equation 5. For the action selection 
model, we set M = 3 . For the rest of the models, corresponding to EPV estimations, we 
can observe the outcome takes continuous values in the [−1, 1] range. For these cases, we 
use the mean squared error (MSE) as a loss function, defined in Equation 6, by first nor-
malizing both the estimated and observed outcomes into the [0, 1] range.

We are interested in obtaining calibrated predictions for all of the models, as well as for 
the joint EPV estimation. Having the models calibrated allows us to perform a fine-grained 
interpretation of the variations of EPV within subsets of actions, as shown in Sect. 7. We 
validate the model’s calibration using a variation of the expected calibration error (ECE) 

(8)CE(ŷ, y) = −

M∑

j

N∑

i

(yij ⋅ log(ŷij))
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presented in Guo et al. (2017). For obtaining this metric, we distribute the predicted out-
comes into K bins and compute the difference between the average prediction in each bin 
and the average expected outcome for the examples in each bin. Equation 9 presents the 
ECE metric, where K is the number of bins, and Bk corresponds to the set of examples in 
the k-th bin. Essentially, we are calculating the average difference between predicted and 
expected outcomes, weighted by the number of examples in each bin. In these experiments, 
we use quantile binning to obtain K equally-sized bins in ascending order.

6.6  Results

Table 4 presents the results obtained in the test set for each of the proposed models. The 
loss value corresponds to either the cross-entropy or the mean squared loss, as detailed in 
Sect. 6.5. The table includes the optimal values for the batch size and learning rate param-
eters, the number of parameters of each model, and the number of examples per second 
that each model can predict.

We can observe that the loss value reported for the final joint model is equivalent to the 
losses obtained for the EPV estimations of each of the three types of action types, showing 
stability in the model composition. The shot EPV loss is higher than the ball drive EPV 
and pass EPV losses, arguably due to the considerably lower amount of observed events 
available in comparison with the rest, as described in Sect. 6.1. While the number of exam-
ples per second is directly dependent on the models’ complexity, we can observe that we 
can predict 899 examples per second in the worst case. This value is 89 times higher than 
the sampling rate of the available tracking data (10Hz), showing that this approach can be 
applied for the real-time estimation of EPV and its components.

(9)ECE =

K∑
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Table 4  The average loss and calibration value for each of the components of the EPV model, as well as for 
the joint EPV estimation, on the corresponding test datasets

Additionally, the table presents the optimal value of the hyper-parameters, total number of parameters, and 
the number of predicted examples by second, for each of the models

Model Loss ECE Batch size Learning rate # Params. Ex. (s)

Pass probability 0.1900 0.0047 32 1e−4 401,259 942
Ball drive probability 0.2803 0.0051 32 1e−3 128 67,230
Pass successful EPV 0.0075 0.0011 16 1e−6 403,659 899
Pass missed EPV 0.0085 0.0015 16 1e−6 403,659 899
Pass selection probability 5.7134 – 32 1e−5 401,259 984
Pass EPV * Pass selection 0.0067 0.0011 – – – –
Ball drive successful EPV 0.0128 0.0022 16 1e−4 153 57,441
Ball drive missed EPV 0.0072 0.0025 16 1e−4 153 57,441
Shot EPV 0.2421 0.0095 16 1e−3 231 72,455
Action selection probability 0.6454 – 32 1e−3 171 23,709
EPV 0.0078 0.0023 – – – –
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Regarding the models’ calibration, we can observe low ECE values along with all the 
models. Figure  5 presents a fine-grained representation of the probability calibration of 
each of the models. The x-axis represents the mean predicted value for a set of K = 10 
equal-sized bins, while the y-axis represents the mean observed outcome among the exam-
ples within each corresponding bin. The circle represents the percentage of examples in the 
bin relative to the total number of examples. In these plots, we can observe that the differ-
ent models provide calibrated probability estimations along their full range of predictions, 
which is a critical factor for allowing a fine-grained inspection of the impact that specific 
actions have on the expected possession value estimation. Additionally, we can observe 
the different ranges of prediction values that each model produces. For example, ball drive 
success probabilities are distributed more often above 0.5, while pass success probabilities 
cover a wide range between 0 and 1, showing that it is harder for a player to lose the ball 

