
RESEARCH Open Access

Immune landscapes associated with
different glioblastoma molecular subtypes
Maria Martinez-Lage1,2*†, Timothy M. Lynch3,4†, Yingtao Bi5,6‡, Carolina Cocito7‡, Gregory P. Way8,9‡,
Sharmistha Pal10, Josephine Haller4, Rachel E. Yan7, Amy Ziober1, Aivi Nguyen1, Manoj Kandpal5,
Donald M. O’Rourke4, Jeffrey P. Greenfield7, Casey S. Greene8,11, Ramana V. Davuluri5 and Nadia Dahmane4,7*

Abstract

Recent work has highlighted the tumor microenvironment as a central player in cancer. In particular, interactions
between tumor and immune cells may help drive the development of brain tumors such as glioblastoma
multiforme (GBM). Despite significant research into the molecular classification of glioblastoma, few studies have
characterized in a comprehensive manner the immune infiltrate in situ and within different GBM subtypes.
In this study, we use an unbiased, automated immunohistochemistry-based approach to determine the immune
phenotype of the four GBM subtypes (classical, mesenchymal, neural and proneural) in a cohort of 98 patients.
Tissue Micro Arrays (TMA) were stained for CD20 (B lymphocytes), CD5, CD3, CD4, CD8 (T lymphocytes), CD68
(microglia), and CD163 (bone marrow derived macrophages) antibodies. Using automated image analysis, the
percentage of each immune population was calculated with respect to the total tumor cells. Mesenchymal GBMs
displayed the highest percentage of microglia, macrophage, and lymphocyte infiltration. CD68+ and CD163+ cells
were the most abundant cell populations in all four GBM subtypes, and a higher percentage of CD163+ cells was
associated with a worse prognosis. We also compared our results to the relative composition of immune cell type
infiltration (using RNA-seq data) across TCGA GBM tumors and validated our results obtained with immunohistochemistry
with an external cohort and a different method. The results of this study offer a comprehensive analysis of the distribution
and the infiltration of the immune components across the four commonly described GBM subgroups, setting the basis
for a more detailed patient classification and new insights that may be used to better apply or design immunotherapies
for GBM.

Introduction
There is a dynamic interaction between malignant and host
cells within the tumor microenvironment, with host im-
mune surveillance seeking to remove neoplasms and the
tumor taking advantage of any opportunity to promote its
own growth and progression. In many ways, the tumor
microenvironment (TME) resembles the environment
within chronic inflammation, as cancer cells interact with
pericytes, fibroblasts, and immune cells [25]. These

interactions shape the profile of cytokines, chemokines,
growth factors, and soluble molecules that in turn shape
the stroma, vasculature, and the tumor itself [46]. Although
the presence of immune cells may seem indicative of a host
response against the tumor, it has become clear that this is
not necessarily the case.
To explain this, a three-step model of host-tumor interac-

tions has been proposed, involving an “Elimination” phase,
during which the host immune system tries to defeat the
tumor, an “Equilibrium” phase whereby the host defense
successfully controls tumor growth and curtails metastasis,
and an “Escape” phase when tumor cells avoid surveillance
to grow and spread freely [8]. Mechanisms for escape may
include reprogramming the host immune system and inter-
fering with the development, migration, and effector func-
tions of immune cells to make them favorable to tumor
progression [8]. Thus, understanding the immune cell
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composition of the tumor microenvironment is critical to
understanding tumor progression and may provide insight
on how to support the immune response and prevent
evasion.
Glioma is the most common primary brain malignancy

with approximately 20,000 new cases diagnosed every year
in the United States [13]. According to the histological clas-
sification of the World Health Organization (WHO), gli-
omas can be divided into four different grades, with
glioblastoma (GBM) being the most aggressive (Grade IV).
GBM can arise de novo (primary GBMs), or derive from a
lower-grade tumor (secondary GBMs) [27]. The standard
of care for these tumors consists of surgical removal
followed by radiation and chemotherapy. Despite aggressive
treatment, GBM remains incurable, with a median overall
survival of 12–15months following diagnosis [1].
In the past few years, gene expression based studies have

