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Abstract

Background: Dictyostelium life cycle consists of two distinct phases — growth and development.
The control of growth-differentiation transition in Dictyostelium is not completely understood, and
only few genes involved in this process are known.

Results: We have isolated a REMI (restriction enzyme-mediated integration) mutant, which
prematurely initiates multicellular development. When grown on a bacterial lawn, these cells
aggregate before the bacteria are completely cleared. In bacterial suspension, mutant cells express
the developmental marker discoidin ly even at low cell densities and high concentrations of
bacteria. In the absence of nutrients, mutant cells aggregate more rapidly than wild type, but the
rest of development is unaffected and normal fruiting bodies are formed. The disrupted gene shows
substantial homology to the recently described gdtl gene, and therefore was named gdt2. While
GDT1 and GDT?2 are similar in many ways, there are intriguing differences. GDT2 contains a well
conserved protein kinase domain, unlike GDTI, whose kinase domain is probably non-functional.
The gdt2 and gdtl mRNAs are regulated differently, with gdt2 but not gdtl expressed throughout
development. The phenotypes of gdt2- and gdt|- mutants are related but not identical. While both
initiate development early, gdt2- cells grow at a normal rate, unlike gdt|- mutants. Protein kinase A
levels and activity are essentially normal in growing gdt2- mutants, implying that GDT2 regulates a
pathway that acts separately from PKA. Gdtl and gdt2 are the first identified members of a family
containing at least eight closely related genes.

Conclusions: We have isolated and characterised a new gene, gdt2, which acts to restrain
development until conditions are appropriate. We also described a family of related genes in the
Dictyostelium genome. We hypothesise that different family members might control similar cellular
processes, but respond to different environmental cues.

Background depleted, starving cells aggregate to form a multicellular
Dictyostelium discoideum is a social amoeba whose life ~ mound, and finally differentiate into fruiting bodies, con-
cycle consists of two distinct phases — growth and devel-  sisting of several different cell types. The switch from

opment. As long as nutrients are abundant, Dictyostelium  growth to differentiation is controlled by a number of
cells grow as individual amoebae. When nutrients are  interacting factors, including the nutritional state of cells,
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measures of the food supply, and a range of extracellular
signals. Several of these signals are generated by nearby
Dictyostelium cells. Some allow cells to judge the local den-
sity of competitors, while others allow populations of
cells to cooperate and develop simultaneously. We are
currently well short of an understanding of how all these
signals are interpreted by cells and integrated to allow a
switch in the genetic programme.

During growth Dictyostelium cells continuously synthesize
and secrete autocrine factors which accumulate in propor-
tion to cell density. At appropriate concentrations these
factors cause changes in gene expression and prepare cells
for the initiation of development. A glycoprotein called
prestarvation factor (PSF) is secreted by growing cells [1].
The effect of this protein is counteracted by food bacteria.
Cells can detect the level of PSF and thus estimate their
own density relative to the abundance of the food source
[2]. The "prestarvation response” occurs during increasing
of PSF levels and decreasing of food source, and can be
detected a few generations before actual starvation occurs.
The discoidin I gene family is among the first genes to be
activated in the prestarvation response. When food is
depleted and cells stop growing, PSF production declines
and a separate starvation response is activated. Starving
cells secrete another glycoprotein, condition medium fac-
tor (CMF), which is essential for establishing of CAMP sig-
nalling and the initiation of aggregation [3,4]. Starvation
causes a further increase in discoidin expression, after
which discoidin continues to accumulate in early devel-
opment until its transcription is inhibited by extracellular
cAMP at the end of aggregation phase. Expression of dis-
coidin is therefore an excellent reporter for the state of
cells within the developmental programme.

Several genes have been found to regulate the growth-dif-
ferentiation transition (GDT) in Dictyostelium. Protein
kinase A (PKA) plays a critical role and has been impli-
cated in multiple pathways involved in later develop-
ment. Strains carrying disruptions in PKA exhibit arrest of
development on early stage and fail to aggregate [5]. Sim-
ilarly, the protein kinase YakA, homolog of yeast Yaklp
growth regulating protein kinase, is also required for the
turning off of growth stage genes and induction of devel-
opmental genes [6]. YakA  mutant cells are also unable to
aggregate. Other genes regulating the growth-differentia-
tion transition include Dia2, a gene of yet unknown func-
tion [7], and also amiA and amiB [8,9]. AmiA is
homologous to a yeast gene of unknown function, while
amiB does not show homology to any known genes. Both
genes positively regulate the growth-differentiation transi-
tion possibly via regulation of adenylyl cyclase expression.

