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Abstract: The 1H DQ Fourier and Laplace-like spectra for a series of cross-linked natural rubber (NR)
samples naturally aged during six years are presented and characterized. The DQ build-up curves of
these samples present two peaks which cannot be described by classical functions. The DQ Fourier
spectra can be obtained after a numeric procedure which introduces a correction time which depends
less on the chosen approximation, spin- 1

2 and isolated CH2 and CH3 functional groups. The DQ
Fourier spectra are well described by the distributions of the residual dipolar coupling correlated
with the distribution of the end-to-end vector of the polymer network, and with the second and
fourth van Vleck moments. The deconvolution of DQ Fourier spectra with a sum of four Gaussian
variates show that the center and the width of Gaussian functions increase linearly with the increase
in the cross-link density. The Laplace-like spectra for the natural aged NR DQ build-up curves are
presented. The centers of four Gaussian distributions obtained via both methods are consistent. The
differences between the Fourier and Laplace-like spectra consist mainly of the spectral resolution
in the favor of Laplace-like spectra. The last one was used to discuss the effect of natural aging for
cross-linked NR.

Keywords: natural rubber (NR); natural aged NR; DQ Fourier spectra; DQ Laplace-like spectra;
distribution of 1H residual dipolar coupling in elastomers

1. Introduction

Homonuclear and heteronuclear residual dipolar couplings (RDCs) or quadrupolar
interactions in soft solids such as elastomers and biological tissues represent an important
source of information about the structure and molecular dynamics [1–5]. Proton residual
dipolar couplings in elastomers reflect changes in the cross-link density, temperature, the
uniaxial and biaxial extension or compression as well as the presence of fillers and penetrant
molecules. Structure–dynamics–function relationships using RDCs can be investigated for
the broad class of elastomer materials [2–4].

The measurements of RDCs can be carried out using one-dimensional (1D) and two-
dimensional (2D) NMR methods. In the 1D case, methods were used such as the dipolar
correlation effect in combination with Hahn and solid echo [6,7], the stimulated echo [8],
the magic echo [9] and magnetization exchange [10,11]. Model free access to RDCs is
given by the analysis of multiple-quantum (MQ) build-up [12–18] and decay [19] curves
recorded in the initial regime of the excitation/reconversion periods of the experiment, as
well as the accordion magic sandwich technique [20]. Chemically site-selective RDCs can
be elucidated by 2D NMR spectroscopy using, for instance, 13C-1H heteronuclear residual
dipolar couplings and encoded spinning sideband patterns [21]. The NOESY under magic
angle sample spinning (MAS) [22] and double-quantum (DQ) MAS NMR spectroscopy are
also used [23,24].

In general, residual dipolar couplings are characterized by heterogeneous distribu-
tions. In many cases, the local variation in cross-link density and the presence of network
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defects will lead to the variation of residual dipolar couplings around an averaged value.
Furthermore, residual dipolar couplings and its associated dynamic order parameter are
dependent on the time scale of the NMR experiment [2]. In such situations, the MQ build-
up curves show a broad maximum from which the RDC distribution can be obtained
by inverse Laplace transform by means of the Tikhonov regularization method [18], and
references therein. A more complex situation is present when RDCs are affected, such
as in the case of grafted polymer chains [14,25], the presence of fillers [26,27], radiation-
induced cross-linking [15,28] or thermal degradation [29]. In these cases, bimodal DQ
build-up curves were detected and the average RDCs distributions were analysed using
DQ phenomenological growth curves [28,30].

In order to obtain magnetization relaxation times and diffusivities distributions, a
fast algorithm of inverse Laplace transform (ILT) [31,32] from over almost two decades
was applied successfully. Unfortunately, the ILT is ill-defined, sensitive to experimental
noise and affected by numerical artifacts. In spite of these drawbacks, ILT was used for
many 1D and 2D correlations and exchange experiments [33]. To the best of our knowl-
edge, the advanced version of ILT was not applied for investigation of the multimodal
MQ experiments.

Recently, S. Nie et al. [34] have studied cross-linked (natural rubber) NR with and
without carbon black (CB) aged thermally by hot air or physically by mechanical fatigue at
different time intervals. Their measurements are based on the nonlinear rheological parame-
ter obtained from FT-Rheology and 1H DQ-NMR techniques. C. Huang et al. [35] combined
1H-DQ NMR techniques and the tube model (two different types of entanglements), i.e.,
transiently trapped entanglements (TTEs) and permanently trapped entanglements (PTEs).
They obtained a new understanding of the architecture and composition of the network
structure by studying the relationships between the varied performances at different testing
conditions under deformation in unvulcanized NR. A.P. Munaro et al. [36] used 1H DQ
and dipolar filtered magic sandwich echo (DF-MSE) methods to characterize the struc-
tural and dynamic modifications that occur during 12 years’ exposure to degrading harsh
atmospheric conditions of insulator PDMS elastomeric networks.

The goal of this work is to characterize a series of cross-linked natural rubber
(NR1-NR7) aged for six years in natural conditions for which a bimodal time domain
DQ build-up curve was measured. The natural aging process on these cross-linked NR
samples leads to a special behavior of the recorded DQ data, which cannot be considered
a simplest superposition of two (or more) components. Therefore, the simplest classical
models for analyzing the DQ experimental data fail, and new approaches have to be de-
veloped. These are based, not on the measurement of a limited number of parameters
(average residual dipolar coupling, multi-spin van Vleck moments, etc.) which are glob-
ally characterizing the polymer network, but on the measurement of the distributions
of residual dipolar coupling. For that, an automatic numeric procedure was developed
based on Fourier transform into a spin- 1

2 pair approximation. The distributions of residual
dipolar coupling obtained by Fourier transform are compared with those obtained by
Laplace-like inversion procedures which are assuming a spin- 1

2 pair approximation or an
ad hoc Abragam-like function as a kernel. Contrary to the classical methods which, in
general, are using the data measured only in the initial time regime, the newest proposed
procedures are applied on the entire DQ build-up curve.

2. Experimental
2.1. Samples

In this investigation, a series of cross-linked natural rubber samples aged by oxidative
processes were used (Table 1). The investigated elastomer samples are from commercially
available natural rubber (NR) SMR10 (Malaysia). The additives were 2 phr stearic acid
and 3 phr (parts per hundred rubber) ZnO. The sulfur and accelerator contents are 1:5 phr
each. The accelerator was TBBS (benzothiazyl-2-tert-butyl-sulfenamide). After mixing
the compounds into a laboratory mixer at a temperature of 50 ◦C, the samples were
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vulcanized at 160 ◦C using a Monsanto MDR-2000-E vulcameter. The degree of cross-
linking was measured after vulcanization at a temperature of 160 ◦C by the low- frequency
shear modulus directly in the vulcameter. More about the sample characteristics of the
series of NR were presented in previous papers [9,16,20,30,37–39]. The series of NR were
manufactured in 2003. For the natural aging of the cross-linked NR rubber, the samples
were simply stored in dark at room temperature for a period of several years. Then, from
time to time, a series of normalized DQ build-up curves were recorded during this period
of time for the same series of cross-linked natural rubber samples. These samples were cut
off from the same 10 × 10 cm plate with the thickness of 3 mm.