successfully identified transcriptional profiles that define
the main GBM subclasses: proneural (PN), neural (N), clas-
sical (CL) and mesenchymal (MES) [32, 40]. Classical
GBMs are also characterized by Epidermal Growth Factor
Receptor (EGFR) amplification, lack of TP53 mutations, and
oftentimes homozygous deletion of the Cyclin Dependent
Kinase Inhibitor 2A (CDKN2A) [40]. Proneural GBMs,
sometimes demonstrating alterations in PDGFRA pathway,
are usually associated with a better outcome, particularly
when harboring mutations in the one of the Isocitrate De-
hydrogenase (IDH) genes [32, 40]. IDH mutations, in gen-
eral, are also linked to higher CpG island methylation and
usually have better clinical outcomes than GBMs with no
IDH mutation [6, 42]. Mesenchymal GBMs are enriched in
mesenchymal markers such as YKL40 and MET [32] and
co-mutation of the Neurofibromin 1 (NF1) and Phosphatase
and TENsin homolog (PTEN) genes, which parallels alter-
ations seen in the epithelial-to-mesenchymal transition de-
scribed in several other tumors [37, 40]. This subtype is
commonly associated with a poor prognostic outcome [32].
Finally, neural GBMs strongly resemble the signature of
neural cells, with strong expression of neuronal markers
such as NEEL, GABRA1, SYT1 and SLC12A5 [40], to the
point that subsequent studies suggest this group may have
arisen from contamination from non-tumor resident cells
in the initial analyses [41]. Overall, the mesenchymal and
the proneural subtypes tend to be the most robust and re-
producible signatures in GBM.
Given the differences between GBM subtypes, it is also

important to understand whether there are correspond-
ing differences in their immune landscapes. Initial
analyses of the publicly available gene expression data
from the Cancer Genome Atlas (TCGA) for GBM
showed that mRNA expression for various cytokines,
immune cell markers, and immune-associated signaling
pathways were found to be increased in the mesenchy-
mal subtype, suggesting that this subtype was the most

proinflammatory [7]. Applying CIBERSORT [26] to
TCGA GBM RNA-seq data and other publicly available
datasets, Wang et al. found that both the M2 macro-
phage and neutrophil gene signatures were significantly
associated with the mesenchymal subtype [41]. These
findings, using gene expression, suggest that the GBM
subtypes are different in their immune component;
but they do not address immune phenotype hetero-
geneity, nor do they provide a quantitative analysis of
the preponderance of immune cells in the tumor
microenvironment.
Therefore, we performed a comprehensive immuno-

histologic screen to characterize the total percentage of
cells within the tumor for the main immune populations
(T/B lymphocytes and macrophage/microglia) across the
four major GBM subtypes as previously described [32,
40]. We then performed statistical analyses to determine
if the presence of certain immune infiltrates were corre-
lated with overall survival. We found that mesenchymal
GBM was the most immunogenic among the four
subclasses while the proneural subtype was the least
immunogenic. These results were complemented and
validated by a computational analysis of RNA-seq data
obtained on another cohort. Our analysis also revealed
that the percentage of CD163+ macrophages in a glioma
is the only statistically significant predictor of survival
among the major immune infiltrates.

Materials and methods
Patient cohort
Ninety-eight cases of newly diagnosed GBMs (males n =
56, females n = 42) were reviewed by a board-certified
neuropathologist (MML) and were used to generate 5
different TMA blocks. These tumors were all resected at
the Hospital of the University of Pennsylvania under
approved IRB and were stored as clinical fixed formalin
paraffin embedded (FFPE) blocks in addition to fresh
tissue banking per protocol. Patient classification and
survival information in Additional file 1: Table S1.