Fig. 5  Probability calibration plots for the action selection (top-left), pass and ball drive probability (top-
right), pass (successful and missed) EPV (mid-left), ball drive (successful and missed) EPV (mid-right), 
pass and ball drive EPV joint estimation (bottom-left), and the joint EPV estimation (bottom-right). Values 
in the x-axis represent the mean value by bin, among 10 equally-sized bins. The y-axis represents the mean 
observed outcome by bin. The circle size represents the percentage of examples in each bin relative to the 
total examples for each model
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when keeping the ball than it is to lose the ball by attempting a pass towards another loca-
tion on the field. The action selection probability distribution is heavily influenced by each 
action type’s frequency, showing a higher frequency and broader distribution on ball drive 
and pass actions compared with shots. The joint EPV model’s calibration plot shows that 
the proposed approach of estimating the different components separately and then merging 
them back into a single EPV estimation provides calibrated estimations. We applied post-
training calibration exclusively to the pass success probability and the pass selection prob-
ability models, obtaining a temperature value of 0.82 and 0.5, respectively.

Having this, we have obtained a framework of analysis that provides accurate estima-
tions of the long-term reward expectation of the possession, while also allowing for a fine-
grained evaluation of the different components comprising the model.

7  Practical applications

In this section, we present a series of novel practical applications derived from the pro-
posed EPV framework. We show how the different components of our EPV representation 
can be used to obtain direct insight in specific game situations at any frame during a match. 
We present the value distribution of different soccer actions and the contextual features 
developed in this work and analyze the risk and reward comprised by these actions. Addi-
tionally, we leverage the pass EPV surfaces, and the contextual variables developed in this 
work to analyze different off-ball pressing scenarios for breaking Liverpool’s organized 
buildup. Finally, we inspect the on-ball and off-ball value-added between every Manchester 
City player (season 14/15) and the legendary attacking midfielder David Silva, to derive an 
optimal team that would maximize Silva’s contribution to the team.

7.1  A real‑time control room

In most team sports, coaches make heavy use of video to analyze player performance, show 
players their correctly or incorrectly performed actions, and even point out other possible 
decisions the player may have taken in a given game situation. The presented structured 
modeling approach of the EPV provides the advantage of obtaining numerical estimations 
for a set of game-related components, allowing us to understand the impact that each of 
them has on the development of each possession. Based on this, we can build a control 
room-like tool like the one shown in Figure 6, to help coaches analyze game situations and 
communicate effectively with players.

The control room tool presented in Figure  6 shows the frame-by-frame development 
of each of the EPV components. Coaches can observe the match’s evolution in real-time 
and use a series of widgets to inspect into specific game situations. For instance, in this 
situation, coaches can see that passing the ball has a better overall expected value than 
keeping the ball or shooting. Additionally, they can visualize in which passing locations 
there is a higher expected value. The EPV evolution plot on the right shows that while the 
overall EPV is 0.032, the best possible passing option is expected to increase this value 
up to 0.112. The pass EPV added surface overlay shows that an increase of value can be 
expected by passing to the teammates inside the box or passing to the teammate outside the 
box. With this information and their knowledge on their team, coaches can decide whether 
to instruct the player to take immediate advantage of these kinds of passing opportunities 
or wait until better opportunities develop. Additionally, the player can gain a more visual 
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understanding of the potential value of passing to specific locations in this situation instead 
of taking a shot. If the player tends to shoot in these kinds of situations, the coach could 
show that keeping the ball or passing to an open teammate has a better goal expectancy 
than shooting from that location.

