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IntRoductIon

Obliterative bronchiolitis (OB) describes a rare clinical 
condition leading to irreversible airway obstruction. 
The main manifestations of OB include progressive 
dyspnea and cough, eventually resulting in damage to the 
respiratory and terminal bronchioles.[1] In patients who 
received lung transplant or human stem cell transplant, 
bronchiolitis obliterans syndrome (BOS) represents the 
main form of chronic allograft rejection and is associated 
with major morbidity and mortality.[2,3] In recent years, 
as a result of the rising incidence of end‑stage lung 
diseases, lung transplantation is more common than ever. 
Clinicians have been treating increasingly more patients 
with BOS but without a uniformly accepted treatment 

protocol. The pathogenesis of BOS also remains poorly 
understood.

Kelly et al. discovered that BOS presents a specific 
alteration in the distribution and function of bronchiolar 
club cells, believed to be lung progenitor cells (LPCs) in the 
airways.[4] A recent study has also shown that injury to the 
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respiratory epithelium results in dysregulation of epithelial 
repair.[5] Incomplete epithelial repair normally leads to 
chronic inflammation, resulting in tissue damage. In addition, 
it is increasingly evident that the epithelial‑mesenchymal 
interaction is pivotal for tissue regeneration in the adult 
lung.[6,7] It is also well known that fibroblasts are one of 
the major stromal cell types that can regulate LPC function 
directly.[8] However, it is unclear how fibroblasts and LPCs 
interact specifically during the development of BOS.

In the present study, we hypothesize that alterations to 
fibroblasts lead to the functional change of LPCs. Co‑culture 
assays of mouse/human cells have been broadly used to 
investigate functions of stem cells in vitro.[9,10] This mixed 
cell model was adopted in the present study because of a 
lack of human source LPC. We have analyzed the colony 
formation of LPCs co‑cultured with lung fibroblasts from 
BOS or from normal lung tissues in vitro. These data may 
provide a new understanding of the pathogenesis of BOS.

Methods

Mice
ACTB‑EGFP mice were purchased from the Jackson 
Laboratory and maintained in specific pathogen‑free 
conditions. Mice were raised in a 12 h light/dark cycle 
and had free access to food and water. Adult mice between 
the ages of 8–12 weeks were sacrificed for experiments 
according to the protocol approved by the Animal Care and 
Use Committee of the Tianjin Haihe Hospital.

Lung cell preparations and flow cytometry
L u n g  c e l l  s u s p e n s i o n s  w e r e  p r e p a r e d  f o r 
fluorescence‑activated cell sorting (FACS) on the basis 
of a previously published method.[11] Briefly, mice were 
anesthetized, the chests were opened, and the tracheae were 
cannulated. Lungs were perfused with phosphate‑buffered 
saline/0.2 mmol/L EGTA (Sigma, Germany) and then 
removed completely.  Elastase (Worthington Biochemical 
Corporation, USA) digestion was performed at 37°C in three 
instillations for 5 min each. Lungs were removed, minced, 
and incubated with DNase I (Sigma) for 15 min at 37°C. Cells 
were then passed through a 70‑μm cell strainer, and red blood 
cells were removed using RBC Lysis Buffer (eBioscience 
Inc., San Diego, USA). Cells were resuspended in Hanks’ 
balanced salt solution (HBSS+) buffer (HBSS supplemented 
with 2% fetal bovine serum [FBS], 10 mmol/L HEPES, 
0.1 mmol/L ethylenediaminetetraacetic acid [Sigma], 
100 IU/ml penicillin, 100 μg/ml streptomycin, and 
0.25 μg/ml fungizone) following centrifugation (600 ×g, 

5 min) and were incubated with primary antibodies including 
CD31‑biotin, CD34‑biotin, CD45‑biotin, EpCAM‑PE‑Cy7, 
and Sca‑1‑APC. The properties and source of antibodies 
used are described in Table 1. Dead cells were distinguished 
by 7‑amino‑actinomycin D (0.25 mg/100 ml staining 
buffer; BD Biosciences, San Diego, USA) staining. Sorting 
experiments were performed on an  FACSAria III (BD 
Biosciences) sorter.