Table 1. The values for the correction time τc obtained as a result of correction procedure of the DQ Fourier spectra based on
spin-1/2 and isolated CH2 and CH3 approximations for the series of cross-link density from NR1 to NR7. The second M2 and
fourth M4 residual van Vleck moments and the maximum of the DQ Fourier spectra obtained for the last approximation.

Sample Sulfur Accelerator (phr) τc Isolated-1/2 Spin (µs) τc Isolated CH2
and CH3 (µs)

M2
[104 rad2 s−2]

M4
[1010 rad4 s−4]

ωmax
D /2π
[Hz]

NR1 1–1 340.9 411 2.78 1.51 116.9
NR2 2–2 243.3 294 3.66 2.01 167.5
NR3 3–3 216.5 261 4.00 2.14 207.3
NR4 4–4 201.0 242 3.88 1.99 290.3
NR5 5–5 185.0 223 3.08 1.32 488.4
NR6 6–6 162.3 183 3.80 1.79 450.4
NR7 7–7 151.8 196 3.73 1.71 464.1

Fit errors were smallest than 5%.

2.2. NMR Measurements

The measurements, for natural aged samples, were performed using a BRUKER
MINISPEC mq20 spectrometer working at 19.7 MHz. The sample temperature during all
measurement was 35 ◦C. The DQ five-pulse sequence used to record the build-up curves is
presented in Figure S1 (see Supplementary Information, where the efficiency in creating
DQ coherences is also discussed). The tipping pulse length was 8–8.5 µs, dependent on the
cross-link density. The excitation/evolution period is denoted by τ and was increased in
equal steps up to 4 ms. The evolution period t0 and z-filter tz were kept short of the order
of 20 and 50 µs, respectively. The recycle delay was 0.5 s. The double-quantum filtered
signals were normalized to the integral intensity of the single-quantum signal measured in
the same conditions as DQ build-up curves.

3. Proton DQ Build-Up Curves

The DQ build-up curve was recorded from the unaged NR1 sample after the vul-
canization (see Table 1) and is shown in Figure 1a. A single component can be observed
with a maximum around 700 µs. The maximum DQ signal is obtained from the combined
effect of an increase in the intensity of the DQ coherences and decay of the single-quantum
coherences due to transverse relaxation during the excitation and reconversion periods of
the pulse sequence.
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Figure 1. (a) Normalized 1H DQ build-up curve for natural aged cross-linked natural rubbers
measured after one year, two years and six years from the production date. (b) 1H DQ build-up
curves measured after six years after production as function of cross-link density (samples NR1 to
NR7 from Table 1).

The effect of one year of aging in natural conditions can be observed by the apparition
of a new component in the DQ build-up curve as a shoulder shifted to larger time values
compared with the maximum of unaged sample (Figure 1a). This new maximum can
be associated with the apparition of polymer chain segments characterized by smaller
residual dipolar couplings (RDCs) due to chain scissions by oxidative processes. The
data obtained for small and large excitation/reconversion times are almost overlapping
over the curve registered with one year before, but a drop is observed in the region of
maximum that reflects the presence of two polymer networks with different RDCs. The
additional five years of natural aging produces a large effect on the DQ curve. Two
components are clearly observed, and the aging effect can be quantified as a displacement
of a second component to longer excitation/reconversion times. This displacement can
be associated with the increase in the transverse relaxation time and/or decrease in the
residual dipolar interactions.

The second component is clearly observed for sample NR1, characterized by the small-
est cross-link density, and is almost inexistent for sample NR7 (Table 1), characterized by
the largest cross-link density (see Figure 1b). The effect of natural aging, revealed as multi-
component 1H DQ build-up curves, decreases with the increase in the cross-link density.

4. The Multi-Spin van Vleck Moments Approximation

In many of the previous works, the DQ build-up curves were analyzed in the initial
excitation/reconversion time regime where the measurements of the 1H residual dipolar
couplings encoded the second van Vleck moments [16,19,30]. Since one cannot deduce
an exact analytical expression to approximate the full DQ build-up and decay curve for
a multi-spin system, the normalized DQ signal can be phenomenologically described in
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terms of the residual DQ second van Vleck moments MDQ
2 and effective relaxation times

T∗2 , as [30]

SDQ

(
2τ, MDQ

2 , T∗2
)
=

1
2

{
1− exp

(
−1

2
MDQ

2 τ2
)}

exp
(
− 2τ

T∗2

)
(1)

where τ is the excitation/reconversion time periods and where the residual second van
Vleck moment MDQ

2 is due to the spin-pair nature of the dipolar coupling Hamiltonian
and to the fact that the DQ filter edits these pairs.

In Equation (1), the transverse relaxation process during free evolution is accounted
by the exponential decay with an effective transverse relaxation time T∗2 . The Equation (1)

is valid in the limits of τ � T∗2 and
(

MDQ
2

) 1
2
τ � 1.

In order to describe bimodal DQ curves, as obtained for the aged NR1 sample
(Figure 1a), the theoretical expression could be a sum of two ad hoc functions as given by
Equation (1)

SDQ(2τ) = A1

[
1− e−

1
2 MDQ

2,1 τ2
]

e
− 2τ

T∗2,1 + A2

[
1− e−

1
2 MDQ

2,2 τ2
]

e
− 2τ

T∗2,2 (2)

where the MDQ
2,1 , MDQ

2,2 , T∗2,1 and T∗2,2 are the residual DQ second order van Vleck moments
and the effective transverse relaxation times of polymer chain segments characterized by
different mobility. The A1 and A2 are two normalization constants where the quantity
Ai/(A1 + A2), (i = 1,2) indicates the proportion of two dynamic components.

