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Evaluating machine learning 
classifiers for glaucoma referral 
decision support in primary care 
settings
Omkar G. Kaskar1, Elaine Wells‑Gray2, David Fleischman3 & Landon Grace1*

Several artificial intelligence algorithms have been proposed to help diagnose glaucoma by analyzing 
the functional and/or structural changes in the eye. These algorithms require carefully curated 
datasets with access to ocular images. In the current study, we have modeled and evaluated classifiers 
to predict self-reported glaucoma using a single, easily obtained ocular feature (intraocular pressure 
(IOP)) and non-ocular features (age, gender, race, body mass index, systolic and diastolic blood 
pressure, and comorbidities). The classifiers were trained on publicly available data of 3015 subjects 
without a glaucoma diagnosis at the time of enrollment. 337 subjects subsequently self-reported a 
glaucoma diagnosis in a span of 1–12 years after enrollment. The classifiers were evaluated on the 
ability to identify these subjects by only using their features recorded at the time of enrollment. 
Support vector machine, logistic regression, and adaptive boosting performed similarly on the dataset 
with F1 scores of 0.31, 0.30, and 0.28, respectively. Logistic regression had the highest sensitivity 
at 60% with a specificity of 69%. Predictive classifiers using primarily non-ocular features have the 
potential to be used for identifying suspected glaucoma in non-eye care settings, including primary 
care. Further research into finding additional features that improve the performance of predictive 
classifiers is warranted.

Glaucoma is a progressive optic neuropathy resulting in the loss of retinal ganglion cells; if untreated it can 
result in complete blindness. It is the leading cause of irreversible blindness in the world. At present, it affects 
approximately 70 million people, with the number projected to grow to about 112 million by 20401. Although the 
visual impairment caused by glaucoma is irreversible, early detection and treatment of the disease can reduce the 
risks of permanent vision loss2. Unfortunately, this is hampered by the asymptomatic nature of glaucoma3 and its 
complex, resource-intensive, and subjective diagnostic process4–7. Artificial intelligence (AI)-based approaches 
may enable the construction, validation, and implementation of predictive models to identify individuals who 
are at high risk of developing glaucoma, in settings that do not necessarily have access to ophthalmic imaging 
devices (e.g. primary care) and coordinate their care to ophthalmology.

In recent years, several AI-based approaches have been explored for the diagnosis of ophthalmic patholo-
gies such as diabetic retinopathy8,9, macular edema10,11, and keratoconus12. Some of these efforts have resulted 
in new medical devices. In 2018, IDx-DR was approved by the US Food and Drug Association as the first fully 
autonomous AI-based diabetic retinopathy diagnostic system13. Several AI studies have attempted to interpret 
the structural and functional patterns manifesting in the eye for the prognosis and diagnosis of glaucoma14–25. 
Artificial neural networks (ANN) and machine learning classifiers have been used on functional data, such as 
visual fields, to identify patterns of glaucomatous progression earlier than more conventional methods14–17. The 
advent of deep learning has allowed the use of retinal imaging such as color fundus photographs (CFPs)18–22 and 
macular optical coherence tomography (OCT) images23–25 to extract structural features to differentiate glaucoma-
tous damage. Compared to conditions such as diabetic retinopathy, where clinically feasible AI-based diagnostic 
technologies have already been adopted, it may be more difficult to develop such tools for glaucoma, owing to the 
significant variation in the appearance of the optic discs. The need for carefully chosen, large, and diverse train-
ing datasets to achieve high diagnostic accuracy adds to this challenge. The performance of glaucoma-specific 
models depends on the quality and number of images (> 100,000), making it a time consuming and expensive 
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process26. Furthermore, repeated visual field tests are required to account for their inherent subjectivity, making 
them a major part of the workload being placed on hospital eye services22,27.