Fibroblasts‑lung progenitor cell co‑culture
Sorted LPCs were mixed with lung fibroblasts from patients 
with BOS or from healthy controls (kindly provided 
by Dr. Barry Stripp from Cedars‑Sinai Medical Center) 
in  Matrigel (BD Pharmingen, USA)/basic medium (1:1). 
Basic medium includes Dulbecco’s modified Eagle’s medium/
F12 (Gibco, USA) supplemented with insulin/transferrin/
selenium (Invitrogen, USA), 10% FBS (Invitrogen), 
0.25 μg/ml amphotericin B, 100 IU/ml penicillin, and 
100 μg/ml streptomycin. Cells in Matrigel were added to 
24‑well transwell chamber filter inserts (Greiner Bio‑One, 
Germany) and placed in 24‑well plates, containing basic 
medium with or without SB431542 (Ascent Scientific 
LLC, USA). Fibroblasts were added to the Matrigel at 
2 × 106 cells/ml. Cultures were maintained in a humidified 
37°C incubator. Colonies were visualized with an 
inverted  fluorescent microscope (OLYMPUS IX73, Japan) 
on days 4 and 6. Colony‑forming efficiency was examined by 
counting the number of colonies with a diameter of ≥50 μm 
in each culture.

Statistical analysis
Data from three independent experiments were collected and 
analyzed as the mean ± standard error of mean. Statistical 
analysis was performed using the  SPSS 17.0 software (SPSS 
Inc., USA). The significance of the results was assessed using 
the paired Student’s t‑test between two groups and P values 
below 0.05 were considered statistically significant.

Results

Isolation of lung progenitor cells
We used an FACS‑based strategy to separate LPCs according 
to the green fluorescent protein fluorescence levels. Lung 
cells from ACTB‑EGFP mice were isolated and stained 
with fluorescent antibodies to surface markers and a 
viability dye. Dead cells and cell debris were discriminated 
by 7‑amino‑actinomycin D staining [Figure 1a]. We used 
surface staining for CD31, CD34, and CD45 for negative 
selection of endothelial, stromal, and hematopoietic 

Table 1: Antibodies used for flow cytometry

Antigen Host Titer Source
Sca1 Rat IgG2A, clone D7 1:200 (FC‑eBioscience) BioLegend (San Diego, CA, USA)
EpCAM (PE‑Cy7) Rat IgG2A, clone G8.8 1:200 (FC) BioLegend
CD45 (biotinylated) Rat IgG2B, clone 30‑F11 1:200 (FC‑eBioscience) eBioscience (San Diego, CA, USA)
CD31 (biotinylated) Rat IgG2A, clone 390 2.5:100 (FC) eBioscience
CD34 (biotinylated) Rat IgG2A, clone RAM34 6.5:100 (FC) eBioscience
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cells [Figure 1b]. LPCs were further enriched by surface 
Sca‑1 staining [Figure 1c].

Colony‑forming ability of lung progenitor cells
To investigate the colony‑forming ability of LPCs in BOS, 
we mixed LPCs with lung fibroblasts from patients with 
BOS or healthy controls. In the absence of SB431542, a 

transforming growth factor‑β (TGF‑β) inhibitor, the ability 
of LPCs co‑cultured with healthy control fibroblasts to form 
colonies was low [Figure 2a and 2b]. However, following 
the addition of SB431542, the colony‑forming ability was 
significantly promoted. By day 6, the colony‑forming 
efficiency of LPCs reached 6.8% [Figure 2c and 2d]. 
Consistent with previous data,[11] TGF‑β exhibits an inhibitory 

Figure 1: Fractionation of mouse lung progenitor cells. Live cells were sor ted after removing cell debris and dead cells positive for 
7‑amino‑actinomycin D staining (a). Epithelial cells were CD31/CD34/CD45‑APC‑CY7 negative and EpCAM‑pE‑CY7 positive (b). Among epithelial 
cells, those double positive for green fluorescent protein and Sca‑10‑APC are lung progenitor cells (c).