Figure 2a shows the attempts to fit the experimental data using Equation (2) for NR1
sample six years aged. The failure is due to the fact that Equation (1) is not able to describe
the experimental DQ build-up curves for the full excitation/excitation time regime. The
best fit of the DQ build-up curve for the aged NR1 sample can approximate only the
initial regime and fails dramatically for excitation/reconversion times larger than 0.3 ms
(see Figure 3a). Moreover, the function described by Equation (2) as the superposition of
two individual components, presented with dashed and short dashed lines in Figure 2a,
is not showing a distinct double peak feature. As one can observe from this figure the
smallest (left) peak can be approximated but for the large component (right) the theoretical
peak (dashed line) is much broad. In fact, the fit of the first component can be conducted
relatively well, as one can see from Figure 2b. For this fit, we consider only the experimental
data up to ~0.85 ms of the beginning of the second built-up curve. Even in the absence
of the small peak, if the behavior is described by Equation (1), the right peak cannot be
approximated by any values of MDQ

2 and T∗2 (Figure 2c).
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Figure 3. (a) Simulation of the normalized DQ build-up curve described by Equation (6) with a single
residual dipolar coupling ωD/2π = 2 kHz and an effective relaxation time T∗2 = 2 ms; (b) the Fourier
spectrum of the DQ signal shown in (a) and (c) the corrected DQ Fourier spectra from (b). The star
symbol showed the error in the transformed spectra due to the correction procedure.

5. The Distributions of Residual Dipolar Coupling Constants by Fourier Transform
5.1. The Spin-1/2 Pair Approximation

For a spin-1/2 pair all the terms of the Hamiltonian described by Equation (S1) in
supplementary information) commute with each other, which allows obtaining an exact
time evaluation of the spin system response to the DQ five pulse sequence that is given by

SDQ(2τ) =

〈
sin2(ωDτ) exp

(
− 2τ

T∗2

)〉
(3)

where ωD =
√

3/2ωD and τ is the excitation/reconversion time period and T∗2 is the
effective transverse relaxation time of the single-quantum coherences. For simplicity, we
can assume that the relaxation processes of the DQ coherences are characterized by the
same value. In this section we will demonstrate that, due to the particular nature of
the problem, this assumption will not significantly change the final result. The 〈(. . .)〉
represents the statistical average over the end-to-end vector,

→
R and angle β between the

direction of the pre-averaged end-to-end vector and external static magnetic field
→
B0.

Figure 3a presents a simulation of a DQ signal (continuous line) for an ideal polymer
characterized by a single value of the residual dipolar constant νD = ωD/2π = 2 kHz and
an envelope of NMR signal (dashed line) characterized by the transverse relaxation time
T∗2 = 2 ms. We will use this simulated curve to demonstrate the simplest procedure based
on the Fourier transform, (hereafter we use the notation FT { . . . }) to obtain the distribution
of the residual dipolar couplings. The negative Fourier transform, −FT { . . . }, of the DQ
filtered signal is presented in Figure 3b. The spectrum can be easily interpreted if we will
rewrite the Equation (3)

SDQ(2τ) =

〈
1− cos(2ωDτ)

2
exp

(
− 2τ

T∗2

)〉
(4)

The negative spectra obtained from Equation (4) can be written as a sum of two terms
with the same weight:

−
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 

( ){ } ετ ≤
=0ω

*
2DQ

D
,2 TSFT  (7)

where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{
SDQ(2τ)

}
= −1

2
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 

( ){ } ετ ≤
=0ω

*
2DQ

D
,2 TSFT  (7)

where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{〈
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(
− 2τ

T∗2

)〉}
+

1
2

Polymers 2021, 13, x FOR PEER REVIEW 8 of 27 
 

 

( ){ } ( )



















 τ−τω+



















 τ−−=τ *
2

D*
2

2exp2cos
2
12exp

2
12

TT
SDQ FTFTFT-  (5)

i.e., a negative Lorentzian peak centered in origin (described by the first term) and a 
second positive Lorentzian peak centered at double value of residual dipolar coupling 
constant given by the last term in Equation (5). One can observe that, regardless of the 
value 2⁄ , the first term is always negative centered in origin while the desired spec-
tral amplitudes are disperse over all 2⁄  values. A simple numerical procedure can be 
designed to cancel the negative peak independent on the residual dipolar interactions. 
Due to the long wings of Lorentzian function the proper action is to be applied in the time 
domain instead on the frequency domain. Therefore, the Fourier transform procedure is 
applied on a new function defined in the time domain where an exponential decay with a 
correction time and amplitude ½ is added to the negative DQ signal 

( ){ } ( )

( )




















−≅



















−+








−−=

*
2

D

*
2

D
2*

2DQ

2exp2cos
2
1

2exp
2
12expsin,2

T

T
TS c

ττω

τ
τττωτ

FT

FTFT

 (6)

where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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*
2DQ

D
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{〈
cos(2ωDτ) exp

(
− 2τ

T∗2

)〉}
(5)

i.e., a negative Lorentzian peak centered in origin (described by the first term) and a second
positive Lorentzian peak centered at double value of residual dipolar coupling constant
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given by the last term in Equation (5). One can observe that, regardless of the value ωD/2π,
the first term is always negative centered in origin while the desired spectral amplitudes
are disperse over all ωD/2π values. A simple numerical procedure can be designed to
cancel the negative peak independent on the residual dipolar interactions. Due to the long
wings of Lorentzian function the proper action is to be applied in the time domain instead
on the frequency domain. Therefore, the Fourier transform procedure is applied on a new
function defined in the time domain where an exponential decay with a correction time
and amplitude 1

2 is added to the negative DQ signal
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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*
2DQ

D
,2 TSFT  (7)

where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{SDQ(2τ), T∗2 } =
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 

( ){ } ετ ≤
=0ω

*
2DQ

D
,2 TSFT  (7)

where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{
−
〈

sin2(ωDτ) exp
(
− 2τ

T∗2

)〉
+ 1

2 exp
(
− 2τ

τc

)}
∼= 1

2
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{〈
cos(2ωDτ) exp

(
− 2τ

T∗2

)〉} (6)

where τc is the correction time. This parameter has to be obtained from the best fit.
The negative sign used before has the role to produce the final result into a form that
is easily identifiable, by means of a positive Fourier spectral distribution of the residual
dipolar constants.

A dedicated program was written in C++ to implement the steps presented in
Equation (6). First, the correction time is chosen by the well-known secant method which
systematically splits in half an interval described by two extreme τc values. For each
particular τc, a single point
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{SDQ(2τ), T∗2 }ωD=0

∣∣∣ ≤ ε (7)

where ε is a small positive constant which represents the chosen fit error. The final interval
quantifies also the error in the determination of the correction time value τc. The corrected
spectrum of a doubled residual dipolar constant is presented in Figure 3c. The efficiency
of the algorithm is demonstrated by the RDC distribution spectrum with a small residual
contribution of around zero value marked by a star in Figure 3c. The Fourier transform
with a correction time procedure was applied on the DQ build-up data normalized at
the SQ amplitude for the entire NR sample series (see Figure 1b) and the corresponding
normalized distributions of the residual dipolar couplings were obtained. The correction
times τc are presented in Table 1.

