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Introduction
Hemoglobinopathies are caused by genetic muta-
tions that lead to major changes in the hemo-
globin molecule structure. This causes 
dysfunctions related to changes in shape, oxygen-
carrying capacity, or ability to clump together, 
leading to obstruction of the vascular system.1 
Hemoglobinopathies typically fall into two main 
groups: thalassemia syndromes and structural 
hemoglobin variants. Alpha (α)- and β-
thalassemia are the main types of thalassemia; the 
main structural hemoglobin variants are HbS, 
HbE, and HbC. There are many subtypes and 
combined types in each group.2,3 Sickle cell dis-
ease (SCD), the most common inherited blood 
disorder, is a disorder of chronic hemolysis, vas-
cular injury, and tissue ischemia affecting multi-
ple organ systems.

In SCD, erythrocytes undergo rapid yet reversible 
shape changes because of deoxygenation. 

Intracellular polymerization of HbS molecule 
alters the normal flexible biconcave shape into an 
elongated rigid form. Sickled erythrocytes adhere 
to the endothelium of blood vessels, leading to 
vasospasms, vasoconstriction, and inflamma-
tion.4,5 Endothelial adhesion is also significantly 
affected by alterations in erythrocyte hydration.6 
Because of their increased viscosity, these sickled 
red blood cells (RBCs) sludge in the circulatory 
system causing obstruction of the microvascula-
ture,7 leading to a broad range of acute and 
chronic complications from oxygen deficiency in 
various organs and tissues. Vaso-occlusive crisis 
can be precipitated by multiple factors including 
cold weather-induced vasospasm, hypoxia, infec-
tion, dehydration, acidosis, and alcohol 
intoxication.8

Although individuals with homozygous hemo-
globin S disease (HbSS) present with more severe 
systemic morbidities than those with HbSC, 
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individuals with HbSC show an increased risk of 
developing retinal disease.9–11 SCD can affect 
every vascular bed in the eye; however, the most 
significant changes occur in the retina. These 
changes can be classified into proliferative sickle 
retinopathy (PSR) and non-proliferative retinal 
changes.12 PSR can ultimately lead to visual loss 
through ischemia, vitreous hemorrhage, or retinal 
detachment. Therefore, early screening to detect 
neovascularization can prevent the consequences 
of PSR.13 Application of newer, more sensitive 
imaging modalities to screen the pediatric popu-
lation will play a major role in early detection of 
sickle retinopathy in children and adolescents.

Here we review the various ophthalmic manifes-
tations of hemoglobinopathies in the pediatric 
population as well as the latest technologies to 
detect disease.

Ophthalmological manifestations of sickle 
cell disease

Anterior segment involvement
Comma-shaped vessels, usually found in the infe-
rior bulbar conjunctiva, also known as “conjunc-
tival sign,” are a common presentation.14,15 These 
conjunctival changes vary with the oxygenation 
status and are best seen under high magnification. 
They are more commonly observed in HbSS than 
in HbSc.16 Hyphema of the anterior chamber is 
another possible complication due to SCD. 
Hyphema can lead to clogging of the trabecular 
meshwork subsequently leading to elevated 
intraocular pressure (IOP) even with relatively 
small amount of intracameral blood.17 Numerous 
publications have reported risk of retinal artery 
occlusion even with modest IOP elevations.18,19 

Studies have suggested surgical intervention for 
hyphemas of any size with IOP more than 24 
mmHg for more than 24 hours in individuals with 
sickle cell trait or disease;20 however, there is little 
scientific evidence supporting surgical interven-
tions in these case scenarios.21 The decision for 
medical and surgical management of these 
patients should be made on a case-by-case basis, 
until more evidence is readily available.