Relatively few AI-based studies have focused on developing predictive models for glaucoma without using 
visual fields, CFPs, or OCT images. Leveraging the wide adoption of electronic health records (EHR), Baxter 
et al.28 used machine learning classifiers to identify high risk patients with open angle glaucoma (OAG) requiring 
surgery within 6 months. Mehta et al.29 trained multiple ensemble models, each using a different set of features, 
to differentiate between glaucomatous and healthy eyes. One of those models used demographic, systemic, and 
ocular data to make these classifications. Similarly, Tielsch et al.30 fit logistic regression models to a population-
based survey to screen for glaucoma, using demographic and other known risk factors. These prior studies have 
shown the potential for AI-based models to be used for managing glaucoma more effectively, making informed 
referrals to ophthalmologists, implementing more efficient population-based glaucoma screening, and developing 
intelligent self-monitoring devices. However, since the models by Baxter et al. and Mehta et al. are not trained 
on features from an undiagnosed population, they cannot be applied directly to predict glaucoma in the general 
population outside of those already actively managed by an eye care provider. On the other hand, although 
Tielsch et al. have trained their model on an undiagnosed population, they have reported very low predicted 
probabilities; likely a direct consequence of the dataset used.

In the current study, we have trained the classifiers on a sufficiently large cohort of subjects with a negative 
glaucoma diagnosis at the time of enrollment, such that it could be representative of the general population. 
Some of the subjects subsequently self-reported glaucoma. Different machine learning classifiers were evaluated 
on their ability to identify these subjects based on a combination of their demographic, systemic, ophthalmic, 
and comorbidity information taken at the time of enrollment. The goal was to explore the use of easily available 
data to inform referral decisions to eye care from primary care settings, without the use of expensive and/or 
time-consuming data such as visual fields or retinal images.

Methods
The National Institutes of Health’s (NIH) Age-Related Eye Disease Study (AREDS) database was used to develop 
and evaluate the machine learning classifiers. The AREDS was a 12-year, multi-center, prospective study car-
ried out to determine the risk factors associated with age-related macular degeneration (AMD)31. Anonymized 
natural history data of subjects was made publicly available by the NIH for research purposes. The correspond-
ing author was granted access to the AREDS data by the National Eye Institute Data Access Committee, NIH 
and the analysis was conducted in agreement with the approved research use statement (data access request no. 
#89148–1). The AREDS was adherent to the tenets of the Declaration of Helsinki and was compliant with the 
Health Insurance Portability and Accountability Act32. For the present study, non-genetic data was used, which 
consisted of demographic, systemic, ocular (IOP), and co-morbidity information for enrolled subjects. Glaucoma 
was established through self-report, in which subjects were annually queried whether they had been diagnosed 
with glaucoma by an eye care provider. Subjects with glaucoma were determined based on those who selected 
‘Yes’ from a predefined list of answers to the question ‘Has a doctor ever told you that you have glaucoma?’ The 
earliest diagnosis was recorded within a year of the start and the latest at over 12 years. While limited due to 
the lack of a “confirmed” diagnosis, the AREDS data provides a unique opportunity to build predictive models 
using data of non-glaucomatous subjects at the time of enrollment, some of whom subsequently self-reported 
new onset of glaucoma.

Information was extracted from the AREDS database for subjects who had multiple follow-up visits. The 
models were based on demographic features (age, gender, and race), systemic features (body mass index (BMI), 
systolic and diastolic blood pressure), a single ocular feature (IOP in the right and the left eye), and comorbidities 
(diabetes, arthritis, and AMD). The blood pressure readings were taken by a certified examiner using a mercury 
sphygmomanometer33. IOP for the AREDS participants was measured using an applanation tonometer or a 
pneumatonometer by experienced professionals33, which is representative of how IOP is measured during eye 
exams as part of primary eye care34. There were 7 non-glaucomatous subjects with missing entries for either 
IOP or BMI. Due to the relatively low number of missing values, imputation was not performed and these cases 
were removed from the dataset. A statistical quantitative description of the features is shown in Tables 1 and 
2. The total number of subjects in the final database was 3,015, all of whom were non-glaucomatous when the 
information highlighted in Tables 1 and 2 was recorded. In the subsequent follow-up visits, 337 subjects self-
reported to have been diagnosed with glaucoma (positive class) which left 2,678 non-glaucomatous (negative 
class) subjects at the end of the study period.