Three negative regulators of the growth-differentiation
transition have been described. PufA encodes a member of
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Puf protein family of translational regulators [10]. PufA is
a translational inhibitor of PKA mRNA, and its levels are
downregulated by the YakA kinase. Dial, a gene with no
homology to any known genes, appears to be negatively
coupled to both the cAMP receptor cAR1 and the adenylyl
cyclase ACA [11]. Antisense-mediated inactivation of dial
enhances the progression of differentiation. Finally, gdt1
is a gene which encodes a transmembrane protein with a
kinase-homology domain [12], although interestingly the
kinase domain is unlikely to be functionally active. Gdt1
null cells display accelerated aggregation. Examination of
double PKA-/gdt1- mutants and in vitro phosphorylation
data show that gdt1 is likely to be a downstream target of
PKA [13]. In this study we identify a new gene related to
gdtl. Like gdt1, gdt2 acts as a negative regulator of the
growth-differentiation transition in Dictyostelium. We
demonstrate that GDT1 and GDT2 exemplify a family of
related proteins which together may serve to mediate the
full complexity of the transition between growth and
differentiation.

Results

Identification of REMI mutant IR32

The mutant described in this study was found during a
screen of REMI-mutagenised library for mutants resistant
to propranolol, a phospholipase D (PLD) pathway inhib-
itor. The original goal of the screen was to discover new
genes involved in PLD function. We isolated a REMI
mutant, IR32, which was able to aggregate on Klebsiella
lawns in the presence of 1 mM propranolol. Under these
conditions the parental Ax2 cells are totally unable to ini-
tiate aggregation (data not shown). However, both
growth and development of IR32 cells were inhibited to
the same extent as wild type cells by butan-1-ol, another
PLD inhibitor (data not shown). It therefore appeared
that the gene disrupted by REMI was involved in the initi-
ation of development, rather than being part of a PLD sig-
nalling pathway.

A fragment of the disrupted gene was isolated from
mutant IR32 by plasmid rescue using genomic DNA
digested with Bcll. The sequence of this fragment was used
to search Dictyostelium genome project databases. Several
partial cDNA clones and genomic contigs were found,
allowing us to identify the disrupted gene as a homologue
of the Dictyostelium gdt1 gene [12]. This new gene was
therefore named gdt2. The gdt2 coding region was inter-
rupted by REMI about 4 kb downstream of predicted start
of the ORF (Fig. 1A). To prove that this disruption caused
the phenotype, and that the phenotype was the result of a
simple loss of function, we generated fresh mutants dis-
rupted in the first half of the gdt2 gene. Several clones were
identified by colony phenotype and shown by Southern
blot to carry an insertion in gdt2 gene (Fig. 1B). All gdt2-
clones displayed the same phenotype (data not shown)
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Identification of the gdt2 gene. (A) Schematic map of the gdt2 gene. The coding sequence is shown as open boxes, the site

of REMl insertion is indicated with an arrow. The site of the Blasticidin insertion in the knockout construct is shown with trian-
gle. Sequences used as probes for Southern and Northern blots are schematically shown below. (B) Southern blot analysis of
one of the gdt2 knockout clones, gl4, and wild type Ax2 cells. Genomic DNA was digested with Bcll and hybridized with the
probe shown in (A). (C) Predicted amino acid sequence of GDT2. The GDT2 protein is composed of 1637 amino acids. The
signal sequence (AA 1-21) is boxed and the putative transmembrane domains (AA 129-145, 167-184 and 897-921) are under-

lined. The putative kinase domain (AA 1284-1535) is shown in bold.
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and were found to be identical in phenotype to the origi-
nal REMI mutant IR32.

Both gdt2- and IR32 mutants made plaques with unusual
morphology when grown on bacterial lawns. Likewise,
each displayed accelerated aggregation when developed
on non-nutrient agar (see below). This confirmed that the
original REMI insertion caused the phenotype of IR32.