This visual approach could provide a smoother way to introduce advanced statistics into 
a coaching staff analysis process. Instead of evaluating actions beforehand or only deliver-
ing hard-to-digest numerical data, we provide a mechanism to enhance coaches’ interpreta-
tion and player understanding of the game situations without interfering with the analysis 
process.

7.2  Not all value is created (or lost) equal

There is a wide range of playing strategies that can be observed in modern professional 
soccer. There is no single best strategy found in successful teams from Guardiola’s creative 
and highly attacking FC Barcelona to Mourinho’s defensive and counter-attacking Inter 
Milan. We could argue that a critical element for selecting a playing strategy lies in man-
aging the risk and reward balance of actions, or more specifically, which actions a team 
will prefer in each game situation. While professional coaches intuitively understand which 
actions are riskier and more valuable, there is no quantification of the actual distribution of 
the value of the most common actions in soccer.

From all the passes and ball drive actions described in Sect.  6.1, and the spatial and 
contextual features described in Sect. 4 we derived a series of context-specific actions to 
compare their value distribution. We identify passes and ball drives that break the first, 
second, or third line from the concept of dynamic pressure lines. We define an action (pass 
or ball drive) to be under-pressure if the player’s pitch control value at the beginning of the 
action is below 0.4 and without pressure otherwise. A long pass is defined as a pass action 
that covers a distance above 30 meters. We define a pass back as passes where the desti-
nation location is closer to the team’s goal than the ball’s origin location. We count with 

Fig. 6  A visual control room tool based on the EPV components. On the left, a 2D representation of the 
game state at a given frame during the match, with an overlay of the pass EPV added surface and selection 
menus to change between 2D and video perspective, and to modify the surface overlay. On the bottom-left 
corner, a set of video sequence control widgets. On the center, the instantaneous value of selection prob-
ability of each on-ball action, and the expected value of each action, as well as the overall EPV value. On 
the right, the evolution of the EPV value during the possession and the expected EPV value of the optimal 
passing option at every frame



1413Machine Learning (2021) 110:1389–1427 

1 3

manually labeled tags indicating when a pass is a cross and when the pass is missed, from 
the available data. We identify lost balls as missed passes and ball drives ending in recov-
ery by the opponent. For all of these action types, we calculate the added value of each 
observed action (EPV added) as the difference between the EPV at the end and the start of 
the action. We perform a kernel density estimation on the EPV added of each action type 
to obtain a probability density function. In Figure 7 we compare the density between all the 
action types. The density function value is normalized in the [0, 1] range by dividing by the 
maximum density value in order to ease the visual comparison between the distributions.

From Figure 7, we can gain a deeper understanding of the value distribution of differ-
ent types of actions. From passes that break lines, we can observe that the higher the line, 
the broader the distribution, and the higher the extreme values. While passes breaking the 
first line are centered around 0 with most values ranging in [−0.01, 0.015] , the distribu-
tion of passes breaking the third line is centered around 0.005, and most passes fall in the 
interval [−0.025, 0.05] . Similarly, ball drives that break lines present a similar distribution 
as passes breaking the first line. Regarding the level of spatial pressure on actions, we can 
see that actions without pressure present an approximately zero-centered distribution, with 
most values falling in a [−0.01, 0.01] range. On the other hand, actions under pressure pre-
sent a broader distribution and a higher density on negative values. This shows both that 
there is more tendency to lose the ball under pressure, hence losing value, and a higher 
tendency to increase the value if the pressure is overcome with successful actions. Whether 