Generation of the tissue microarray (TMA)
For each case, all Hematoxylin and Eosin (H&E) stained
slides from paraffin embedded blocks were examined,
and representative areas of different histology were
selected for inclusion in the TMA to account for the
extreme morphological heterogeneity observed in some
samples. Depending on the level of heterogeneity, as
observed by histology, up to six cores for each tumor
were included in the TMA blocks for a total of 315
unique tumor cores. The mean number of cores ± SD
for each subtype were 3.29 ± 0.84, 3.12 ± 0.32, 3.18 ±
0.49, and 3.19 ± 0.62 for the classical, mesenchymal,
neural, and proneural subtypes, respectively.
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Brain control tissues (cerebral cortex, basal ganglia
and cerebellar cortex) were included along the edges of
the TMA, and four cores of tonsil tissue were also in-
cluded as immune tissue control.

Immunohistochemistry (IHC)
To detect various immune cells, we used the following
antibodies: CD4 and CD8 for T lymphocytes, CD68 and
CD163 for resident microglia and bone marrow derived
macrophages, and CD20 for B lymphocytes (Additional
file 1: Table S2). In order to support the reproducibility
of our experiments we used antibodies routinely used in
the clinical setting.

Image acquisition and analysis
Images of each stained TMA slide were acquired at 10x
magnification with the Vectra automated multispectral
imaging system. Spectral libraries were generated from
single stained slides using the Nuance FX multispectral
imaging system software [23, 24, 36]. Spectral libraries
and the scanned images were then loaded into inForm
Advanced image analysis software (PerkinElmer) [21].
Automated image analysis was used to quantify the per-
centage of positive infiltrating cells for each immune cell
marker (percentage positivity) based on a binary distri-
bution of the 3,3' Diaminobenzidine (DAB) signal (posi-
tive/negative) which was determined for each slide by
supervised analysis by a neuropathologist to address dif-
ferences in staining intensity (Additional File 1: Table
S3). Mutant IDH1 positivity was scored as positive/nega-
tive by manual interpretation of the scanned images.

Quantification and statistical analysis of IHC
The results are displayed as median percentage ± mean
absolute deviation (MAD). Statistical analysis was carried
out with R (R Core Team 2013) and the threshold for
statistical significance was set at p < 0.05. Differences
among GBM subtypes were evaluated using one-way
analysis of variance (ANOVA) for each of the cell type
markers. Pair-wise differences among molecular sub-
types were evaluated using student t-tests. Univariate
overall survival analysis according to molecular subtypes
status was evaluated by log-rank tests with Kaplan–
Meier survival curves.

Evaluation of concordance with TCGA data
We compared our results with expression-based estimates
derived from TCGA. We estimated the proportions of se-
lected cell types (CD4+, CD8+, and macrophages) using
previously described marker genes [26]. We performed
single sample gene set enrichment analysis (ssGSEA) [3]
using an R implementation [15]. Data for TCGA were
downloaded from UCSC Xena on August 16, 2016. These
datasets contained clinical variables for 629 samples and

gene expression measurements for 12,042 genes measured
on 539 samples. We archived the data at the time of
download on Zenodo [43]. Our analysis was performed
via continuous analysis [4]. The computational environ-
ment is available from DockerHub (“gregway/gbm_im-
mune_validation”). Source code is available on GitHub
(https://github.com/greenelab/gbm_immune_validation),
and the repository has been archived on Zenodo [44].

Results
Most of the comprehensive analyses of the immune
landscape in cancer, including those of glioblastoma, rely
on RNA expression analyses of large datasets, i.e. TCGA
[38]. While this has laid the foundation for understand-
ing the immune component of cancer, these in silico
approaches do not consider the distribution, localization
or differences in proportions of immune cells within
each tumor. To address this, we built tissue microarrays
designed to comprehensively examine the composition
of immune cells within the GBM microenvironment in
situ.