Sequence analysis of the gdt2 gene

Sequence analysis of the genomic contig revealed an open
reading frame of 4.6 kb, interrupted by 5 small introns.
The ORF within the gdt2 gene is predicted to produce a
protein of 1637 amino acids, with a mass of 185 kDa.
Analysis of the predicted protein by structure-predicting
programmes (SMART, TMHMM and MEMSAT) revealed
an N-terminal signal sequence for secretion/membrane
inclusion, at least 1 and most likely 3 potential transmem-
brane domains, and a kinase homology domain at the C-
terminal end of the protein (Fig 1C). As mentioned above,
GDT2 showed substantial homology to GDT1 [12]. It is
worth mentioning that the original gdt1 sequence depos-
ited in the database was incomplete at its 5' end. Our anal-
ysis showed that GDT1 has an extra 101 amino acids at its
N-terminus, the first 20 of which represent a putative sig-
nal sequence. The kinase domain of GDT1 is interrupted
by a poly-Asn containing insert and presents many substi-
tutions to well conserved amino acids, particularly in the
catalytic loop. It is therefore presumed to be non-func-
tional. The kinase domain of GDT2 is uninterrupted and
includes all the typical amino acids for a classical serine/
threonine protein kinases. It therefore seems likely that
GDT2, unlike GDT1, is a fully functional protein kinase.

A family of gdtl and gdt2 like genes

Analysis of the Dictyostelium genome revealed a family of
genes which were closely related to gdt1 and gdt2. As
shown in Fig. 2 and 3, we identified six additional full-
length genes and one pseudogene (gdt1 DDB0215003,
gdr2 DDB0201878, gdt3 DDB0186734,  gdt4
DDB0201754, gdt5 DDB0186736, gdt6 DDB0201749,
gdt7 DDB0184322, gdt8 DDB0201879 at The Dictyostel-
ium Database [14]). Three of the full-length genes (gdt2,
gdt3 and gdt4) encode complete, well conserved (and
therefore presumably functional) kinase domains;
another three (gdt1, gdt6 and gdt8) seem to encode pro-
teins with degenerate protein kinase domains. GDT5
presents a C-terminal sequence unrelated to protein
kinases, while GDT7 appears truncated and stops before
the protein kinase domain. All the GDT proteins share
extensive homology in first 1000 amino acids (700 for the
truncated GDT7) despite some insertions or deletions. All
the homologs start with a clear signal sequence for secre-
tion/membrane inclusion. Additionally, all have at least
one strongly predicted transmembrane domain located
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between amino acids 600 to 1000 and two weaker ones in
the region of amino acids 120 to 200. Since the proteins
are well conserved, they should also share the same topol-
ogy. Combining the transmembrane predictions with the
multiple alignment leads to the proposed model of 3
transmembrane domains (Fig. 2). Neighbor joining phyl-
ogenetic analysis clustered these genes into two groups,
with group 2 containing the three functional kinases and
group 1 containing the others (Fig. 3A). In the genome the
gdt genes form 3 clusters of two genes each plus two sin-
gletons (Fig. 3B). Each cluster includes a member of the
groups 1 and 2, suggesting that the clusters arose by dupli-
cations of an initial tandem pair of genes.

Expression of the gdt2 gene during growth and
development

To analyse expression of the gdt2 gene, we carried out
Northern blot analyses using a gdt2 cDNA fragment as a
probe. RNA samples were prepared from wild type cells in
a vegetative stage and at different time points of develop-
ment. As shown in Fig. 4, during exponential growth
expression of gdt2 mRNA does not depend upon cell den-
sity. The gdt2 mRNA is expressed at about the same level
in vegetative cells and throughout development, with a
slight peak at the time when the cells are aggregating. This
is in sharp contrast to gdt1, which has been shown to be
expressed in vegetative cells only [12].

gdt2- mutants develop prematurely

Colonies of gdt2- cells on bacterial plates displayed an
unusual morphology. Cells aggregated very close to the
growing edge of the colony - or in some cases even within
the bacterial lawn, while Ax2 cells made colonies with
clear preaggregation zones (Fig. 5A).