5.2. The DQ Fourier Spectra

By applying the same steps presented for the spin- 1
2 pair in Equations (3)–(6), we can

extend the Fourier analysis, also as an approach to the cases of isolated CH3 functional
groups. In this case, the spin system response on the DQ five pulse sequences has the same
mathematical form as those presented in Equation (3), but the residual dipolar constant
ωCH3

D is specific to the isolated CH3 functional group. From here, one can extend the
approximation to the isolated CH3 and CH2 functional groups. The manner of treatment is
unitary; the only thing which will be different is the prefactor of the exponential correction
term from Equation (6)
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{SDQ(2τ)} = 1
N
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where  is the correction time. This parameter has to be obtained from the best fit. The 
negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 

( ){ } ετ ≤
=0ω

*
2DQ

D
,2 TSFT  (7)

where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{
∑

i
Ai sin2

(
ω
(i)
D τ
)

exp

(
− 2τ

T(i)
2

)
+ k exp

(
− 2τ

T(i)
2

)}
(8)

where Ai is the desired distribution function, and N and k are two constants specific to each
approximation. Then, the corrected Fourier transform is:
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negative sign used before has the role to produce the final result into a form that is easily 
identifiable, by means of a positive Fourier spectral distribution of the residual dipolar 
constants. 

A dedicated program was written in C++ to implement the steps presented in Equa-
tion (6). First, the correction time is chosen by the well-known secant method which sys-
tematically splits in half an interval described by two extreme  values. For each par-
ticular , a single point { }

0ωD =
FT  is considered until the best value is found 
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where ε is a small positive constant which represents the chosen fit error. The final in-
terval quantifies also the error in the determination of the correction time value . The 
corrected spectrum of a doubled residual dipolar constant is presented in Figure 3c. The 
efficiency of the algorithm is demonstrated by the RDC distribution spectrum with a 
small residual contribution of around zero value marked by a star in Figure 3c. The Fou-
rier transform with a correction time procedure was applied on the DQ build-up data 
normalized at the SQ amplitude for the entire NR sample series (see Figure 1b) and the 
corresponding normalized distributions of the residual dipolar couplings were obtained. 
The correction times cτ  are presented in Table 1. 

5.2. The DQ Fourier Spectra 
By applying the same steps presented for the spin-½ pair in Equations (3)–(6), we 

can extend the Fourier analysis, also as an approach to the cases of isolated CH3 func-
tional groups. In this case, the spin system response on the DQ five pulse sequences has 
the same mathematical form as those presented in Equation (3), but the residual dipolar 
constant 3CH

Dω  is specific to the isolated CH3 functional group. From here, one can ex-
tend the approximation to the isolated CH3 and CH2 functional groups. The manner of 
treatment is unitary; the only thing which will be different is the prefactor of the expo-
nential correction term from Equation (6) 

{
SDQ(2τ)− k exp
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∼=

1
N

FT

{
−∑
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(i)
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− 2τ

T(i)
2
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(9)

where k from Equation (9) is related to the N and k constants from Equation (8).
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Figure 4a presents the distributions of residual dipolar coupling as a corrected Fourier
transform of normalized DQ build-up curves for the entire cross-linked series of NR
samples while the Figure 4b presents the dependence of the τc on the cross-link density
obtained using the Equation (9). The correction time τc characteristic to the NR series, with
the exception of NR1, decays linearly with the increase in the cross-link density. Since all
Fourier spectra are broadened due to the relaxation processes, the residual dipolar coupling
distributions present two unresolved peaks (see Figure 4a). These two peaks are more
evident for the NR1 sample and merge totally for the NR7 sample. With the increase in the
cross-link density the distributions of ωD/2π becomes broader. At a simpler inspection,
the residual dipolar coupling distributions look similar to those obtained in the case of
spin- 1

2 approximation, and this is the reason why the Fourier spectra are not presented for
spin- 1

2 approximation. In fact, in the following section, we will demonstrate the differences
between the obtained spectra, considering the previous described approximations are so
small that they can be neglected, compared with the differences between the DQ Fourier
spectra obtained for different samples.
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samples while the Figure 4b presents the dependence of the  on the cross-link density 
obtained using the Equation (9). The correction time  characteristic to the NR series, 
with the exception of NR1, decays linearly with the increase in the cross-link density. 
Since all Fourier spectra are broadened due to the relaxation processes, the residual di-
polar coupling distributions present two unresolved peaks (see Figure 4a). These two 
peaks are more evident for the NR1 sample and merge totally for the NR7 sample. With 
the increase in the cross-link density the distributions of 2⁄  becomes broader. At a 
simpler inspection, the residual dipolar coupling distributions look similar to those ob-
tained in the case of spin-½ approximation, and this is the reason why the Fourier spectra 
are not presented for spin-½ approximation. In fact, in the following section, we will 
demonstrate the differences between the obtained spectra, considering the previous de-
scribed approximations are so small that they can be neglected, compared with the dif-
ferences between the DQ Fourier spectra obtained for different samples. 

 

 
Figure 4. (a) Double-quantum Fourier spectra obtained from the DQ build-up curves the series of
six-years aged cross-linked NR samples. (b) The dependence of the correction effective relaxation
time functions of cross-link density. The dashed lines represent the linear fit of data for samples NR2
up to NR7.

In order to be visually compared, in Figure 5 the distributions for both the spin-1/2

pair approximation (continuous black line) and for the isolated CH3 and CH2 functional
groups approximation (dashed grey line) were represented together for the first and last
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series samples, which are NR1 and NR7. In order to evaluate the deviation of a curve from
another curve, the merit value χ2 can be defined as

χ2
1,2 =

N
∑

i=1

[
y(i)1 − y(i)2

]2

N
(10)

where y1,2 are the amplitude values of arbitrary (1) and (2) distribution curves. Then, it
will be interesting to evaluate the error obtained in the case of bad choice of the approx-
imation compared with the differences between two distributions obtained for samples
with successive value of the cross-link density. For example, the merit value χ2 for the
NR1 Fourier spectra obtained for spin-1/2 pair approximation and with isolated CH3 and
CH2 functional groups approximation is χ2

NR1/χ2
NR1,NR2

∼= 5.4% from the merit value χ2

obtained by comparing the NR1 with NR2 Fourier spectra. This percentage of the merit
value increases at χ2

NR6/χ2
NR6,NR7

∼= 30.1% for NR6 Fourier spectra compared with the
differences between NR6 and NR7 spectra. In conclusion, since the differences between any
two samples are much largest than the error due to the bad choice of the model, the Fourier
spectra of a series of aged cross-linked natural rubber samples can be well characterized by
any model, presented earlier as approximations.
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Figure 5. Comparison between DQ Fourier spectra obtained with spin- 1
2 pair approximation and

CH2 and CH3 isolated group’s approximation corresponding to (a) NR1 and (b) NR7-aged samples.
In order to be compared, the Fourier spectra were renormalized to have the same integral area.