Fig. 7  Comparison of the probability density function of ten different actions in soccer. The density func-
tion values are normalized into the [0,  1] range. The normalization is obtained by dividing each density 
value by the maximum observed density value
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crosses are a successful way for reaching the goal or not has been a long-term debate in 
soccer strategy. We can observe that crosses constitute the type of action with a higher 
tendency to lose significant amounts of value; however, it does provide a higher probability 
of high value increases in case of succeeding, compared to other actions. Long passes share 
a similar situation, where they can add a high amount of value in case of success but have 
a higher tendency to produce high EPV losses. For years, soccer enthusiasts have argued 
about whether passing backward provides value or not. We can observe that, while the 
EPV added distribution of passing back is the narrowest, near half of the probability lies on 
the positive side of the x-axis, showing the potential value to be obtained from this type of 
action. Finally, losing the ball often produces a loss of value. However, in situations such as 
being close to the opponent’s box and with pressure on the ball carrier, losing the ball with 
a pass to the box might provide an increment in the expected value of the possession, given 
the increased chance of rebound.

7.3  Pressing liverpool

A prevalent and challenging decision that coaches face in modern professional soccer is 
how to defend an organized buildup by the opponent. We consider an organized buildup 
as a game situation where a team has the ball behind the first pressure line. When deciding 
how to press, a coach needs to decide first in which zones they want to avoid the opponent 
receiving passes. Second, how to cluster their players in order to minimize the chances of 
the opponent moving forward. This section uses EPV passing components and dynamic 
pressure lines to analyze how to press Brendan Rodgers’ Liverpool (season 14/15).

We identify the formation being used every time by counting the number of players in 
each pressure line. We assume there are only three pressure lines, so all formations are pre-
sented as the number of defenders followed by the number of midfielders and forwards. For 
every formation faced by Liverpool during buildups, we calculate both the mean off-ball 
and on-ball advantage in every location on the field. The on-ball advantage is calculated as 
the sum of the EPV added of passes with positive EPV added. On the other hand, the off-
ball advantage is calculated as the sum of positive potential EPV added. We then say that 
a player has an off-ball advantage if he is located in a position where, in case of receiving 
a pass, the EPV would increase. Figure 8 presents two heatmaps for every of the top 5 for-
mations used against Liverpool during buildups, showing the distribution where Liverpool 
obtained on-ball and off-ball advantages, respectively. The heatmaps are presented as the 
difference with the mean heatmap in all of Liverpool’s buildups during the season.

We will assume that the coach wants to avoid Liverpool playing inside its team block 
during buildups. We can see that when facing a 3-4-3 formation, Liverpool can create 
higher off-ball advantages before the second pressure line and manages to break the first 
line of pressure by the inside successfully. Against the 4-4-2, Liverpool has more difficul-
ties in breaking the first line but still manages to do it successfully while also generating 
spaces between the defenders and midfielders, facilitating long balls to the sides. If the 
coaches’ team does not have a good aerial game, this would be a harmful way of press-
ing. We can see the 4-3-3 is an ideal pressing formation for avoiding Liverpool playing 
inside the pressing block. This pressing style pushes the team to create spaces on the out-
side, before the first pressure line and after the second pressure line. In the second row, 
we can observe that Liverpool struggles to add value by the inside and is pushed towards 
the sides when passing. The 4-2-4 is the formation that avoids playing inside the block the 
most; however, it also allows more space on the sides of the midfielders. We can see that 
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Liverpool can take advantage of this and create spaces and make valuable passes towards 
those locations. If the coach has fast wing-backs that could press receptions on long balls 
to the sides, this could be an adequate formation; otherwise, 4-3-3 is still preferable. 
Finally, the 5-3-2 provides significant advantages to Liverpool that can create spaces both 
by the inside above the first pressure line and behind the defenders back, while also playing 
towards those locations effectively.

This kind of information can be highly useful to a coach to decide tactical approaches 
for solving specific game situations. If we add the knowledge that the coach has of his play-
ers’ qualities, he can make a fine-tuned design of the pressing he wants his team to develop.