A similar phenotype has been described in other mutants,
in particular HBW3 [15], and gdt1 nulls [12]. Since both
HBW3 and gdt1- null mutants overexpress discoidin, we
decided to measure discoidin expression in gdt2- cells.
Wild type cells and gdt2- mutants were grown in bacterial
suspension and harvested at a density of 1 x 10° cells/ml.
Expression of discoidin I was monitored on Western blots
using an anti-discoidin I antibody. Although levels of dis-
coidin expression varied somewhat from experiment to
experiment, a significant amount of discoidin was always
detected in the mutant, even at very low cell densities (Fig.
5B). In wild type cells growing in bacterial suspension,
discoidin can normally be detected at cell densities above
1 x 106 cells/ml, whereas in gdt2- cells discoidin was
detected even at a density of 1 x 105 cells/ml (data not
shown).

gdt2- cells sense cell density and concentration of food
In wild type cells, expression of discoidin is induced a few
generations before starvation and then gradually increases
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Gdt gene family in the Dictyostelium genome. (A)
Neighbor joining tree of the gdt gene family in the Dictyostel-
ium genome. Only the topology of the tree is shown. Boot-
strap support of the internal nodes is shown over the
branches. (B) Localisation of the gdt genes on Dictyostelium
chromosomes. Direction of the transcription is shown with
arrows. Genes with predicted functional kinase domains are
shown in bold.

with further cell proliferation. To determine whether dis-
coidin expression in gdt2- mutant changes with increasing
cell density, discoidin I expression was analysed at differ-
ent stages of exponential growth. Wild type cells and gdt2
mutants were grown in bacterial suspension and har-
vested at densities of 1 x 10°, 2 x 10¢and 6 x 100 cells/ml.
Despite the fact that discoidin expression was significantly
increased in growing gdt2- mutants compared to Ax2 wild
type cells at all cell densities, the amount of discoidin pro-
tein still increased with cell density (Fig. 6A). Thus, gdt2-
cells are still able to estimate the number of neighbouring
cells and accordingly produce and detect autocrine factors
such as PSF.

Wild type cells start to express discoidin at a relatively low
cell density when the nutrient supply is limited, but high
nutrient supply restricts expression to higher cell densi-

ties. To understand whether the onset of development in
gdt2- mutants is regulated by amount of food, expression
of discoidin I was measured in cells that had reached the
same cell density growing in bacterial suspensions of dif-
ferent saturation. Ax2 and gdt2- cells were grown in Kleb-
siella  suspensions of different concentrations and
harvested at a density of 1.2 x 10° cells/ml. In wild type
cells, discoidin was detected at normal or reduced concen-
trations of bacteria and was not detected at all at 3x bacte-
rial concentration. In the gdt2- mutant, some protein was
still detectable even in cells grown in the most concen-
trated bacterial suspension (Fig 6B). The expression of dis-
coidin in the mutant still decreased with increasing
concentration of food, although the starting level was
higher. Therefore, gdt2- cells are still able to sense the con-
centration of food.

Taken together, these data demonstrate that although the
gdt2- mutants made the decision to start development
even at unusually low cell densities and high concentra-
tion of the food source, the onset of development was still
to some extent regulated by cell density and concentration
of food.

gdt2- mutants show accelerated aggregation
gdt2- cells grow at the same rate as parental Ax2 cells in
axenic culture and in bacterial suspension (data not
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Phenotype of the gdt2- mutant. (A) Colony phenotype.
500 cells of wild type and either gl4 (the knockout clone) or
IR32 (the original REMI mutant) were spotted on the same
SM agar plate and left to grow for 5 days. Both REMI and
knockout clones show very narrow or absent clearing zones.
(B) Overexpression of discoidin | by gdt2- mutant at low cell
densities. Ax2 and gl4 cells were grown in bacterial suspen-
sion and harvested at a density of | x 106 cells/ml. Discoidin |
was detected by Western blot analysis with an anti-discoidin
| antibody.

shown). To investigate whether development is impaired
in gdt2- mutants, mutant and wild type cells were allowed
to develop on non-nutrient agar plates. Development was
monitored microscopically. gdt2- cells consistently started
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Figure 6

Sensitivity of gdt2- mutants to cell density and food
supply. (A) Ax2 and IR32 cells were grown in | x KA sus-
pension and harvested at the cells densities indicated. (B)
Ax2 and IR32 cells were grown in 0.5%, 1x and 3 x KA sus-
pensions and harvested at a density of 1.2 x 106 cells/ml. Dis-
coidin | was detected by Western blot analysis with an anti-
discoidin | antibody.

to aggregate 1-1.5 hours earlier than wild type Ax2 cells
(Fig. 7A), but the rest of their development proceeded
normally - they successfully finished aggregation and
formed fruiting bodies just before or in some experiments
at about the same time as wild type (data not shown).