5.3. The Distributions of End-to-End Distance and Residual Dipolar Coupling

The Fourier spectra of DQ curves for the aged natural rubber present the general
features observed earlier for the distribution of residual dipolar coupling described in
references [15,17,40]. As in the case of a 2 wt.% PDMS, see ref. [40], our DQ Fourier
spectra consist of a high-narrow peak at lower residual dipolar coupling values and
a tail which decays slowly with the increase in the residual dipolar coupling values.
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This resemblance between our Fourier spectra and the distribution of the residual dipo-
lar coupling obtained from FTIKREG based on Tikhonov regularization [15] and then a
fit [41–43] allow us to assume that the Fourier spectra features are mainly due to the distri-
bution of the residual dipolar couplings and the relaxation times T2 will just broaden the
obtained spectra. Therefore, in the following sections we characterize the DQ Fourier spec-
tra for the cross-linked natural rubber samples in terms of the distribution of the residual
dipolar couplings related to the distribution of the end-to-end vector of the polymer chains.

The 3D Gaussian probability distribution of the end-to-end vector,
→
R for a cross-linked

polymer network, is given by

P3D

(→
R
)
=

(
3

2π〈R2〉

)3/2
exp

− 3
→
R

2

2〈R2〉

 (11)

where
〈

R2〉 is the average square of the end-to-end distance and the distribution over the
length of the end-to-end vector, R, which satisfies the normalization relation

∞∫
0

4πR2P3D(R)dR = 1 (12)

The Gaussian distribution of the length of the end-to-end vector can be written as

PG(R) = 4πR2P3D(R)dR = 4πR2
(

3
2π〈R2〉

)3/2
exp

(
− 3R2

2〈R2〉

)
dR (13)

From Equations (11)–(13), the corresponding distribution of the residual dipolar
coupling constant is given by the Г function [15,17]:

PΓ(ωD) =
2√
π

√
27
8

ωD

〈ωD〉3
exp

(
−3

2
ωD

〈ωD〉

)
(14)

where ωD is the residual dipolar coupling and 〈ωD〉 is the mean residual dipolar coupling.
This distribution fast increases around ωD/2π = 0 and then slowly after a maximum decay
with a long tail at large ωD/2π. By its nature, the Г distribution is a broad one; it does
not consider the powder average (see simulations from supplementary information) and
therefore cannot explain the narrow peak observed at lower ωD values. This narrow peak
corresponds to a Gaussian distribution of residual dipolar coupling, which is defined as

PGauss(ωD) =

(
3

2π · ∆ωD
2

)1/2
exp

(
−

3
(
ωD −ω0

D
)2

2 · ∆ωD
2

)
(15)

where ω0
D is the maximum value of the Gaussian distribution and ∆ωD is the width of

Gaussian function. This function leads to a distribution of the end-to-end vector of the form

PGauss(R)dR =
2
π

√
3
2

R
〈R2〉 exp

(
−

3
(

R2 − R2
0
)2

2〈R2〉2

)
dR (16)

In conclusion, the distribution of residual dipolar coupling may be described by the
superposition of Г function and Gaussian function described by Equations (14) and (15),
respectively. More details about the mediation over azimuthally angle β and end-to-end

vector
→
R can be found in the Supplementary Information.
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5.4. The Characterization of DQ Fourier Spectra

As discussed earlier, the DQ Fourier spectra of aged cross-linked natural rubber
consist of two components. The fits of theses Fourier spectra with a sum of Г and Gaussian
functions for each component leads to unsatisfied results. In fact, even by increasing the
number of components, the presence of the Г function leads to unsatisfied fits of the DQ
Fourier spectra. The best fit (continuous line) was found when the DQ Fourier spectrum
(open circles) was deconvoluted with four Gaussian functions (continuous line, dashed
line, dash-dot line and small dash line). The deconvolution of 1H DQ Fourier spectra for
the aged NR1 and NR7 are presented in Figure 6. The deconvolution of the DQ Fourier
spectra corresponding to the aged NR1 sample approximate the spectra well while some
inconsistencies can be observed for NR7. From these deconvolutions, one can observe that
there are two Gaussian distribution (continuous and dashed lines in Figure 6) responsible
for the fit of the peak located at small residual dipolar coupling values, and two Gaussian
distribution (dash-dot line and small dash line) responsible for the fit of the small peak
located at larger residual coupling values.
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Figure 6. The deconvolution fit (continuous line) of DQ Fourier spectra (open circles) of six-years
aged NR1 (a) and NR7 (b) cross-linked natural rubber. The best fits were obtained with a sum of four
Gaussian functions described by Equation (16) and are shown with continuous, dashed, dash-dot
and small-dash lines.

The DQ Fourier spectra can be characterized by the residual van Vleck moments.
The second and fourth van Vleck moment for the DQ Fourier spectra obtained with the
approximation of isolated CH2 and CH3 functional groups for the entire series of aged
NR samples are presented in Table 1. The second M2 and fourth M4 residual van Vleck
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moments present a monotone variation with the increase in the cross-link density, with
the exception of NR5. This is due to the fact that the van Vleck moment is calculated
from DQ Fourier spectra after the determination of spectral maximum position ωmax

D /2π,
presented in Table 1 in the last column. The DQ Fourier spectra of aged NR samples consist
of two compo-nents; therefore, they are asymmetrical. From sample NR1 to sample NR4,
the maximum was found for the first peak, which is characterized by small values of the
residual dipolar coupling. Starting with NR5, the maximum jumps towards the second
peak, which affects the dependence of the of the M2 and M4 van Vleck moments of the
DQ Fourier spectra function of cross-link density. The second M2 and fourth M4 residual
van Vleck moments for all Gaussian distributions obtained from deconvolution of the DQ
Fourier spectra for the entire series of aged natural rubber samples are listed in Table 2.

Table 2. The second M2 and fourth M4 residual van Vleck moments specific to the Gaussian distributions obtained from the
deconvolution of DQ Fourier spectra.

Sample
Gauss 1 Gauss 2 Gauss 3 Gauss 4

M2
102 [rad2 s−2]

M4
105 [rad4 s−4]

M2
102 [rad2 s−2]

M4
106 [rad4 s−4]

M2
103 [rad2 s−2]

M4
108 [rad4 s−4]

M2
103 [rad2 s−2]

M4
109 [rad4 s−4]

NR1 1.24 4.88 6.65 7.71 4.32 3.42 6.61 2.25
NR2 1.41 9.10 6.83 11.50 5.20 4.41 8.55 2.74
NR3 1.36 11.00 6.25 12.80 5.95 5.20 10.3 3.46
NR4 1.78 20.9 9.28 28.60 5.57 5.04 11.10 3.60
NR5 0.71 6.37 4.69 11.40 7.50 7.61 13.20 4.68
NR6 1.85 26.5 8.75 33.30 6.27 6.82 15.50 6.33
NR7 2.15 38.7 15.10 75.5 6.82 8.36 15.50 6.71

Fit errors were smallest than 5%.