Orbital involvement
Orbital involvement is a less common manifesta-
tion of SCD, yet it is critical to recognize the 
potential risk of loss of vision. Although vaso-
occlusive crises often affect the bone marrow of 
vertebrae and long bones, they may involve the 
orbital walls in children where the marrow content 
is higher.22–24 Presentation may be severe pain, lid 
edema, proptosis, ophthalmoplegia as well as 
diplopia.22–25 Orbital bone infarction can lead to 
an orbital hematoma, which in turn may lead to 
orbital compartment syndrome.26 Both osteomy-
elitis and orbital cellulitis may present similarly, 
and thus confirmation of the diagnosis of orbital 
bone infarction is of great importance.27,28 The 
lacrimal glands can be affected, presenting as 
either bilateral or unilateral pain and swelling.29

Retinal involvement
Retinopathy is the most serious and vision threat-
ening manifestation of SCD. Sickle cell retinopa-
thy can either be non-proliferative (NPSR) or 
proliferative sickle retinopathy (PSR). Described 
clinical findings found in NPSR include salmon-
patch hemorrhages (Figure 1), iridescent spots, 
and black sunbursts, all of which result from 
peripheral arterial occlusion.30,31 These lesions are 
not typically associated with vision loss as they 
occur in the periphery. Other findings include 
angioid streaks, sickle disk sign, retinal depression 
sign, posterior vascular tortuosity, and retinoschi-
sis.32,33 Peripheral neovascularization seen in PSR 
can lead to serious visual loss due to its sequelae as 
vitreous hemorrhage and retinal detachment. The 
most widely used scale by which retinal changes 
are graded is the Goldberg classification.34

Goldberg described the natural history of untreated 
PSR and the sequence of retinal changes. Stage I 
consists of peripheral arteriolar occlusions, and 
stage II is characterized by peripheral arteriovenous 
anastomosis (Figure 2). Stage III is defined by the 
classic “sea-fan” neovascularization that takes place 

Figure 1.  A widefield fundus photograph showing multiple salmon-patch 
hemorrhages (white arrows) as a result of peripheral arteriolar occlusion in 
a patient with sickle cell disease.
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at the border of perfused and non-perfused retina 
(Figure 3). Auto-infarction occurs spontaneously 
in 20–60% of sea fans as a result of chronic, recur-
rent vaso-occlusion within the sea fans them-
selves.35 Stage IV is characterized by vitreous 
hemorrhage, which is seen when the sea fan bleeds, 
and stage V is defined by tractional retinal detach-
ment resulting from peripheral fibrovascular mem-
branes.34,35 This classification scheme was later 
updated by Penman, where he more strictly defined 
proliferative retinopathy as requiring the presence 
of neovascularization (Goldberg Stage III–V).36

While clinical exam findings are essential in detect-
ing retinopathy signs and preventing visual loss, 
newer imaging modalities have made earlier detec-
tion and screening for retinopathy more possible.

Ophthalmic imaging techniques in  sickle 
cell disease
Recent advances in retinal imaging modalities, 
including ultra-widefield fluorescein angiography 
(UWFA), spectral-domain optical coherence 
tomography (SD-OCT), and optical coherence 
tomography angiography (OCT-A), have revealed 
significant retinal findings in asymptomatic sickle 
cell patients.37–42 PSR presence has been signifi-
cantly linked to some of the silent findings.41

Ultra-widefield fluorescein angiography
Fluorescein angiography (FA) has served as the 
gold standard for diagnosis of PSR for over 40 
years. FA allows observation of areas of dye pool-
ing, leakage, and staining, as well as dynamic vis-
ualization of blood flow.43 This allows for 

documentation of sickle cell retinopathy changes 
in the periphery and appropriate grading on the 
Goldberg scale. Standard FA cameras permit 
images ranging from 30° to 60° in a single expo-
sure. A 75° field of view could be achieved by 
using 7-standard fields. More recently, UWFA 
can capture up to 200° of retina in a single expo-
sure and capture more than twice as much retina 
compared to conventional FA.44,45 This has 
allowed for more efficient imaging and reduced 
the need for excessive patient cooperation and 
technical expertise.45 UWFA has a significant uti-
lization in PSR screening because the disease pri-
marily affects the peripheral vasculature. In a 
retrospective study done on 12 eyes of 6 SCD 
patients, UWFA was able to detect peripheral vas-
cular changes missed on the classical 7-standard 
field photograph in all but one eye. In addition, 

Figure 2.  Ultra-widefield fluorescein angiography showing large areas 
of peripheral non-perfusion (yellow asterisks), arteriolar occlusion (red 
arrow), and arteriovenous anastomosis (blue arrow) in a patient with sickle 
cell retinopathy.