We also observed aggregation of starved cells in sub-
merged culture. As expected, gdt2- cells started to aggregate
earlier than wild type, with about the same time difference
as we had seen on non-nutrient agar (Fig. 7B).

This demonstrated that the disruption of gdt2 specifically
accelerates the growth/differentiation transition, but does
not significantly affect later development.

gdt2- mutants are able to sense folate

Folate is a known chemoattractant for growing Dictyostel-
ium cells. It can also function as an extracellular signal that
inhibits development. Folate has been shown to inhibit
discoidin expression when added to axenically growing
wild type cells [16]. To determine whether the gdt2- phe-
notype is due to a loss of sensitivity to folate, we
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Ax2

Figure 7

Accelerated aggregation of gdt2-. (A) Aggregation on
non-nutrient agar. (B) Aggregation in submerged culture.
Cells were harvested at exponential growth phase, washed,
plated at a density of 2 x 105 cells/cm2and incubated at 22°C.
Photographs were taken after 7.5 hours (A) or 8 hours (B).
Under both conditions gdt2- mutant cells start to aggregate
about [-1.5 hours earlier than wild type cells.

investigated the ability of gdt2- mutant to respond to dif-
ferent levels of folate in the medium. Our preliminary
data showed that gdt2- mutants responded normally to
folate in a chemotaxis assay (data not shown). To test
whether discoidin expression is regulated by folate in the
gdt2- mutant, cells were grown in axenic medium and
treated with 1 mM folate for various times, while cell den-
sity was maintained at around 106 cells/ml. In wild type
cells discoidin expression was considerably reduced after
8 hours of folate treatment and was nearly undetectable
thereafter (Fig. 8). gdt2- cells, on the other hand, produced
a higher amount of discoidin than wild type cells, but
expression of discoidin clearly decreased under folate
treatment. Thus, the phenotype of the mutant was not
caused by an inability to sense folate levels.

Regulation of starvation by different nutrients
Since gdt2- mutants exhibit accelerated aggregation, but
can in general estimate the quantity of food, it seemed
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Figure 8

Sensitivity of gdt2- mutants to folate. Ax2 and gl4 cells
were grown in axenic medium in presence of | mM folate
while cell density was maintained at about | % 0% cells/ml.
Samples were removed at the time points indicated. Discoi-
din | was detected by Western blot analysis with an anti-dis-
coidin | antibody.

possible that they are impaired in sensing of some specific
food components. Earlier studies had shown that amino
acids specifically inhibit initiation of development [17].
In our experiments, gdt2- cells starved in submerged cul-
ture started to form aggregation streams after 8 hours of
incubation, whereas Ax2 cells started to aggregate about 1
hour later (see Fig. 7). When the buffer was supplemented
with essential amino acids and glucose (see Methods),
both wild type and mutant cells exhibited delayed aggre-
gation compared to unsupplemented buffer, but the delay
was more substantial for wild type cells. gdt2- cells started
to make streams after 13-14 hours of incubation, whereas
wild type cells started to stream only after 18-19 hours. As
shown in figure 9A, after 25 hours of incubation gdt2-
mutant cells had completed aggregation and made
mounds, whereas Ax2 cells were still streaming. Thus,
while the mutant was still able to sense amino acids, it was
considerably less sensitive than the wild type.

To determine whether this effect was specific to amino
acids, we used folate to inhibit aggregation. Folate at a
concentration of 10 uM caused 1.5-2 hours delay in start-
ing aggregation in submerged culture. Under this folate
concentration the time difference in starting aggregation
between the mutant and wild type was about 1 hour (data
not shown). Higher concentrations of folate caused
stronger inhibition of aggregation. Cells incubated in the
presence of 1 mM folate started to aggregate after 15 hours
(even later than cells incubated with amino acids), but the
time difference in starting aggregation was again the same
between the mutant and wild type - about 1 hour. After
25 hours both wild type and the mutant were breaking
streams and making mounds (Fig. 9B).