7.4  Growing around David Silva

Most teams in the best professional soccer leagues have at least one player who is the 
key playmaker. Often, coaches want to ensure that the team’s strategy is aligned with 
maximizing the performance of these key players. In this section, we leverage tracking 
data and the passing components of the EPV model to analyze the relationship between 
the well known attacking midfielder David Silva and his teammates when playing at 
Manchester City in season 14/15. We calculated the playing minutes each player shared 
with Silva and aggregated both the on-ball EPV added and expected off-ball EPV added 
of passes between each player pair for each match in the season. We analyze two differ-
ent situations: when Silva has the ball and when any other player has the ball and Silva 
is on the field. We also calculate the selection percentage, defined as the percentage 
of time Silva chooses to pass to that player when available (and vice versa). Figure 9 
presents the sending and receiving maps involving David Silva and each of the two play-
ers with more minutes by position in the team. Every player is placed according to the 
most commonly used position in the league. Players represented by a circle with a solid 

Fig. 8  In the first row, one distribution for every formation Liverpool’s opponents used during Liverpool’s 
organized buildups, showing the difference between the distribution of off-ball advantages and the mean 
distribution. The second row is analogous to the first one, presenting the on-ball EPV added distributions. 
The green circle represents the ball location (Color figure online)
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contour have the higher sum of off-ball and on-ball EPV in each situation than the team-
mate assigned for the same position, presented with a dashed circle. The size of the 
circle represents the selection percentage of the player in each situation. We represent 
off-ball EPV added by the arrows’ color, and on-ball EPV added of attempted passes by 
the arrow’s size.

We can see that both the wingers and forwards generate space for Silva and receive 
high added value from his passes. However, the most frequently selected player is the 
central midfielder Yaya Touré, who also looks for Silva often and is the midfielder 
providing the highest value to him. Regarding the other central midfielder, Fernand-
inho has a better relationship with Silva in terms of received and added value than Fer-
nando. Silva shows a high tendency to play with the wingers; however, while Milner and 
Jovetic can create space and receive value from Silva, Navas and Nasri find Silva more 
often, with higher added value. Based on this, the coach can decide whether he prefers 
to lineup wingers that can benefit from Silva’s passes or wingers, increasing Silva’s par-
ticipation in the game. A similar situation is presented with the right and left-backs. 
Additionally, we can observe that Silva tends to be a highly preferable passing option 
for most players. This information allows the coach to gain a deeper understanding of 
the effective off-ball and on-ball value relationship that is expected from every pair of 
players and can be useful for designing playing strategies before a match.

Fig. 9  Two passing maps representing the relationship between David Silva and each of the two players 
with more minutes by position in the Manchester City team during season 14/15. The figure on the left 
represents passes attempted by Silva, while the figure on the right represents passes received by Silva. The 
color of the arrow represents the average expected off-ball EPV added of the passes. The size of the circle 
represents the selection percentage of the destination player of the pass. Circles present a solid contour 
when that player is considered better for Silva than the teammate in the same position. The size of the arrow 
represents the mean on-ball EPV added of attempted passes. Players are placed according to their highest 
used position on the field. All metrics are normalized by minutes played together and multiplied by 90 min-
utes (Color figure online)
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8  Discussion

This paper presents a comprehensive approach for estimating the instantaneous expected 
value of possessions in soccer. One of the main contributions of this work is showing 
that by deconstructing a single expectation into a series of lower-level statistical com-
ponents and then estimating each of these components separately, we can gain greater 
interpretation insight into how these different elements impact the final joint estima-
tion. Also, instead of depending on a single-model approach, we can make a more spe-
cialized selection of the models, learning approach, and input information that is better 
suited for learning the specific problem represented by each sub-component of the EPV 
decomposition. The deep learning architectures presented for the different passing com-
ponents produce full probability surfaces, providing rich visual information for coaches 
that can be used to perform fine-grained analysis of player and team performances. We 
show that we can obtain calibrated estimations for all the decomposed model compo-
nents, including the single-value estimation of the expected possession value of soccer 
possessions. We develop a broad set of novel spatial and contextual features for the dif-
ferent models presented, allowing rich state representations. Finally, we present a series 
of practical applications showing how this framework could be used as a support tool 
for coaches, allowing them to solve new upcoming questions and accelerating the prob-
lem-solving necessities that arise daily in professional soccer.