Figure 3.  Ultra-widefield fluorescein angiography (left) and widefield fundus photography showing an area of 
sea-fan neovascularization (white arrow) surrounded by retinal laser photocoagulation marks (asterisks) in a 
patient with sickle cell retinopathy (Goldman stage III).
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peripheral vascular changes missed on clinical 
examination by experienced ophthalmologists 
were detected by UWFA in 25% of the eyes.40 
Despite the limited data available on comparisons 
of standard FA and UWFA, UWFA is likely more 
sensitive in detecting peripheral proliferative 
retinopathy.

Spectral-domain OCT and OCT angiography
SD-OCT is a non-invasive imaging modality that 
utilizes reflected light to produce near-histologi-
cal cross-sectional and en-face images of the ret-
ina. It can highlight areas of photoreceptor loss, 
nerve fiber layer change, and thinning or thicken-
ing of the retina in response to ischemic insults 
and neovascularization. OCT-A is a more recent 
modality using the principle of diffractive particle 
movement of moving RBCs to determine vessel 
location through various segments of the eye 
without the need of any intravascular dyes. This 
allows for the ability to image the flow in both 
retinal and choroidal vasculature, which can be 
displayed in en-face and depth encoded slabs. 
This provides detailed imaging of the superficial 
and deep retinal vascular plexus, and choriocapil-
laris. Both SD-OCT and OCT-A can be essential 
in detecting early signs of PSR.

SD-OCT has been used recently to assess subclini-
cal macular thinning due to macular ischemia 
(Figure 4). Temporal and central macular thin-
ning, also referred to as macular splaying, has been 
reported in some patients with SCD.37,41,46,47,48 
These discrete areas of macular thinning have been 
significantly linked to PSR in a 2015 retrospective 
study.46 Previous case series and histopathological 

studies have reported inner retinal layer thinning in 
SCD patients with either symptomatic or asymp-
tomatic retinopathy.49–52 The predictive ability of 
temporal macular thinning (atrophy) for neovas-
cularization in PSR patients was tested in a case–
control study on 38 patients. Temporal macular 
atrophy was found to have a positive predictive 
value of 83% and a negative predictive value of 
13% for identifying neovascularization, demon-
strating that the presence of temporal macular 
atrophy suggests the concurrent presence of neo-
vascularization and PSR.53 In addition, a recent 
retrospective case series correlated the degree of 
peripheral ischemia on UWFA to areas of macular 
thinning on SD-OCT.54 Therefore, the use of 
SD-OCT in early diagnosis and screening of retin-
opathy could be useful because of the association 
between macular thinning and PSR.

Although the etiology behind the macular thinning 
in PSR patients is not entirely understood, studies 
have suggested it might be due to ischemia of the 
deep capillary plexus.55,56 Using microperimetry, a 
prospective study on 19 SCD patients demon-
strated a significant decrease in retinal sensitivity in 
areas of macular thinning on SD-OCT compared to 
areas without thinning or controls, suggesting func-
tional consequences of this macular thinning.57 In 
addition, SCD with focal macular thinning has 
associated thinning in the peripapillary retinal nerve 
fiber layer compared to those without focal macular 
thinning.39 OCT-A is likely more sensitive in detect-
ing early areas of macular ischemia when compared 
to traditional FA.58 This difference was noted in a 
study that reported that OCT-A was capable of 
demonstrating microvascular abnormalities in the 
macula in 18 eyes of 9 patients, while FA appeared 

Figure 4.  Optical coherence tomography angiography demonstrating decreased vascular density (asterisk) in the superficial capillary 
plexus (a) and deep capillary plexus (b). Areas of vascular loss correspond to temporal macular thinning (white arrow) shown on 
spectral-domain optical coherence tomography (c).
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normal in 9 out of 18 eyes.59 In another study, 16 
adolescent patients (32 eyes) with SCD were exam-
ined using biomicroscopy, UWFA, SD-OCT, and 
OCT-A to determine the frequency of retinopathy 
with the newer, more sensitive modalities.60 
Biomicroscopy demonstrated that 69% of eyes had 
evidence of retinopathy, in the form of salmon-
patch hemorrhages, vessel tortuosity, and sunburst 
lesions. About 20% of eyes showed temporal macu-
lar thinning on SD-OCT and corresponding flow 
voids on OCT-A. In addition, UWFA detected 
peripheral arteriolar occlusion in 17% of eyes 
(Goldberg stage I) and peripheral arteriovenous 
anastomosis in 83% of eyes.