The above experiments show that the gdt2 mutant is
clearly different from wild type in its response to amino
acids, but it is not significantly different in folate response.
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Figure 9

Aggregation of gdt2- cells in the presence of amino
acids and folate. Cells were harvested from axenic culture
at exponential growth phase, washed and plated at a density
of 2 x 105 cells/cm? in buffer containing either amino acids
(A) or | mM folate (B). In the presence of amino acids gdt2-
mutant cells aggregate 4-5 hours earlier than wild type, while
in the presence of folate they aggregate only | hour earlier
than wild type, as they do in unsupplemented buffer.

Protein kinase A and the gdt2 phenotype

A large body of work has shown that PKA is a major regu-
lator of early Dictyostelium development. Overactivation
of PKA leads to premature aggregation [18], while loss of
the catalytic subunit results in cells that never initiate

http://www.biomedcentral.com/1471-213X/4/8

development [19]. Since gdt2- mutants showed premature
aggregation, we investigated PKA expression and activity
in the mutant and in the wild type.

Our preliminary data using H-89, cell permeable inhibi-
tor of PKA [20-22], showed that discoidin expression was
inhibited upon PKA inhibition in the mutant to about the
same extent as in the wild type (data not shown). It sug-
gests that the disruption of gdt2 caused an increase in the
level of discoidin expression but did not greatly affect its
PKA-dependent regulation. Northern blots showed that
mRNA of the catalytic subunit of PKA (PKA-C) was
expressed at about the same level in the mutant as in wild
type in vegetative cells (Fig. 10A). After 3-4 hours of star-
vation, expression of PKA-C mRNA increased in both wild
type and the mutant, though it increased somewhat more
in the wild type. Interestingly, the expression of PKA-C
protein was slightly higher in the mutant than in wild type
at corresponding time points of development (Fig. 10B).
However, although there were some differences between
PKA mRNA and protein levels later in development, both
were very similar in growing cells at the stage when gdt2-
mutants prematurely initiate development.

PKA activity is regulated by signalling through the regula-
tory subunit as well as by protein abundance. We directly
assayed PKA activity in vegetative wild type and gdt2- cells
grown on bacteria. The difference in PKA activity was
indistinguishable (Fig. 10C). Taken together, this data
indicate that GDT2 does not exert its effects by modulat-
ing PKA activity. It remains possible that it acts down-
stream of PKA and mediates a subset of cellular responses.

Discussion

The soil amoeba Dictyostelium discoideum has a relatively
simple developmental programme compared to higher
eukaryotic multicellular organisms. Nonetheless, the
change from growth to development is regulated by a
complex series of signals designed to ensure that
aggregation only occurs under optimal conditions. In the
prestarvation response, during which cells anticipate
future starvation and prepare to develop, expression of a
number of genes is induced, and when starvation occurs
and cells are triggered to aggregate, changes in gene
expression occur in a wholesale fashion. Recent studies of
gene transcription profiles show that aggregation of uni-
cellular amoebae to multicellular structures is
accompanied by a change in the expression of more than
25% of the genes in the genome [23].

In this work we have described a new gene, gdt2, which is
important for the control of this process. We isolated a
REMI mutant which was able to develop in the presence
of propranolol. The mutated gene was found to be a novel
gene. The mutant showed premature expression of
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Figure 10

Protein kinase A expression and activity. mRNA (A)
and protein (B) extracts were prepared from vegetative cells
and cells at different time points of development. Northern
blots (A) were probed to visualise PKA-C mRNA, and West-
ern blots (B) were probed with anti PKA-C antibody. (C)
PKA enzyme activity, measured in vegetative cells at a density
of 2 x |05 cells/ml growing on bacteria. Data shown repre-
sent mean * SE from 3 independent experiments.

discoidin and premature aggregation. Morphological
development was not affected in gdt2- mutants, thus
allowing us to assume that gdt2 was predominantly
involved in the growth-differentiation transition, but was
not essential for later development.