We consider that this work provides a relevant contribution to improving the prac-
titioners’ interpretation of the complex dynamics of professional soccer. With this 
approach, soccer coaches gain more convenient access to detailed statistical estimations 
that are unusual in their practice and find a visual approach to analyze game situations 
and communicate tactics to players. Additionally, on top of this framework, there is a 
large set of novel research that can be derived, including on-ball and off-ball player per-
formance analysis, team performance and tactical analysis for pre-match and post-match 
evaluation, player profile identification for scouting, young players evolution analysis, 
match highlights detection, and enriched visual interpretation of game situations, among 
many others.

9  Limitations and future work

In this section we present the main limitations of the EPV framework and provide 
guidelines for improving the model in future work.

Player and team-specific features These kind of features, such as player skills or team-
level playing tendencies could provide enriched information for producing more accurate 
estimation in specific game situations. Some examples of these features are: a player-pass-
ing skill feature (e.g. average pass completion) for the pass probability model, an action-
selection feature indicating the either the player’s or the team’s tendency to pass, keep the 
ball or shoot, or a player-level shooting skill. Alternatively, a series of components could 
be added to the different neural network architectures proposed in this work to learn team-
specific features, within the same learning process. For example, a group of neurons encod-
ing team passing-style could be added to produce pass-likelihood surfaces adjusted to 
each team in the dataset. However, it is important to notice that considering player-level or 
team-level features could make the attribution of value more challenging.
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Meta-information of the game and team state The overall estimation of EPV could 
benefit from including information such as the time when actions occur, the current 
score, an estimation of the match importance, known rivalry between the two teams, or 
an estimation of a team’s mental pressure at any given time (Bransen et al. 2019).

Training with a more recent and broader dataset The current model could be improved by 
incorporating tracking data from different leagues other than the English Premier League, in 
order to capture soccer spatiotemporal dynamics more broadly. Also, training the model with 
more recent tracking data might help capturing up-to-date characteristics of soccer such as a 
higher physical conditions of players or a tendency to prefer short passes over long passes.

Training set-pieces separately The components related to passes and shots could be 
improved by differentiating between open-play and set-pieces, at an implementation level.

Appendix 1: List of spatial and contextual features features

Tables 5 and 6 describe the complete set of features used as input for each presented model. 
The concept type column refers to the general feature grouping described in Sect. 4, including 
a prefix indicating whether the feature is a spatial feature (SP), a contextual feature (CX), or 
other types (OT). Model names are presented with acronyms, including: pass success prob-
ability (PP), pass selection probability (PS), pass success and missed EPV (PE), ball drive 
probability (DP), ball drive success and missed EPV (DE), action selection probability (AS), 
and shot EPV (SE). For PP, PS, and PE models, the input features are either sparse or full 
matrix of 104 × 68 . When the feature description indicates the value is set of every location, 
this input will correspond to a full matrix; otherwise, it corresponds to a sparse matrix. For 
the rest of the models, each feature is provided as a single variable. We refer to the team in 
control of the ball as the attacking team, and its players as the attacking players. We refer to 
the other team as the defending team, and its players as the defending players. All the features 
are normalized, assuming a left to right attacking direction of the team in control of the ball 
(attacking team). 

Appendix 2: Pitch control and influence model

The concepts of pitch influence and pitch control are adapted from a recent statistical approach 
based on modeling players’ reachability surface through normal distributions (Fernandez and 
Bornn 2018). The pitch influence I, shown below at expression 10 is a normally distributed 
random variable whose mean vector and covariance matrix are adjusted to account for players’ 
velocity and ball location. Let pi be player’s i location in 1 second and let fi(p, t) be the value 
of the probability density function of I related to player i at location p and time t, we obtain the 
player’s influence value at location Ii(p, t) following expression 11.