Further data preprocessing was carried out in the steps highlighted below:

Encoding categorical data.  The pandas35,36 library in python was used for initial data processing. Ordinal 
encoding was used for the AMD categorical variable where the integer values (1–4 in increasing order of sever-
ity) had a natural ordered relationship. For all the other categorical variables (gender, race, presence of diabetes 
and arthritis), since no such ordinal relationship existed, dummy encoding was implemented using the one-hot 
encoder.

Train test split.  To estimate the generalization error of the classifiers, a nested cross-validation strategy was 
applied. Five randomly generated splits ensured that 80% of the data was used for training and the remaining 
20% was used for testing each of the fitted classifiers. The train and test sets were stratified to have a similar 
ratio of glaucoma to non-glaucoma subjects. Grid search was performed for hyperparameter tuning by using a 
fivefold cross-validation on the training set. The best hyperparameters identified through the grid search process 
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were then used to evaluate how the classifiers performed on the test set. The model metrics are reported as a 
mean over all the executions for evaluating and comparing the performance of each classifier.

Class imbalance.  The current dataset had 11% positive cases and 89% negative cases, making it an imbal-
anced dataset. This might result in biased classifiers that have poor predictive capabilities, specifically for the 
minority class. To address class imbalance, synthetic data was generated using the synthetic minority over-
sampling technique (SMOTE)37. The algorithm works by generating new instances of the minority class rather 
than creating copies of the existing samples. Synthetic examples are introduced along the line segments joining 
each sample of the minority class and any/all of its nearest neighbors, determined by the Euclidean distance 
between them.

Model training.  The Scikit-learn38 and the Keras39 libraries in Python were used to build the classifiers. The 
classifiers included a linear method (logistic regression), a non-linear method (support vector machines), and 
an ensemble method (Adaptive boosting). The performance of different classifiers is usually evaluated using 
metrics such as accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) for the receiver 
operating characteristic (ROC) and precision-recall curves. With imbalanced data, the regular measures of per-
formance such as accuracy are often misleading. Recall (i.e., sensitivity) measures the ability of the model to cor-
rectly identify the positive class (i.e., glaucomatous subjects). Precision (i.e., positive predictive value) indicates 
the proportion of correct positive predictions. Since there is usually a tradeoff between precision and recall, their 
harmonic mean, called the F1 score is often used. In the current study, the classifiers’ hyperparameters are opti-
mized such that they maximize the F1 score. A grid search technique was used in the inner loop of the nested 
cross-validation to identify the optimized hyperparameters. A brief description of the setup for each model and 
the hyperparameters chosen via cross-validation are given below:

Table 1.   Quantitative description of categorical features of subjects at the time of enrollment. *AMD category 
descriptions33. Category 1: A few small or no drusen. Category 2: Many small drusen or a few medium-sized 
drusen in one or both eyes. Category 3: Many medium-sized drusen or one or more large drusen in one or 
both eyes. Category 4: Breakdown of light-sensitive cells and supporting tissue in the central retinal. Area or 
abnormal and fragile blood vessels under the retina.

Features Categories Total (N = 3015) Glaucoma Count (%) Non-glaucoma Count (%)

Gender
Male 1353 167 (12.3%) 1186 (87.7%)

Female 1662 170 (10.2%) 1492 (89.8%)

Race

White 2913 315 (10.8%) 2598 (89.2%)

Black 84 18 (21.4%) 66 (78.6%)

Hispanic 9 1 (11.1%) 8 (88.9%)

Asian 4 1 (25%) 3 (75%)

Other 5 2 (40%) 3 (60%)

Diabetes
Positive 239 32 (13.4%) 207 (86.6%)

Negative 2776 305 (11%) 2471 (89%)

Arthritis
Positive 1354 157 (11.6%) 1197 (88.4%)

Negative 1661 180 (10.8%) 1481 (89.2%)

AMD*

Category 1 746 90 (12.1%) 656 (87.9%)

Category 2 673 65 (9.7%) 608 (90.3%)

Category 3 1054 119 (11.3%) 935 (88.7%)

Category 4 542 63 (11.6%) 479 (88.4%)

Table 2.   Statistical summary of the numerical features of the subjects at the time of enrollment.