Digital image analysis of immune markers on GBM TMAs
We included primary tumors from 98 patients with GBM,
obtained at the original surgery. These samples have previ-
ously been included in a cohort study of GBM subtypes
using isoform-specific expression patterns [30]. GBM sub-
classes in this cohort were distributed as follows: 24.5%
classical, 26.5% mesenchymal, 22.5% neural and 26.5% pro-
neural (Table 1). IDH1 R132H mutation as determined by
immunohistochemistry (IHC) was extremely rare, only
present in 4.1% of the cases. For each case, H&E stained
slides were examined, and representative areas of different
histology were selected to account for the heterogeneity ob-
served in GBM samples with up to six cores for each tumor
included in the TMAs.
In order to perform an unbiased analysis, we used a

digital image analysis method (Fig. 1). First, we evaluated
the spectral properties of the DAB stains, then we
trained the software to identify tumor versus non-tumor
areas. We excluded regions within vascular spaces and
areas of necrosis. Next, we performed cell segmentation
by training algorithms to identify unique cell types. We
used the trained algorithms to identify and score im-
mune infiltrating cells based on the DAB signaling spec-
tral properties, thus avoiding investigator bias and
providing increased accuracy and precision over trad-
itional methods [23, 24, 36].

Heterogeneity of the immune landscape in GBM
A major gap in the biological understanding of GBM is
a thorough characterization of the cellular and molecular
heterogeneity of these tumors. This heterogeneity also
affects treatment development. Thus, to obtain a more
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Table 1 Characteristics of the GBM samples used in our cohort for TMAs generation

Variable N % of cohort Median survival (months) Log-rank Mantel-Cox test

Gender *

Males 56 57.1 12

Females 42 42.9 12

Age ***

< 40 3 3.1 Undefined

41–60 42 42.9 12

61–80 48 48.9 11

> 80 5 5.1 4

IDH1 R132H mutation ***

Positive 4 4.1 Undefined

Negative 94 95.9 12

Molecular subtype

Classical 24 24.5 12.5

Mesenchymal 26 26.5 9.5

Neural 22 22.5 15.5

Proneural 26 26.5 10

* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001

Fig. 1 Automated cell analysis. a and e: Vectra scan multispectral image of a tissue core labeled with an immunohistochemical stain (CD68).
b and f: Tissue segmentation. The image analysis software algorithm was trained to identify areas of tumor (green) and non-tumor (red), the latter of
which includes areas of necrosis and vessels containing peripheral blood. c and g: Cell identification. The algorithm was trained to identify
cells including tumor and infiltrating cells. Areas identified as non-tumor are not segmented. d and h: Automated binary scoring of immunohistochemical
stain (blue – negative, red – positive)
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comprehensive view of the GBM immune landscape, we
used several cores across all the sections obtained for
each tumor. The choice for each core was made to rep-
resent at best the observed histological heterogeneity. In
our cohort, the majority of the cases were characterized
by heterogeneous infiltration of different immune cells.
We then applied a semi-quantitative method to define
the heterogeneity in the immune infiltrate across differ-
ent cores in the same patient. For each patient, we calcu-
lated the ratios for each immune marker among cores,
then averaged these values. The resulting ratios were
plotted on a heatmap with ratio breaks at 1, 2, 4, 8, and
16, displayed with increasing color saturation from white
to red (Fig. 2). The levels of intra-tumoral immune het-
erogeneity were not correlated with a specific immune
population or with a specific GBM subtype. Interest-
ingly, we observed that some samples were significantly
more heterogeneous than others (Figs. 2 and 3). For ex-
ample, GBM#31 showed significant differences in the
percentage of most immune cell types (6/7) between the

different cores (Fig. 2), while other tumors such as
GBM#23 showed inter-core heterogeneity for only 1/7
immune cell types (Fig. 2). Visual inspection may also
suggest that within subtypes there may be sub-clusters
of samples with similar levels of heterogeneity. Though
this analysis is subject to some bias in the selection of
cores, it is clear that there are significant differences in
heterogeneity of the immune landscape in GBM.

GBM contains few B cells and the percentage of T cells
varies across subtypes
To examine the contribution of lymphocytes to the
GBM immune landscape, we compared percentages of
CD20+, CD3+, CD5+, CD4+ and CD8+ cells relative to
the global cellularity within the four molecular subtypes.
We observed CD20+ B cells in only 4 cases out of all 98
GBMs (3 mesenchymal and one proneural (Additional
file 1: Figure S1). Because of the low incidence of this
cell population in our cohort, we decided not to include
it in our analysis.