This influence value is normalized in the [0,1] range and provides a degree of influence 
for a given player. Having a quantification of individual players influence, we can calculate 

(10)I ∼N(�, Σ)

(11)Ii(p, t) =
fi(p, t)

fi(pi, t))
.
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Fig. 10  Surface representing the attacking team’s pitch control. The dots correspond to players’ locations 
where the attacking team’s players appear in yellow and the opponent team’s players in blue. The ball loca-
tion is represented as a green circle. White arrows show the direction of the player’s velocity vector, ending 
at the expected location in one second (Color figure online)

Fig. 11  The sum of player pitch influence in every location for every player in the attacking team. The 
dots correspond to players’ locations where the attacking team’s players appear in yellow and the opponent 
team’s players in blue. The ball location is represented as a green circle. White arrows show the direction of 
the player’s velocity vector, ending at the expected location in one second (Color figure online)
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pitch control of a team PC as the difference between the added influence of the possession 
team’s players and the influence of the opponent team’s players, at any given location, as 
shown in equation 12

where � is the logistic function, �1 and �2 are weight parameters to allow balancing each 
team’s overall influence, and � is a shrinking factor for the input logistic function. Fig-
ure 10 presents this probabilistic pitch control surface on a given soccer situation, while 
Figure 11 presents the influence surface of the attacking team players. Pitch influence and 
pitch control provide a rich summary of players’ spatial distribution and impact along the 
playing surface and can be used to enrich the information on locations where players are 
not directly present but are having a certain influence from soccer’s tactical perspective. In 
this work we set these parameters to the following values �1 = 1 , �2 = 1 , and � = 1. 

Appendix 3: Dynamic pressure lines model

As described in Sect. 4.2, we consider a contextual factor identifying the team player’s 
alignment in a given time instance. The alignment of players is often observed in soccer 
through concepts such as team formation or the identification of forwards, midfielders, 
and defenders. However, this organization of players is manifested dynamically during 
the game. Instead of following a strict and predefined positioning, players tend to adapt 
their location to the specific situation of a given time instance in the game. Specifically, 
while defending, players tend to align within groups of pressure across the field. We call 
this alignment group dynamic pressure lines.

Extending from this idea, we first define dynamic pressure lines with higher generality 
as the centroids of a number k of clusters representing hard partitions for players of the 
same team, where the intra-cluster distance is minimized, and the inter-cluster distance is 
maximized. If the clustering is based on the breadth-wise location of players (x-axis), we 
call them vertical dynamic pressure lines, and if it is based on the depth-wise location of 
players (y-axis), we call them horizontal dynamic pressure lines.

Definition 2 Given a set of n player locations P = {p1,… , pn} , and let d(p,  q) be the 
Euclidean distance between p and q, and D(L1, L2) the distance between clusters L1 and L2 , 
the set L of dynamic pressure lines is conformed by the average locations of the player’s 
belonging to the complete-linkage clustering of P in k partitions, such that for L1, L2 ∈ L 
and D(L1, L2) = maxpL1 ,pL2 d(p

L1 , pL2 ) . When pi = (xi, yi) = (xi, 0) we call L the set of verti-
cal dynamic pressure lines, and when pi = (xi, yi) = (0, yi) we call L the set of horizontal 
dynamic pressure lines.

(12)PC(p, t) = �(�(�1

∑

i

Ii(p, t) − �2

∑

j

Ij(p, t)))

Fig. 12  SoccerMap architecture used as the feature extractor block component. A layered input of a game 
state snapshot is fed to a network which produces the input at 1x, 1/2x and 1/4x sampling scales in order to 
capture both local and global features. Outputs at different sampling rates are merged together and upsam-
pled to produce a single prediction surface (Color figure online)

▸
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In this work, we set k = 3 to identify vertical pressure lines, which conceptually rep-
resent forwards, midfielders, and defenders. For horizontal pressure lines, we set k = 3 , 
which will tend to define the breadth-wise borderlines of the team formation block and 
split the inside of the block into two parts.