5.5. The Effect of Cross-Link Density

The Gaussian distribution (14) is characterized by the center of distribution ω0
D, where

one can find the maximum probability and by the width of residual dipolar coupling
distribution 〈ωD〉 (see Table 3). Linear dependences for all of these parameters which
describe the distribution of residual dipolar couplings with the cross-link density were
found (see Figure 7). The effect of an increase in the cross-link density was to proportionally
increase the mean residual dipolar coupling for Gaussian distributions (see Figure 7a).
At the same time, the increase in the number of cross-linking points leads to a larger
inhomogeneity of the polymer network, which is observed in Figure 7b from the increase
in the distribution width.

Table 3. The centers ω0
D/2π and widths 〈ωD/2π〉 of the Gaussian distributions obtained from the

deconvolution of DQ Fourier spectra obtained for aged NR samples.

Sample
Gauss 1 Gauss 2 Gauss 3 Gauss 4

ω0
D/2π

[Hz]
∆ωD/2π

[Hz]
ω0

D/2π
[Hz]

∆ωD/2π
[Hz]

ω0
D/2π

[Hz]
∆ωD/2π

[Hz]
ω0

D/2π
[Hz]

∆ωD/2π
[Hz]

NR1 92.3 67.1 168.7 113.1 401.3 301.0 866.9 615.8
NR2 124.6 84.2 215.4 134.1 435.2 307.4 849.1 597.7
NR3 144.6 94.1 245.2 147.1 464.1 309.5 880.4 609.4
NR4 171.9 112.9 300.1 180.3 508.9 310.2 905.5 594.7
NR5 153.8 98.9 268.3 159.8 512.9 332.1 936.1 612.9
NR6 195.4 124.2 341.2 199.7 573.6 338.3 1025.2 665.2
NR7 218.8 138.8 390.8 229.1 626.7 357.5 1081.5 683.1

Fit errors were smallest than 5%.
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6. The Distributions of Residual Dipolar Couplings by Laplace-like

6.1. The Laplace-like Analysis of Bimodal 1H DQ Build-Up Curves

If we will take a look at the final expressions of DQ signals in Equation (4), we reach the
conclusion that the differences between the mentioned approximations are small. Therefore,
in any of the previous approximations we must analyze a signal of the form

SDQ(2τ, T∗2 ) = exp
(
− 2τ

T∗2

) ∞∫
0

π∫
0

g(R) · h(β) sin2[ωD(R, β) · τ]dβ · dR (17)

and since ωD(R, β) is a function of R and β, this can be rewritten as

SDQ(2τ, T∗2 ) = exp
(
− 2τ

T∗2

) ∞∫
0

f (ωD) sin2(ωDτ)dωD (18)

where we assumed an effective averaged transverse relaxation time. A complete mediation

over end-to-end vector
→
R or/and azimuthally angle β, and the distribution of the residual

dipolar coupling constant Dres, is presented in the Supplementary Information with many
details. The best fit of the DQ build-up curve measured for natural NR1 aged during six
years of analyses by Laplace-like inversion using Equation (S12) with the kernel presented
in SI.13 (see Supplementary Information) and with the best transverse relaxation times
T∗2,1 = 0.6 ms and T∗2,2 = 2.6 ms, respectively, is presented in Figure 8a. Unfortunately, the
best fit curve (dashed red line) cannot explain the bimodal character of the measured data
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for six years of naturally aged NR1. The overlap of the two signals originating from a large
residual dipolar coupling constant Dres (olive dotted line) characterized by T∗2,1 = 0.6 ms
and from a small residual dipolar coupling constant Dres (olive dotted line) characterized
by T∗2,2 = 2.6 ms present just a small shoulder at the initial time regime. This fit is similarly

with that presented in Figure 2a and analyzed in terms of second van Vleck moments MDQ
2

analyzed with Equation (4). The distributions of the small and large values of residual
dipolar coupling constant Dres are presented in Figure 8b. Slightly asymmetrically, these
distributions are similarly with those reported in several papers for the residual dipolar

coupling constant Dres [41,42]. Then, the complete mediation over
→
R and β was proved

not to be able to describe the measured bimodal DQ build-up curve for natural aged NR
samples, but could be used to describe a bimodal DQ build-up curve for a non-aged PDMS1
sample [25] (for more details, see the Supplementary Information).
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Figure 8. (a) The DQ build-up curve (open circle) measured for the NR1 sample naturally aged
during 6 years, the fitting curve obtained after the Laplace-like inversion (dashed line) using a full

mediation over average over dimensionless squared end-to-end vector,
→
q

2
and azimuthal angle

β (Equation (S11) from Supplementary Information), the DQ NMR signals corresponding to the
small Dres values (continuous orange line) and to the large Dres values (dotted olive line); (b) the
distributions of residual dipolar coupling constants resulted from the analysis of data presented in
(a) by Laplace-like inversion using Equation (S11) with T∗2,1 = 0.6 ms and T∗2,2 = 2.6 ms obtained as
the best fit of experimental data.

As we mentioned before, the 1H DQ Fourier spectra are affected by the effective
transverse relaxation time. Another method, which can provide us with a good res-
olution in the distribution of residual dipolar coupling, can be based on the Laplace
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inversion [26,27,31,32,39,44]. In fact, we must underline that the true Laplace inversion is
characterized by an exponential kernel specific to magnetization relaxation processes, i.e.,

M(t) =
∞∫

0

f (T2)e
− t

T2 dt (19)

The quantity of interest is the distribution function f (T2). This can be obtained using
the fast inversion algorithm which assumes a problem written into a matrix form as [31,32]

M = K · F + E (20)

where the matrix M contain the measured data, K is the kernel, E stores the measurement
noise and F is the desired distribution. We have adapted the problem by changing the
exponential integrand kernel from Equation (19) into an sin2(ωDτ) as in Equation (18),
and which can be solved using the FMI (Fast Matrix Inversion) algorithm. In this case,
hereafter the inversion problem will be called a Laplace-like problem. Additionally, we
must implement a method to obtain the effective transverse relaxation time, T∗2 . For that,
we have considered a minimum T∗2,min and a maximum T∗2,max value for effective transverse
relaxation time, and for values between these two limits we tested the fit of the experimental
data, or more specifically the merit function χ2 as it is described by Equation (10).