Fig. 2 Immune heterogeneity is extensive across GBM subtypes. The heat maps show the heterogeneity in the immune marker expression across
patient cores for each GBM subclass, with ratio breaks at 1, 2, 4, 8, and 16 (increasing from white to red). In all four subclasses, most of the cases
displayed extensive heterogeneity in at least one of the immune markers studied among the cores. Grey square indicate that the data for this
sample and specific marker was not examined for this analysis
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In order to determine the levels of infiltrating T
lymphocytes, we compared both the percentage of
CD3+ and CD5+ cells among all the GBM samples.
Immunohistochemistry showed a perivascular and an
infiltrative distribution of these cell subsets (Fig. 3),
with both patterns present in most cases where vessels
were present in the core. Despite variability among
samples, on a whole, the mesenchymal subtype dis-
played the highest amount of T cell infiltration, both
by CD3+ (0.77% ± 0.63) and CD5+ (1.31% ± 1.27). The
percentage of CD3+ cells significantly differed between
the mesenchymal and the proneural (0.32% ± 0.31, p =
0.036), as well as between the mesenchymal and the
classical subtypes (0.57% ± 0.44, p = 0.03), but no other
subgroups (Fig. 4). This was paralleled for CD5+

infiltrating T cells across the four different subtypes:
significant differences were found between the mesen-
chymal and the proneural (0.34% ± 0.35, p = 0.023) and
between the mesenchymal and the classical subtypes
(0.67% ± 0.70, p = 0.0391). Furthermore, within the T
cell population, the mesenchymal subtype also displayed
a higher percentage of CD4+ cells (0.58 ± 0.59) in com-
parison to the classical (0.24% ± 0.23, p = 0.031) and the
proneural subtypes (0.20% ± 0.18, p = 0.036) (Fig. 5). Sur-
prisingly, no differences were found in the percentage
of CD8+ infiltrating cells (ranging from 0.18% to 0.38% of
the tumor area) among the four GBM subclasses (Fig. 5).
Though it is important to note that lymphocytes consti-
tuted a very low percentage of the total cell number
in the tumor overall (generally less than 5%), we found
that mesenchymal GBMs tend to have the most T cell
infiltration.

Macrophages and microglia make the difference among
the GBM subtypes
Among the immune cell types included in our study,
macrophages and microglia were the predominant popu-
lations for every GBM subtype. In some cases, they con-
stituted more than 80% of all cells present in the tumor
(Fig. 6). As with the other cell types, quantitative ana-
lyses also showed great heterogeneity among and within
examined samples. Across the GBM subtypes, CD163+

cells were the most abundant cell population in all
subtypes, but there were significantly more frequent in
mesenchymal samples (mesenchymal (78.94% ± 24.41) vs
classical (43.02% ± 45.79), p < 0.001; vs proneural
(25.44% ± 26.26), p = 0.003; vs neural (43.02% ± 45.79),
p = 0.0007)) (Fig. 6). CD68+ cells were also most abun-
dant in mesenchymal GBMs, and their percentage
(23.75% ± 19.55) significantly differed compared with
classical (10.21% ± 3.16, p = 0.0027) and proneural
(7.60 ± 3.86% p = 0.0003) GBMs (Fig. 6).
The subtype with the next highest amount of macro-

phage and microglia infiltration was the neural subtype.
Although no statistically significant results were ob-
served for differences between the neural and proneural
subtype for percentage of CD163+ macrophages, the per-
centage of CD68+ resident microglia significantly dif-
fered between neural (14.22 ± 13.60) and proneural
(7.60 ± 3.86) subtypes (p = 0.012) (Fig. 6). Thus overall,
we found a significantly higher percentage of tumor in-
filtrating macrophages and microglia in mesenchymal
GBMs, followed by a higher percentage of tumor infil-
trating microglia in the neural group over the classical
and proneural subtypes.