It is clear that the prestarvation response in Dictyostelium
depends on two major factors: cell density and the abun-
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dance of food [2,24,25]. It is possible that the gdt2-
mutant was impaired in calculating the density of neigh-
bouring cells and/or in sensing of food. We have shown
here that gdt2- cells are able to estimate their own density
(see Fig. 6), but we cannot exclude that the mutant has
either enhanced PSF production or a higher sensitivity to
PSF. However, it is more likely that the mechanisms of
sensing some of food components are seriously impaired,
although not abolished in the mutant. Our measurements
of amino acid sensitivity support this hypothesis. In addi-
tion, the gdt2 mRNA is expressed during growth and
throughout development (Fig. 4), which may reflect a role
for the gdr2 gene product in dedifferentiation as well as
the primary decision to initiate development.

Mutants lacking gdtl show similar phenotypes to gdt2-
mutants. The gdt1-mutants also overexpress discoidin and
show premature entry into the developmental cycle [12].
However, there are major differences. The gdt1- mutants
display slow growth compared to wild type cells, whereas
gdt2- cells grow at the same rate as wild type. mRNA
expression patterns of gdt1 and gdt2 are also different. The
expression of gdt1 mRNA increases with cell density in
vegetative cells and rapidly decreases after the onset of
development [12,26]. We expected to see a similar pattern
of gdt2 mRNA expression, or at least a decrease in mRNA
upon starvation. Surprisingly, we found the gdt2 mRNA to
be expressed at about the same level in vegetative cells and
throughout development. Taken together, the similarities
and dissimilarities between gdt1 and gdt2 mutants'
phenotypes and gene expression patterns allow us to pro-
pose that these two genes possibly regulate some or all of
the same cellular processes, but are regulated by parallel
signal transduction pathways. These genes are possibly
most important at different points in the developmental
cycle. It would be interesting to see a phenotype of a
double gdt1-/gdt2- mutant, if a double knockout of these
genes was possible.

Here we have also described a family including gdt1, gdt2
and 6 more genes in the Dictyostelium genome. The simi-
larities between these genes suggest that they all may be
involved in regulation of the process of development,
probably responding to different extracellular signals.
However, the particular roles of the members of the fam-
ily remain to be explored.

Conclusion

We have isolated a Dictyostelium REMI mutant, which ini-
tiates multicellular development earlier than the wild
type. The genome rescue showed that the disruption
occurred in a new gene, which was named gdt2. Gdt2
codes for a transmembrane protein with a kinase domain.
Using developmental assays we have shown that gdt2 is
involved in control of the growth-differentiation
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transition. We have also described a family of gdt1 [12]
and gdt2 related genes in the Dictyostelium genome. The
family is comprised of eight genes coding for transmem-
brane proteins with and without kinase domains. All gdt
genes may be involved in regulation of the process of
development in Dictyostelium.

Methods

Cell culture

Dictyostelium discoideum Ax2 and derived transformants
were grown as appropriate in axenic medium (HL-5), in
suspension with autoclaved Kilebsiella aerogenes (KA), or
on lawns of Klebsiella aerogenes growing on SM agar plates.
Cells were grown and developed at 22°C.

Klebsiella were harvested from SM plates, suspended in
KK2 buffer (20 mM potassium phosphate, pH 6.2) at an
ODy,, = 6.5 and then autoclaved. The resulting medium
was used as 1 x KA suspension. 3x and 0.5x suspensions
were made by concentrating or diluting 1 x KA,
respectively. Prior to inoculation of cells, MgCl, was
added to KA suspensions to a concentration of 2 mM. Dic-
tyostelium cells were inoculated at 5 x 104 cells/ml, shaken
at 150 rpm at 22°C and harvested at the cell densities
indicated in the text and in figure legends.

For the folate sensitivity experiment, cells were grown in
axenic medium until they reached a density of 10° cells/
ml, after which folate was added to a concentration of 1
mM. Cell density was calculated every 8-10 hours and the
culture was diluted with axenic medium containing 1 mM
folate to keep the cell density around 10° cells/ml. Cells
were harvested at time points indicated.