The experimental 1H DQ build-up curves and fits with Laplace-like inversion proce-
dure are presented in Figure 9 for natural aged samples NR1, NR4 and NR7. The inverse
Laplace-like procedure can fit well the 1H DQ build-up curve recorded for the aged NR1
sample up to the maximum (τ ∼= 1.4 ms), but there are some deviations after this maximum
(see Figure 9a). Nevertheless, this is a much better fit compared with the approximation
obtained before with multi-moments method (see Figure 2), described in Section 3, since
now both build-up components are fitted. The deviation observed at larger τ values is due
to the fact that the special kernel used in this case sin2(ωDτ) is periodical and we assumed
a single effective relaxation time T∗2 .
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Figure 9. The experimental 1H DQ build-up curves (open circles) and fits (continuous line) using
the Laplace-like inversion procedure for (a) NR1, (b) NR4 and (c) NR7 cross-linked natural rubber
six years natural aged.

A better approximation of the measured 1H DQ build-up curves are observed for the
naturally aged rubber samples with higher cross-link density (see Figure 9b,c). In these
cases, the inverse Laplace-like procedure can fit well the entire experimental 1H DQ build-
up curves. Some extremely small oscillations can be observed due to the periodicity of the
used kernel and probably due to the fact that the second component in the distribution of
RDCs associated with the aging effect is much smallest in these cases.

6.2. Proton DQ Laplace-like Spectra of Aged Natural Rubber

The normalized distributions f (ωD) of the residual dipolar couplings, or with other
words, the 1H DQ Laplace-like spectra, are presented in Figure 10a for all naturally aged
rubber samples. All 1H DQ Laplace-like spectra consist of four well-resolved peaks with
one exception: the middle peaks for the aged NR1 sample. For small and large values of
cross-link density, the main peak is characterized by a reduced value of averaged residual
dipolar couplings (ωD/2π = 100− 250 Hz). From this point of view, the samples NR4
and NR5 are not in the range and present the first peak at ωD/2π = 200− 250 Hz. This is
not a surprising result, since in some of our previous results [19,39], the NR4 sample was
also showing a different behavior for various measured microscopic NMR parameters and
elasticity modulus.
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Figure 10. (a) The inverse Laplace-like spectra (Equation (18)) which show the distributions of
residual dipolar couplings ωD/2π for the series of cross-linked natural rubber naturally aged for
six years. (b) The effective transverse relaxation time as a function of cross-link density obtained from
the best fit of the normalized 1H DQ build-up curves using the inverse Laplace-like transformation.
The dashed line represents the best liner fit of the data for the samples NR2 to NR7.

The best-fitted effective relaxation times T∗2 for all aged NR1–NR7 samples are pre-
sented in Figure 10b as a function of cross-link density. As in the case of correction time
obtained by 1H DQ Fourier spectra (see Figure 4), a linear dependence of T∗2 as a function
of cross-link density can be observed, with the exception of the NR1 sample. From our
observation, the value of T∗2 can have a certain influence on the 1H DQ Laplace-like spectra
(Figure 10a), but in the fitting error limit (see Figure 10b) this can be negligible compared
with the differences between DQ Laplace-like spectra.

Figure 11 presents a comparison between the normalized 1H DQ Laplace-like spectra cor-
responding to aged and unaged NR1 samples. Additionally, the unaged 1H DQ Laplace-like
spectrum is composed of four peaks but with a different distribution. Two large distribution
peaks are located at lower residual dipolar coupling values (ωD/2π = 200− 400 Hz), and
two smallest peaks are located at larger residual dipolar coupling values
(ωD/2π ≈ 1.075− 1.3 kHz ). The peaks located at lower residual dipolar coupling val-
ues are in agreement with the results obtained by Nie et al. [34] and with the distributions
reported in [35,36,45]. After an aging in natural conditions, many of the NR1 polymer
chains characterized by a small value of ωD/2π become more mobile and have a reduced
residual dipolar coupling (see the left large peak). The polymer chains with a small value
of ωD/2π together with the polymer chain with ωD/2π ≈ 350 Hz become more rigid at
ωD/2π =≈ 450− 650 Hz. After aging, the two peaks located at larger residual dipolar
coupling values collapse into a small peak located between them at ωD/2π ≈ 1175 Hz. It is
evident from Figure 11 that the aging process induces a much broader heterogeneity in RDC
and is characterized by larger mobility of polymer segments.

6.3. Proton DQ Fourier and DQ Laplace-Like Spectra of Aged Natural Rubber

The 1H DQ Fourier and DQ Laplace-like spectra can be directly compared (Figure 12)
for the sample NR1, which is most affected by aging in natural condition. For this purpose,
both spectra were renormalized, having the maximum amplitude 1 obtained at almost the
same residual dipolar coupling value ωD/2π ≈ 100 Hz (see also the left vertical dashed
line in Figure 12). Up to the maximum value, one can observe an excellent superposition
of both DQ Fourier and Laplace-like spectra, then the DQ Laplace-like peak decays faster.
The second group of two joined peaks at median values of ωD/2π in the 1H DQ Laplace-
like spectra can have a correspondent (see the second and third vertical dashed lines in
Figure 12) with a shoulder in the 1H DQ Fourier spectra, but the four and smallest peak
from DQ Laplace-like spectra hardly can be associated with some shoulder in the DQ
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Fourier spectra. It is obvious from Figures 6 and 12 that the deconvolution of 1H DQ
Fourier spectra, with four Gaussian functions, can not be so well matched with the peak
distributions from 1H DQ Laplace-like spectra. Moreover, the peaks maximum from DQ
Laplace-like spectra will not have a linear dependence function of cross-link density.
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and Laplace-like spectra for the position of the local maxima for the four peaks corresponding to
Laplace-like distribution.

7. Comparison between Fourier and Laplace-like Methods

The 1H DQ Fourier and Laplace-like spectra were applied to analyze a series of
bimodal DQ build-up curves characteristic to aged samples since the classical methods fail
to produce acceptable results. Nevertheless, these methods also have some disadvantages:
the main criticism of 1H DQ Fourier analysis is that the obtained spectrum is affected by
the relaxation processes, which broadens the individual lines; therefore a supplementary
deconvolution has to be applied. For both methods, we have to consider first a model in
order to calculate the DQ signal function of excitation/reconversion times and then an
automatic correction procedure has to be applied to obtain the 1H DQ Fourier spectra and
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another procedure must be applied to calculate the effective relaxation time to obtain the
1H DQ Laplace-like spectra. The Fourier analysis is well defined, which means that with
the exception of a coefficient ~ 1

2 in front of the exponential correction term, which cancels
the negative peak, the Fourier spectra are uniquely defined. The procedure for Laplace-
like inversion deal with an ill conditioned problem and the results depend on various
internal parameters. Moreover, since in our case the particular kernel is periodic, special
attention has to be paid to the upper limits of the residual dipolar coupling values. Another
disadvantage of the use of 1H DQ Fourier and Laplace-like analysis is the long measurement
times. In order to obtain a DQ Fourier spectrum with no wiggles, due to the truncation
of experimental data, we had to measure many points at large excitation/reconversion
time τ. Despite all these, we found that the 1H DQ Fourier and Laplace-like analysis
give complementary results and can be used successfully to analyze multi-component DQ
build-up curves, such as those recorded for the cross-linked natural rubber aged in natural
conditions over six years.