Feature

Glaucoma (Self-report at end of study, N = 337) Non-glaucoma (N = 2678)

Mean Standard deviation Maximum Minimum Mean Standard deviation Maximum Minimum

Age 70.3 5 81.6 56.3 69.4 5 81.7 55.8

Systolic blood 
pressure 138.6 18 200 100 137 18 220 70

Diastolic Blood 
pressure 79.2 9.7 120 50 78.5 9.5 120 42

BMI 27.9 4.8 45.6 18.2 27.4 4.8 58.2 8.9

IOP (right eye) 18.2 3.6 30 10 15.8 3.1 26 5

IOP (left eye) 18.3 3.7 30 10 15.9 3 30 4
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Logistic regression.  Logistic regression is a linear model for classification that uses the logistic (sigmoid) func-
tion to estimate the probability that a sample with given features belongs to the default class (Y = 1). The prob-
ability predictions are transformed into a binary output (0 or 1) using a threshold of 0.5 in scikit-learn. The 
logistic regression classifier was set up using the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) 
solver. L2 regularization was used to prevent overfitting and the inverse regularization coefficient, C, was set at 
0.001. The maximum number of iterations for the solver to converge was 10,000. Standardization of the dataset 
was carried out so that all features are approximately centered around zero and have a unit variance. This ensures 
that the regularization is applied equally to all the features.

Support vector machines.  The support vector machine (SVM) classifier determines a hyperplane that directly 
classifies samples into one class or the other. A non-linear decision function can be determined using a kernel 
function that implicitly maps the features into a high-dimensional space. In the present study, a radial basis 
function kernel was used, and the inverse regularization coefficient, C, was set at 0.001. The kernel coefficient, γ, 
represents the inverse of the radius of influence of samples selected by the model as support vectors, and was set 
as 0.0001. Similar to the setup of the logistic regression classifier, the SVM classifier is not scale invariant and the 
features thus were standardized prior to training.

Adaptive boosting.  Adaptive Boosting (AdaBoost) fits a sequence of weak learners such as decision trees, with a 
single internal node (decision stumps), on data that is repeatedly modified by assigning weights. At each boost-
ing iteration, the examples that are misclassified by the boosted model at the previous step are assigned a higher 
weight, while the weights for the correctly classified examples are decreased. Each subsequent weak learner 
thereby focusses more on correctly classifying the examples that are missed by the previous ones. A weighted 
majority vote is taken from all the weak learners to determine the final classification. 200 decision stumps were 
used in the current model. The learning rate controls the contribution of the new decision stump to the existing 
model and is suggested to be set to small values (< 0.1)40. In the current model the learning rate is set as 0.01.

A permutation feature importance technique was used to determine the predictive power of the features 
used. The technique was set up to calculate the drop in the F1 score when a single feature value was randomly 
shuffled41. This results in breaking the pattern between the feature and the target class, and the drop in F1 score 
is indicative of the importance of that feature to the model. If a particular feature is important to the model, 
randomly shuffling its values will deteriorate the performance of the model, while doing the same to a relatively 
less important feature would not adversely affect the model’s performance. Permutation feature importance was 
preferred over the impurity-based ranking technique used in decision tree classifiers, as it is model agnostic and 
is unbiased towards features exhibiting high cardinality (most numerical features)42.

Results
Table 3 shows the performance of the classifiers based on the primary outcome measures: sensitivity (or recall), 
specificity, F1 score, accuracy, and area under the precision-recall curve. As mentioned earlier, sensitivity is a 
measure of the false-negatives, and F1 score is a harmonic mean of the sensitivity and precision. Specificity is a 
measure of the ability to correctly classify as negative (i.e., non-glaucomatous) those without the disease. As seen 
in Table 3, all three machine learning classifiers perform similarly. This is highlighted in Fig. 1, which shows the 
average precision and recall curves for all classifiers relative to one from a dummy classifier that makes random 
classifications. The precision-recall curve is more informative than the ROC curve when evaluating models with 
class imbalance43. The area under the precision-recall curve for all three classifiers is greater than the dummy 
classifier: 0.30, 0.29, and 0.28 for AdaBoost, SVM, and logistic regression, respectively. Classifiers that have a 
greater area under the precision-recall curve compared to that of the dummy classifier are indicative of their 
learnt ability to identify patterns in the data.