Developmental conditions

Vegetative cells were harvested from bacterial or axenic
suspension cultures at densities of 1-2 x 100 cells/ml and
washed free of bacteria/medium in KK2 buffer. For devel-
opment on non-nutrient agar, cells were resuspended in
KK2 supplemented with 2 mM MgCl,, plated on agar
plates (2-8 x 105 cells/cm?2) and allowed to develop. For
aggregation experiments in submerged cultures, cells were
resuspended in either KK2 or in aggregation buffer (5 mM
Na,HPO,, 5 mM KH,PO,, 7.5 mM NH,Cl, 0.41 mM
MgSO, and 0.34 mM CaCl,, pH 6.8). Two millilitre por-
tions containing 6 x 10° amoebae were plated in @60 mm
tissue culture dishes. For aggregation in presence of folate,
folate was added to concentrations of 10 uM to 1 mM
after cells were plated. For aggregation in presence of
amino acids, cells were resuspended in aggregation buffer
or in aggregation buffer supplemented with 10 mg/ml
glucose and 0.5 mg/ml of each of the following amino
acids: methionine, glycine, isoleucine, valine, arginine
histidine, tryptophan, phenylalanine, threonine, lysine.

http://www.biomedcentral.com/1471-213X/4/8

Cells were observed using Zeiss Axiovert 100 microscope
with a 5x objective.

REMI library screening and genomic rescue of IR32 mutant
A REMI-mutagenised Ax2 library [27] was provided by A.
Harwood (UCL, London). To obtain propranolol resist-
ant mutants, the library was selected for growth and devel-
opment on SM agar/KA plates in presence of 1 mM
propranolol. Eight separate clones were isolated and one
clone, IR32, was rescued.

A 0.5 kb fragment was recovered from the IR32 REMI
mutant by plasmid rescue as described by Kuspa and
Loomis [28]. Genomic DNA from IR32 was digested with
Bcll, circularized in a diluted solution and used to
transform E. coli. A plasmid containing 0.5 kb of genomic
sequence upstream of the insertion site was recovered.

Reconstruction of the mutant phenotype

The gdt2 knockout vector was constructed by inserting the
Blasticidin S resistance (BSR) cassette from pRHI148 into
single Mscl site of a 2 kb gdt2 fragment, which was
generated by PCR from genomic DNA and cloned into
pBluescript. The resulting vector was cut with Apal and
Notl to generate the 3.3 kb gdt2/BSR fragment and used to
transform Dictyostelium Ax2 cells as described [29]. The
resulting transformants were screened by colony pheno-
type and confirmed by Southern blot.

Southern and Northern blot analyses

Genomic DNA was prepared using DNAzol reagent (Inv-
itrogen) according to manufacturer's instructions,
digested and blotted onto Hybond N+ membranes
(Amersham Pharmacia Biotech).

Total RNA was extracted using TRI reagent (Sigma). RNA
(20 pg per lane) was subjected to electrophoresis in 1.2%
agarose/formaldehyde gels and transferred to Hybond N+
membranes. Equal amounts of RNA per lane were loaded
as determined by measuring OD at 260 nm and con-
firmed by ethidium bromide staining.

Two fragments of the gdt2 gene were obtained by PCR and
used as Southern and Northern blot probes (Fig. 1A). A
fragment corresponding to C-terminal part of the catalytic
subunit of PKA was also obtained by PCR and used for
Northern hybridisation. The fragments for both Southern
and Northern blots were radiolabelled using a random
primer kit (Amersham Pharmacia Biotech) and [alpha-
32P|dATP (ICN). Blots were exposed to X-ray film for 16—
48 hours using intensifying screens.

Western blot analysis and PKA assays
Total cell extracts were prepared by lysing Dictyostelium
cells in SDS-PAGE loading buffer. Equal amounts of
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protein (5 to 10 pg) were separated on 12% gel and blot-
ted by tank transfer. Equal loading was confirmed by
staining of the membranes with Ponceau S. Discoidin Iy
was detected using a monoclonal antibody 80-52-13 [15],
a generous gift from W. Nellen (Department of Genetics,
Kassel University, Germany) and peroxidase coupled anti-
mouse antibody. The catalytic subunit of PKA was
detected using a polyclonal antibody [30], a generous gift
from F. Traincard (Pasteur Institute, Paris) and peroxidase
coupled anti-rabbit antibody. Protein bands were visual-
ized using an ECL Super Signal detection kit (Pierce).
Total PKA activity was assayed as previously described
[31], using extract from bacterially grown Dictyostelium
cells. The PKA activities are expressed as the amount of
phosphorylation of the Kemptide substrate that can be
inhibited by the PKA inhibitor PKI.
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