The above results suggest that these modalities may 
prove useful in the early detection of retinopathy. 
Preliminary data indicate that children with SCD 
commonly display retinal vascular abnormalities by 
these sensitive imaging techniques, including 
Goldberg stage-I and -II retinopathy identified on 
UWFA, temporal macular thinning on SD-OCT, 
and vessel dropout on OCT-A. Clinical implica-
tions of these findings are still unclear and will 
demand more longitudinal testing to assess what 
risk these patients have for serious vision threaten-
ing pathology and what future intervention may be 
required for future vision preservation.

Treatment
Due to the low likelihood of vision loss in SCD, 
sickle cell retinopathy does not usually require 
treatment. The peripheral lesions seen in NPSR do 
not require any treatment. Considering the rates of 
autoinfarction, small sea fans may be observed 
closely. However, in cases of larger or multiple 
areas of neovascularization or vitreous hemorrhage, 
scatter retinal laser photocoagulation or panretinal 
photocoagulation (PRP) is required to prevent the 
development of retinal detachment.61 One study of 
21 eyes with PSR found complete regression in 24 
out of 28 sea-fan lesions treated with scatter laser 
photocoagulation.62 Others have found complete 
regression in 30.2% of treated eyes compared to 
22.4% of untreated control eyes.61

The involution of neovascularization after the off-
label intravitreal injection of anti-VEGF agents as 
bevacizumab has been reported. However, fur-
ther studies are recommended to determine their 
definite role in management of PSR.63–65

As a surgical approach, vitrectomy should be consid-
ered in cases of non-clearing vitreous hemorrhage 

and retinal detachment. It may be combined with 
intraoperative scatter laser photocoagulation, as well 
as with intravitreal injection of anti-VEGF agent. 
Extra care should be taken while peeling the fibrovas-
cular membranes from the friable, ischemic retinal 
tissue, which may be prone to iatrogenic tears and 
breaks.66,67 However, the pediatric population does 
not typically require treatment as the advanced stages 
of PSR do not generally occur until later in life.

An association between elevated HbF and lower 
prevalence of retinopathy has been demonstrated 
on a retrospective review of 123 children with 
SCD.68 These data suggest that induction of HbF 
by hydroxyurea, along with other possible drug 
effects, may prevent pediatric retinopathy and the 
development of visual loss from proliferative dis-
ease. The only known cure for SCD is allogenic 
stem-cell therapy from human leukocyte antigen-
matched donor. Therefore, determining whether 
sickle cell retinopathy stabilizes or improves follow-
ing the transplantation should be further studied.

Prevention
Current recommendations by the American 
Academy of Pediatrics is for retinopathy screen-
ing of children by dilated fundoscopic examina-
tion with HbSS and HbSC beginning at age 10 
years.69 Other recommendations include bian-
nual or annual examination at age 9 years.70,71 In 
addition, patients with complaints of sudden or 
gradual diminution of vision, flashes of light, or 
floaters should be referred for an ophthalmologi-
cal check-up, as these symptoms may reflect the 
development of macular ischemia, retinal tears, 
retinal detachment, or vitreous hemorrhage.

The decision to perform imaging, such as fundus 
photography, angiography, SD-OCT, or OCT-
A, is based on the presence and severity of retin-
opathy at time of examination.

SD-OCT will likely be used more often in the 
screening examination of SCD patients, given the 
ease of image acquisition in both adult and pedi-
atric populations. The connection between tem-
poral macular thinning on SD-OCT, proliferative 
retinopathy on UWFA, and microvascular 
changes on OCT-A will need to be explored in 
future studies. If correlations between the imag-
ing modalities are found in the pediatric popula-
tion as they have been found in adults, abnormal 
SD-OCT studies may prompt differing monitor-
ing strategies for patients with SCD.
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