Fig. 3 Heterogeneity in percentage of immune cells within the same GBM sample. In this figure, GBM10 and GBM54 are two representative
examples of the heterogeneity in immune marker expression across different cores of the same GBM. GBM10, on the left, displays a strong
heterogeneity in CD3 and CD8 infiltration between core 1 and core 2. Despite the overall lower levels in the immune infiltrate, GBM54, on the
right, is also characterized by a substantial heterogeneity in CD3, CD8 and CD68. Scale bar 75 μm
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TCGA data shows significant differences in immune cell
compositions across subtypes
To complement and validate whether the results we
observed in our single-institution cohort could be ex-
trapolated to the GBM subtypes on a whole, we com-
pared our results to the relative composition of immune
cell type infiltration across TCGA GBM tumors (n = 539).
We estimated the relative enrichment of CD4+, CD8+

and macrophage immune cell lineages in TCGA GBMs
by applying ssGSEA stratified by gene expression-
based subtype. We compared the ssGSEA empirical
Cumulative Distribution Functions (eCDF) to the relative
number of cells measured by percent positivity in our
GBM dataset (Fig. 7). To determine the significance of
the results, we fit three one-way analysis of variance
(ANOVA) models comparing ssGSEA scores of CD4,
CD8, and macrophage cell type markers, which were all
highly significant (p = 2 × 10− 16, p = 6.28 × 10− 15 and p =
2 × 10− 16, respectively). To make subtype specific com-
parisons, we performed pairwise t-tests on ssGSEA

enrichment scores comparing across TCGA GBM sub-
types. The calculated p values were adjusted by false
discovery rate (FDR) (Fig. 7). Macrophages constituted
the main component of the immune cell infiltrate among
all the subtypes and mesenchymal GBMs had the highest
macrophage content (all p < 0.0001), followed by neural
(all p < 0.05), classical (all p < 0.05), and proneural GBMs
(all p < 0.0001). CD4+ and CD8+ T cell distribution
followed the same trend observed in our IHC analysis,
with the mesenchymal subtype having the highest infil-
trate (all p < 0.0001).
Altogether, our IHC results were validated by an exter-

nal cohort and a different method, showing that among
the four GBM subtypes the mesenchymal subtype tends
to have the highest immune cell content, while classical
GBM seems to be less favorable for global immune cell
infiltration. Further studies may be advised to investigate
whether the molecular composition of each subclass has
a role in promoting the invasion of the tumor by im-
mune cells.

Fig. 4 Levels of T cell infiltration differ across GBM subtypes. a, c: Representative classical, mesenchymal, neural and proneural GBM stained for
CD3 and CD5 (in brown, arrows). b, d: Mesenchymal GBMs have the highest number of CD3 and CD5 positive T cells in comparison to the other
molecular subtypes. Scale bar, 100 μm. Arrowheads indicate representative positive cells. CL, classical; MES, mesenchymal; N, neural; P, proneural.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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Differences in the immune content and link to survival in
GBM
To determine if the GBM immune content is correlated
to survival, we plotted the result obtained for immune
cell percentages on Kaplan-Meier curves (patients are
equally divided into three groups based on percentages
of each cell marker, i.e. low, medium, and high) (Fig. 8).
Among the immune populations examined, the only one
found to be significantly correlated to patient’s survival
was the CD163+ macrophage lineage. Medium and high
levels in percentage of CD163+ cells were indeed related
to a worse prognosis (p = 0.00128). Interestingly, be-
tween the two conditions, medium levels of macrophage
infiltration had a worse impact on patient survival than
high levels. It is important to note however, that when
we performed a cox regression model including age, sex
and subtypes as covariates, CD163 had no significant ef-
fect, with p-value equal to 0.735.