Appendix 4: SoccerMap architecture

Fully convolutional networks focus on estimating a full prediction surface from the input 
data, contrasting with the typical application of convolutional neural networks for classifi-
cation, where outcomes tend to be either binomially or multinomially distributed. Such is 
the case of the image segmentation problem where, given an image, we intend to estimate 
a pixel-level correspondence to multiple objects present in the input image (Long et  al. 
2015; Yu and Koltun 2015; Pathak et al. 2015). SoccerMap is modeled as a fully convo-
lutional network-based architecture. In its design, SoccerMap uses several components of 
successful architectures in other application fields such as convolutional filters, pooling and 
upsampling, fusion layers, and activation layers. Figure 12 presents the standard architec-
ture for the feature extractor block, for a soccer field representation of sizes 104×68. First, 
the input data constituted by the layered data snapshot Υt goes through two layers of 32 
and 64 convolutional filters, respectively, with 5 × 5 activation fields and stride of 1, and 
then is downsampled to 1/2x using max-pooling. This process is repeated twice, so three 
outputs of convolutional filters are produced at 1x, 1/2x, and 1/4x sampling scales. Each 
of the three outputs at each scale is fed to convolutional prediction layers that produce a 
prediction matrix at each sampling scale. The predictions at each scale are merged (previ-
ous upsampling to match dimensions) through convolutional layers with linear activation, 
called fusion layers. The output is fed to a final prediction layer constituted by 1 × 1 con-
volutional filters of stride 1, producing a 104×68× 1 surface. The combination of layers at 
different resolutions allows capturing relevant information at both local and global levels, 
with the expectation of producing location-wise predictions that are spatial-aware. This 
approach is inspired by a nonlinear feature hierarchy called deep jet (Long et al. 2015).

Appendix 5: Baseline expected goals model

In both the action selection and goal expectation models we include a feature representing 
a general estimation of the goal expectation given a shot is taken, based on event data. In 
order to produce a calibrated baseline estimation of expected goals, we use a wide dataset 
of event data provided by OPTA, which contains 117, 948 shot events and 12, 266 goals 
as detailed in Table 7. Despite only providing the location and time of observed shots, this 
dataset is considerably larger than the 13, 735 shots available in the tracking data dataset 

Table 7  Total count of matches 
and shot events included within 
the event data dataset

Data type Source # Total # Training # Test % Goals

Match Event 4679 3509 1170 –
Shot Event 117,948 87,980 30,645 10.4
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(see Sect. 6.1). Event data has been used successfully in previous work to obtain a cali-
brated estimation of expected goals (Eggels 2016).

We use a set of spatial features by the event location and the distance and angle between 
the ball location and the goal. Contextual features are composed of a one-hot encoded vec-
tor indicating the attacking type at the moment of the event (open-play, set-piece, free-kick, 
corner, penalty), and a boolean variable indicating whether the action is taken with the 
head or not. The matches are split into a training and test set. For every shot in the dataset, 
we label the outcome as 1 for the shots resulting in a goal, and 0 otherwise. We build the 
model using the extreme gradient boosting algorithm XGBoost (Chen and Guestrin 2016), 
and we perform an exhaustive grid-search on the following hyper-parameters of the model: 
number of trees ( {50, 100, 250} ), learning rate ( {1e − 3, 1e − 2, 1e − 1} ), and maximum 
depth ( {3, 5, 10} ). Model selection is performed through a K-fold cross-validation proce-
dure on the training set, with K = 10 . All the features are standardized, obtaining a scaled 
feature set where each variable has a mean of 0 and a unitary standard deviation.

The best model presented a log loss value of 0.2540 and a calibration ECE value of 
0.00594, in the test set. The parameters of the best model where: 100 trees, a maximum 
depth of 3, and a learning rate of 1e − 1.
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