Traditionally, glaucoma screening programs and referrals for comprehensive eye examination have 
been made on the basis of IOP, with individuals having IOP > 21 mm Hg considered to be at high risk for 
glaucoma30,44,45. Table 3 also shows the performance of a similar criterion applied on the current dataset. Subjects 
with IOP > 21 mm Hg in either eye were predicted to have glaucoma. With the traditional IOP criterion, the 
sensitivity is very poor when compared to the machine learning classifiers, as reported in Table 3. Based on the 
sensitivity, machine learning classifiers are likely to identify more than twice as many subjects with glaucoma 
from the current dataset.

The predictive capabilities for the features used for classification were evaluated using the permutation feature 
importance technique. Figure 2 shows the drop in the F1 score for the 3 classifiers as each feature was permuted. 
The features which contribute most to the F1 score are IOP and age. The age of the patient has more predictive 
capabilities in case of logistic regression and support vector machine as compared to AdaBoost.

Table 3.   Performance metrics reported as mean (standard deviation) over all the executions.

Models (N = 25) Sensitivity/ Recall Specificity F1 score Accuracy Area under precision-recall curve

Support Vector Machine 0.52 (0.06) 0.77 (0.03) 0.31 (0.04) 0.74 (0.03) 0.29 (0.05)

Logistic Regression 0.60 (0.07) 0.69 (0.02) 0.30 (0.03) 0.68 (0.02) 0.28 (0.05)

AdaBoost 0.57 (0.11) 0.69 (0.06) 0.28 (0.03) 0.68 (0.04) 0.30 (0.07)

IOP greater than 21 mm Hg 0.25 0.93 0.28 0.86
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Discussion
The classifiers were trained and evaluated on the AREDS dataset, which had subjects who were all non-glauco-
matous when their baseline features were recorded. Self-reporting of glaucoma diagnosis is a limitation; it may 
be subject to inaccuracies due to the lack of a widely accepted method of confirming diagnosis, the associated 
potential for misdiagnosis from a provider, and/or misunderstanding of a diagnosis (or lack thereof) by the 
patient. However, self-reported glaucoma status has been regularly used in previous studies46–48, and its useful-
ness and performance has been explored49.

The AREDS dataset has certain advantages that address some of the sources of bias that often appear in AI-
based studies50. First, the final database has 3,015 subjects, which is a relatively large cohort which results in more 
realistic performance of the classifiers. Second, unlike other studies where the data is retrieved from glaucoma 
clinics in which there is a higher proportion of glaucoma cases, the current study has 337 glaucomatous cases 
and 2,678 non-glaucomatous cases, which represents a more likely real-world scenario. Third, the prevalence 
of comorbidities such as diabetes, arthritis, and AMD are taken into consideration as some people would most 
likely present with multiple diseases. AI-based studies that use structural and functional data14,19, generally con-
sider an otherwise-healthy but glaucomatous population, but patients often present with multiple conditions. 
This approach would likely help the classifiers generalize better to real world data. The classifiers were trained 
on subjects’ age, gender, race, BMI, systolic and diastolic blood pressures, IOP, and prevalence of comorbidities.