Discussion
This study is the first comprehensive immunohisto-
chemical analysis of the immune microenvironment in
the different subclasses of GBM. Despite an increasing
interest in characterizing of the immune microenviron-
ment in GBM, only gene expression data (RNA-seq) [5,
11, 41] and flow cytometry [11] have been used to
characterize the subtypes to date. This has yielded
invaluable insights into the immune profiles of these
tumors, yet immunohistochemistry is still needed to val-
idate these results and to understand the spatial relation-
ship of these cells.
The interplay between tumor cells and their micro-

environment is a dynamic process that strongly influ-
ences the progression and the outcome of several
cancers. Given this, and the natural role of the immune
system against neoplasia, the immune compartment of
the tumor TME is an appealing target for potential

Fig. 5 CD4+ but not CD8+ cells are differentially present in GBM subtypes. a and c show representative classical, mesenchymal, neural and
proneural GBMs stained for CD4 and CD8 respectively. In b, mesenchymal GBM have a higher percentage of CD4 positive cells compared to the
other GBM subtypes (of note, CD4 may be expressed in cells other than T lymphocytes, such as monocytes and macrophages). No differences
were found in CD8 infiltrate (d). Scale bar, 100 μm. Arrowheads indicate representative positive cells. CL, classical; MES, mesenchymal; N, neural;
PN, proneural. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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therapies. Today, GBM remains the most common and
lethal primary brain malignancy. Due to the pressing
need to find alternative therapeutic approaches, as well
as recent successes and failures in immunotherapy [16,
39] understanding its TME is critical. Furthermore, with
the increased understanding of differences in biology
and outcomes among subtypes, it is also necessary to
understand the TME across subtypes.
Previous research has shown that the immune com-

partment of the TME is typically composed of several
cell populations (lymphocytes, macrophages and den-
dritic cells) that may be associated with different out-
comes. These immune parameters, including the density
of cytotoxic and memory T cells at the center of the
tumor and within tumor margins, were used to establish
an “immunoscore” for colorectal cancer to predict recur-
rence and overall survival [12]. This was so successful
that it has officially been proposed as a new element of
the Tumor Node Metastasis (TNM) classification in

colon cancer [29]. Correlations between various immune
infiltrates and clinical outcomes have been shown for
many cancers; however, the types of infiltrates and loca-
tions vary greatly among cancers [10]. Thus, it is crucial
to determine whether an immunoscore may be devel-
oped with similar success in other cancers such as brain
tumors.
Although the brain has been considered an “immune

privileged” organ in the past [9], it has become clear that
immune cell infiltrates constitute an important part of
the TME in gliomas, with a significant fraction being
macrophages. In brain tumors, tumor associated macro-
phages (TAMs) can be divided into two different popu-
lations: tissue resident microglia, which are derived from
the yolk sac [14], and bone marrow-derived macro-
phages [34]. The latter derive from circulating mono-
cytes and become particularly infiltrative during tumor
progression when the integrity of the blood brain barrier
is compromised [45]. Furthermore, M2 polarized TAMs

Fig. 6 Macrophages and microglia are the predominant immune cells in GBM and their percentages differ across the molecular subtypes. a and
b show classical, mesenchymal, neural and proneural GBMs stained for CD68 and CD163 (brown). In c, mesenchymal GBMs display the highest
percentage of CD68 positive cells. In d, CD163 positive cells represent more than 80% of mesenchymal GBM cellularity, account this molecular
subtype the most infiltrated by this cellular subtype. Significant difference in CD163 infiltrate was also observed between PN and CL GBMs. Scale
bar 100 μm. Arrowheads indicate representative positive cells. CL, classical; MES, mesenchymal; N, neural; P, proneural. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001
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have been associated with high grade gliomas and a
more unfavorable outcome [18]. It has been proposed
that they act via the expression of the transcription
factor STAT3, whereby they produce cytokines to pro-
mote a tumor-supportive environment by suppressing
the proliferation of anti-tumor CD4+ and CD8+ T cells
and promoting the activity of regulatory CD4+ T cells
[20]. Interfering with the pro-tumorigenic function of
M2 macrophages has been shown to be effective in re-
ducing glioma progression in mouse models and has
been proposed as a therapeutic strategy [33, 35].