cba

Figure 2: The colony formation of lung progenitor cells (×40 of lung progenitor colonies). Green fluorescent protein fluorescence images 
of lung progenitor cells co‑cultured with fibroblasts from healthy controls in basic medium (a and b), basic medium supplemented with 
SB431542 (c and d). Analysis of the formation of lung progenitor colonies (e). Lung progenitor cells were isolated from mice expressing 
ubiquitous green fluorescent protein (green signal) or Td‑Tomato (red signal) and co‑cultured with fibroblasts. Images of lung progenitor cells 
co‑cultured with fibroblasts from patients with bronchiolitis obliterans syndrome in basic medium (f and g), basic medium supplemented with 
SB431542 (h and i). Colony‑forming efficiency of lung progenitor cells is summarized in j (*P < 0.05).
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effect on LPC growth. Co‑culture of equivalent numbers 
of LPCs from ACTB‑EGFP or ROSA‑R/G mice led to 
the formation of either green or red colonies without any 
evidence of mixing. These data suggest that colonies 
are derived from a single PLC [Figure 2e]. When LPC 
was co‑cultured with fibroblasts isolated from patients 
with BOS, the colony‑forming efficiency of LPCs was 
significantly reduced. The addition of SB431542 was 
able to promote the colony‑forming ability of LPCs, but 
the colony‑forming efficiency of LPCs was only 1.8%, 
significantly less than that in co‑culture with healthy control 
fibroblasts [Figure 2f and 2j]. These data suggest that 
fibroblasts from patients with advanced BOS exhibited an 
impaired capacity to support LPC growth.

dIscussIon

In lung transplant recipients, BOS is the major cause of 
death in the 1st year following transplantation.[12] Immune 
responses mediated by antibodies and lymphocytes 
initiate epithelial damage, inflammatory infiltration, and 
the activation of fibrotic pathways, ultimately resulting in 
bronchiolar obstruction.[13,14] Although the precise etiology 
of BOS is unclear, epithelial injury is thought to be central 
to its development. Studies have shown that epithelial injury, 
including basal cells and club cells, resulted in continuous 
damage and abnormality of epithelial repair. Findings 
from blood samples of lung transplant recipients have 
demonstrated that patients with BOS have more circulating 
fibrocytes and fewer epithelial progenitors compared to 
those without evidence of the disease.[15,16] Furthermore, the 
migration and proliferation of fibroblasts following epithelial 
repair are thought to underpin the development of BOS.[17]

In the present study, we use an in vitro model to determine 
how fibroblasts from patients with BOS affect the behavior 
of LPCs. Our data show that the colony‑forming ability of 
LPCs co‑cultured with fibroblasts from patients with BOS 
significantly decreased compared with LPCs co‑cultured 
with fibroblasts from healthy controls. This indicates that 
the epithelial‑supportive capacity of fibroblasts is impaired 
during the development of BOS. Our observation that the 
addition of the supplement SB431542 strengthened the 
colony‑forming ability of LPCs is consistent with previous 
studies.

B O S  h a s  b e e n  a s s o c i a t e d  w i t h  b r o n c h i a l 
epithelial‑mesenchymal communication, a process that has 
been shown to be intensified by TGF‑β.[18,19] For example, in 
a model of lung epithelial injury, the administration of TGF‑β 
significantly enhanced the features of epithelial‑mesenchymal 
communication.[20] Furthermore, findings from a rat model 
of OB showed a significant upregulation of TGF‑β and 
downstream genes of fibrotic airways.[21] As a vital factor in 
the BOS fibrotic process, TGF‑β signaling has been shown to 
inhibit the proliferation of epithelial cells in several organs, 
including the lung.[22] The activation of lung stromal cells 
mediated by TGF‑β suppresses their epithelial‑supportive 

capacity via the downregulation of epithelial growth factors 
such as FGF‑10.[23] As a result, the regeneration and repair 
of the lung epithelial are interrupted, which may play a 
part in the development and progression of BOS. Although 
our study was the first to examine selective alteration of 
fibroblasts in BOS, a limitation of the study is that the 
LPCs were from mice rather than humans. However, human 
LPCs are rather difficult to acquire and culture successfully. 
The study of LPCs of BOS is indispensable and will have 
considerable influence. Here, we co‑cultured the mouse 
stem cells and human supportive cell‑fibroblasts allowing 
the study of functional alterations in LPCs in vitro. Finally, 
as well as demonstrating a quantitative change, our results 
showed functional variation in the development of BOS.

In conclusion, these preliminary data demonstrated that 
the dysregulation of epithelial repair in BOS partially 
results from the functional alteration of stromal cells. The 
epithelial‑supportive capacity of fibroblasts in patients 
with BOS is significantly impaired. We used a new method 
involving FACS and co‑culture to explore the potential role 
of fibroblasts in the development of BOS. In view of the 
deficiency of existing treatments for BOS, the regulation of 
stromal cells may represent a promising area of research in 
future studies.
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