Table 4 summarizes other AI-based glaucoma risk prediction studies that do not use visual field tests, CFPs, 
and OCT scans, alongside the current one. The model developed by Baxter et al.28 predicts patients at high risk 
of glaucoma progression as represented by the need for surgical intervention within 6 months. The model was 
trained on EHR data of patients already diagnosed with glaucoma. Their final dataset was relatively small with 
385 total patients, all of whom had glaucoma, and 174 of whom underwent surgery. Therefore, their model would 
not be appropriate to determine individuals with glaucoma from an undiagnosed population. Mehta et al.29 
trained their model on a labeled dataset with healthy and glaucomatous eyes using demographic, systemic, and 
ocular information. Since there is value in predicting glaucoma in the general population, they also applied the 
model on a cohort of fifty-five subjects without a glaucoma diagnosis at the time of data collection, all of whom 
subsequently developed glaucoma. Although their model predicts glaucoma with an accuracy of 75%, a cohort 
of fifty-five subjects is very small to assess its predictive capabilities. Tielsch et al.30 reported sensitivities and 
specificities of their logistic regression models for various decision thresholds (0.025, 0.05, 0.1, 0.15). They noted 
that the range of predicted probabilities from their model were below 0.2, and the sensitivity and specificity, 
with 0.15 as the probability cut-off, were 35% and 97%, respectively. By contrast, in the current study we used 
a standard probability threshold of 0.5 for the logistic regression classifier. Their data had 191 glaucoma cases 
and 5,054 normal cases, making it a highly imbalanced dataset. They have not reported whether any sampling 
techniques were employed prior to fitting the model to address the imbalance. This might have resulted in a 
model that is biased toward predicting the more frequently occurring class. As seen in Table 4, the current study 
mitigates some of the limitations addressed above.

Applying a permutation feature importance technique to the classifiers in the current study showed that IOP 
and age were the most predictive features in terms of increasing the F1 score. Systemic features, comorbidities, 
and racial data did not contribute to the predictive capabilities of the classifiers. However, this does not imply 
that the information is not important in terms of its association with glaucoma. The results of the permutation 
feature importance are specific to the current dataset and reflect the contribution of the features to the F1 score. 
Several large prevalence studies have documented African ancestry as a risk-factor for glaucoma with higher 

Figure 1.   The average Precision-Recall curves for all classifiers with respect to a dummy classifier. The area 
under the curve (AUC) reported as mean (standard deviation): Adaptive boosting (AdaBoost) – 0.30 (0.07), 
support vector machine – 0.29 (0.05), and logistic regression – 0.28 (0.05).
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Figure 2.   Permutation feature importance applied to each classifier: (a) Logistic regression, (b) Support vector 
machine, and (c) Adaptive boosting (AdaBoost). Mean decrease in F1 score is shown for each feature: age, 
systolic and diastolic blood pressure, gender (male), body mass index (BMI), intraocular pressure (IOP) in the 
right eye (RE) and left eye (LE), age-related macular degeneration (AMD) category, race (black, Hispanic, Asian, 
and other), and presence of diabetes and arthritis.
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levels of IOP51–53. The classifiers’ lack of dependency on race is likely due to the very high prevalence of white par-
ticipants in the AREDS database, which is a limitation of the current study. A more balanced racial distribution 
within the data may have yielded different results. Vascular conditions such as blood pressure have been investi-
gated as possible risk-factors for glaucoma. However, results have been inconclusive. While the Egna-Neumarkt 
Study54 found an association between glaucoma and systemic hypertension, the Rotterdam study55 found that 
blood pressure was associated with high-tension glaucoma but not with normal-tension glaucoma. On the other 
hand, the Beijing Eye Study56 found that neither the systolic nor the diastolic blood pressures were significantly 
associated with the prevalence of glaucoma. To truly assess the importance of each feature, the dataset must be 
highly standardized and balanced across the different features. Additionally, majority of the AREDS participants 
had AMD, which is not representative of the normal population, and is a limitation of the current approach. 
While the feature permutation importance technique suggests that AMD may not be an important predictor for 
glaucoma, stratifying the dataset according to AMD categories may be a suitable approach to extract conclusive 
information. However, this was not pursued in the current study as it would reduce the number of samples in 
the dataset, making it prone to overfitting.