In our study, we found that GBMs demonstrate high
levels of intra-tumor heterogeneity in immune infiltrate,
that the GBMs subtypes vary significantly in the percentage
of immune cells in their microenvironment, and that mes-
enchymal GBMs have the highest percentage of microglia,
macrophage, and lymphocyte infiltration. Our results ob-
tained using quantitative imaging analysis of IHC data are
further in agreement with our analysis of immune cell com-
ponents derived from the computational analysis of the
TCGA GBM independent data set and extend on previous
work describing gene expressions signature of various im-
mune cells using RNA-seq [5, 11, 41].
Yet contrary to what has been described in other tu-

mors, such as colon cancer [28], we did not observe any
clear correlation between percentages of specific im-
mune cells within the tumor and survival, besides for
CD163+, which was related to a worse prognosis, al-
though this may be due to its association with the mes-
enchymal subtype which carries worse prognosis.
Though previous studies have found higher infiltrate of
CD3+ cells (determined by cell percentage) to be associ-
ated with a better prognostic outcome [19] in glioblast-
oma and other solid tumors [10, 19, 31], this was not
true in our cohort. We also did not find the CD8+ T cell
infiltrate to be associated with longer survival, contrary
to a histological study by Yang et al. [47]. This diver-
gence may be related to the use of quantitative methods
determine in the immune infiltrate, in our case we quan-
tified the % of total cells while previous analysis quanti-
fied either number of cells/field or number of cells per
area. Therefore, at this time we cannot generate an
“immunoscore” to predict outcomes based on immune
cell populations for the GBM subtypes [28].
A major benefit of our in situ study was the ability to ob-

serve the populations of cells and their spatial relationships.
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Fig. 7 Relative amount of CD4+, CD8+, and macrophages cells across GBM subtypes. Single sample gene set enrichment scores for CD4,
CD8, and macrophage gene sets defined by LM22 differentially expressed genes in the TCGA dataset. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001

Fig. 8 The percentage of CD163+ cells is associated to a poor
prognosis. Intermediate (red) and high (green) levels of CD163 in
GBM are correlated with a worse overall survival. **p < 0.01
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Our results revealed significant heterogeneity of GBM sam-
ples, both inter- and intratumorally. Though we found
trends across the GBM subtypes for most cell types, there
was also significant variation within the subtypes. Previous
work has identified the mesenchymal GBM gene signature
to be enriched in immunosuppressive genes, including a
large proportion associated to the monocytic/macrophage
lineage [7]. This suggests that a reciprocal interaction be-
tween TAMs and tumor cells may be crucial in the main-
tenance of the mesenchymal subtype. In line with this, our
results demonstrate that the mesenchymal subtype has the
highest degree of immune infiltration for all the popula-
tions evaluated. Thus, mesenchymal GBM may be the most
immunogenic and may be suitable for immunotherapy. On
the other hand, proneural GBMs, with their lower immune
infiltration, may be closer to the immune “cold” category,
which would require additional considerations for im-
munotherapy to be successfully applied.
One limitation of our study is that we only broadly

characterized the main populations of immune cells.
More specific types of cells, such as immunosuppressive
T regulatory cells (Tregs), have been found to suppress
the proliferation of other T cells and to favor tumor pro-
gression [2, 46]. In contrast, γδ T cells have been found
to have HLA-independent cytotoxic activity [22]. Future
analyses, using a combination of IHC and flow cytome-
try may be used to further classify our main cell popula-
tions into subclasses to better understand the immune
microenvironment of these tumors.
In conclusion, our study is the first exhaustive immuno-

histochemical study of the immune infiltrate of the four
GBM subtypes. We found a clear difference in immune
infiltration between GBM subtypes, which was validated
by gene-expression analysis of an external cohort. This of-
fers new insight in intertumor immune cell heterogeneity.
Though we only found one marker to be correlated with
survival, it is possible that larger studies may be able to
identify an “immunoscore” that could be used to predict
disease progression and response to therapy.
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