The aim of screening is to detect diseases early and treat conditions that have already produced pathological 
change but have not reached a stage where medical intervention is sought spontaneously57. Unlike diagnostic 
tools that require high sensitivity and specificity, screening can be relatively less accurate as it does not form 
the basis for treatment. Individuals identified through a positive screen test must be referred for diagnosis and 
necessary treatment. The asymptomatic nature of glaucoma results in 50%-90% undetected cases until advanced 
stages of the disease4–6 . The lack of regular visits to an ophthalmologist is one of the major causes of undiag-
nosed glaucoma58. Although these numbers support the need for glaucoma screening programs, they are not 
very common due to their high costs59 and the lack of an ideal screening method60,61. The Student Sight Savers 
Program implemented glaucoma screening for over 41,000 people in the United States44. The screening included 
a questionnaire to determine family history of glaucoma, IOP measurement, and visual function assessment. 
Sensitivity and specificity values for a positive screening in the individual tests were 48.6% and 68.6% for a 
confirmed family history of glaucoma, 22.1% and 78.6% for IOP greater than 21 mm Hg, and 58.1% and 98.6% 
for three or more abnormal locations on the visual field. As shown in the current study, a multivariable decision 
function learned through data-based techniques may provide better outcomes as compared to a fixed criterion 
for screening. Screening techniques must be cost-effective, simple, delivered rapidly, and should cause minimal 
discomfort to the subject57. With advances in machine learning and the relative simplicity of IOP measurement, 
there is a potential to address challenges that are specific to glaucoma screening and strongly support the neces-
sity of further research into these technologies62.

In the future, glaucoma-specific AI-based tools will become available to clinicians for improved disease 
management, including the possibility of standalone or EHR-integrated referral decision support tools for pri-
mary care physicians and/or care management service providers. With the expanding power of computational 
resources, well curated datasets of better quality will likely make these tools highly accurate for screening and, 
potentially, diagnosis. The results presented here highlight the potential of these tools to play a future role in the 
early detection of glaucoma. These types of predictive models may make screening programs, referral decisions, 
and self-monitoring more efficient and effective, thereby increasing the chances of managing glaucoma more 
effectively, reducing the risk of vision loss, and improving quality of life.

Conclusion
In this study we evaluated multiple machine learning classifiers on their ability to predict future self-reported 
glaucoma based on data that can be obtained independent of an eye care provider. The goal was to explore the 
potential for combining readily accessible patient data with simple IOP measurement in a non-eye care set-
ting to inform referral decisions and, thus, increase the number of glaucoma suspects evaluated early by an 

Table 4.   Summary of artificial intelligence-based glaucoma risk prediction models that do not use visual fields 
and imaging data.

Reference Description Features used Performance

Baxter et al.28
Predicting need for surgical intervention within 
6 months for patients (N = 385) with open angle 
glaucoma

48 features that can be broadly categorized into vital 
signs, body mass index, smoking status, comorbidi-
ties, hospitalization status, medications, and lab 
values

Logistic regression
Accuracy: 62%
Sensitivity: 78%
Specificity: 50%

Mehta et al.29
Predicting self-report of open angle glaucoma in a 
population (N = 1689) without a clinical diagnosis at 
the time of testing

Age, gender, ethnicity, body mass index, forced vital 
capacity, peak expiratory flow, heart rate, diastolic 
and systolic blood pressure, diabetes, recent nicotine 
and caffeine intake, intraocular pressure, corneal 
hysteresis, and corneal resistance factor

Extreme gradient boosting (XGBoost)
Accuracy: 75%

Tielsch et al.30 Predicting glaucoma in a normal population 
(N = 5308)

Age, race, intraocular pressure, family history of 
glaucoma, and diabetes

Logistic regression
Predicted probability threshold ≥ 0.025
Sensitivity: 86%
Specificity: 66%

Current study Predicting self-report of glaucoma in a population 
without a clinical diagnosis at the time of testing

Age, gender, race, BMI, systolic and diastolic blood 
pressures, and comorbidities

Logistic regression, support vector machine, and 
adaptive boosting
Accuracy: 68%–74%
Sensitivity: 52%–57%
Specificity: 69%–77%
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ophthalmologist. The three classifiers: logistic regression, support vector machine, and adaptive boosting were 
trained on data recorded when no subjects reported a glaucoma diagnosis. The classifiers were able to predict 
subjects who subsequently reported a confirmed glaucoma diagnosis, with sensitivities ranging from 52%–60% 
and specificities from 69%–77%. Further research into identifying more features to improve the predictive per-
formance of such classifiers is necessary. We envision the use of such algorithms in developing tools to be used 
in primary care settings for advising patients to be evaluated by an eye care provider. We believe that such a tool 
would add value to the clinical care of patients at risk of glaucoma who might not otherwise visit an eye care 
provider without a referral and encouragement from their primary care provider.
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