8. The ad Hoc Abragam-like Function for the Distribution of Residual Dipolar
Coupling Constant Dres

In recent years, an empirical function, so-called Abragam-like, became preferred to
be used to describe the DQ build-up curve on isotropic samples [41,42]. Moreover, K.
Saalvächter and co. state that the Abragam-like build-up curve can be used in the fitting of
any kind of DQ build-up data for homogeneous or inhomogeneous samples [41]. Then, in
this case, the DQ signal can be described as

SDQ(2τ, T∗2 ) = exp
(
− 2τ

T∗2

) ∞∫
0

P
(

DA−l
res

)
K
(

DA−l
res , τ

)
dDA−l

res (21)

where the distribution function was labeled with P (DA−l
res ), where DA−l

res can be viewed
similar to a second-moment-type quantity and the specific kernel is given by [41,42]

K
(

DA−l
res , τ

)
=

1
2

{
1− exp

[
−
(

0.378DA−l
res τ

)1.5
]}
× cos

(
0.583 DA−l

res τ
)

(22)

The prefactors of Dres and the Weibull coefficient were considered from
ref. [42,43]. In general, these coefficient and exponential factors can be optimized by
fitting the DQ build-up curve with the Kernel (Equation (22)) multiplied with the exponent
that represents the transverse relaxation process during the excitation and reconversion of
double-quantum coherences.

The best fits of the experimental DQ build-up curves obtained using Equation (21)
with the Abragam-like kernel are presented in Figure 13 for NR1, NR4 and NR7 natural
rubber samples aged for six years. In all cases, one can remark a good fit of the experimental
data. Among these, as expected, the largest value of the merit function (see Equation (10))
was obtained for NR1. This is due mostly to the fact that the experimental data are not so
well approximated in the initial time regime up to τ ∼= 1 ms. With the increase in cross-link
density, the effect of aging is reduced and the DQ build-up curves are better approximated
on the entire time scale (see Figure 13b,c).

In Figure 14a, the distributions of DA−l
res for the six-year-aged cross-linked natu-

ral rubber series (NR1-NR7) obtained using Equation (21) with the Abragam-like kernel
(Equation (22)) are presented. Compared with the series of distributions of the resid-
ual dipolar couplings ωD (shown in Figure 7a), in this case: (i) the main peak (with the
largest integral area) is located at low DA−l

res /2π value (~53.2 Hz for NR1 to ~86.1 for NR7);
(ii) a series of four (an additional one) peaks are observed at large DA−l

res /2π value all with
a more small amplitude; (iii) the variation of DA−l

res -distribution in function of cross-link
density is more smooth than in the case of ωD-distribution. Regarding the number of
components and the particular domain, the obtained distribution of DA−l

res /2π is similar
to those reported by Chassé et al. in ref. [42] for a mixture of NR–C2 samples. In the
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experimental error limit, the variation of the effective transverse relaxation time T∗2 , with
cross-link density, decay linearly for the entire series NR1 to NR7 (see Figure 14b).
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(a) NR1; (b) NR4 and (c) NR7 cross-linked natural rubber aged naturally for six years.
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Figure 14. (a) The inverse Abragam-like spectra (Equation (21)) with the kernel Equation (22),
showing the distributions of DA−l

res /2π for the series of six year natural aged of the cross-linked
natural rubber. (b) The effective transverse relaxation time as a function of cross-link density
obtained from the best fit of the normalized 1H DQ build-up curves using the inverse Abragam-like
transformation. The dashed line represents the best line of fit of the data for the samples NR1 to NR7.

Comparing the best fit of DQ build-up curves measured for aged NR1 and analyzed
spin-1/2 pair approximation (blue continuous line in Figure 15a) where the curves are well
approximated in the initial time regime, inclusive of the maximum doublet, in the case
of an Abragam-like kernel (red dashed line in Figure 15a), the experimental data are much
better approximated for a medium and large excitation/reconversion time, τ, but not so
well in the region of the maximum doublet. Due to this fact, one can consider that the
spin-1/2 pair approximation (leading to so-called Laplace spectrum) is more precise in
order to describe the effects of natural aging of natural rubber on the measured bimodal
DQ build-up curve than in the case of the use of the Abragam-kernel. Nevertheless, one
can expect similarly results. In order to test this hypothesis, the so-called Laplace-like and
so-called Abragam-like distributions are represented together in Figure 15b for the NR1
natural sample aged for six years. The spectra are renormalized so that the maximum
amplitude is 1. The Abragam-like distributions are rescaled with a factor of 0.583 present
in Equation (22), where the Abragam-like kernel was defined. In the presented range, both
distributions can be considered similarly.
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Figure 15. The comparison of DQ Laplace-like (continuous blue line) and Abragam-like (dashed red
line) of (a) DQ build-up curve and (b) spectra measured for the NR1 natural rubber sample, naturally
aged during six years. The spectra were renormalized in order to have the maximum value equal to
one. Laplace-like spectrum is represented in function of averaged residual dipolar coupling, ωD/2π

while the Abragam-like spectrum is represented in function of DA−l
res /2π/0.583.

9. Conclusions

The DQ build-up curves for a series of cross-linked natural rubber aged in natural
conditions for six years were characterized by 1H DQ Fourier and Laplace-like spectra. For
that, a numerical program was written in C++ to perform a correction with an effective
relaxation time, which allows us to reveal the spectral distributions of the residual dipolar
couplings. The 1H DQ Fourier spectra was treated in terms of a superposition of four Gaus-
sian distributions of the residual dipolar coupling. The parameters which are obtained as a
result of correction with an effective relaxation time and as result of spectral deconvolution
seem to depend linearly on the cross-link density. The same measured 1H DQ build-up
curves were used to obtain the 1H DQ Laplace-like spectra for the aged natural rubber
samples. Four resolved Gaussian-like peaks were obtained in the 1H DQ Laplace-like
spectra. Three methods (based on Fourier analysis, spin- 1

2 pair approximation and on the
ad hoc Abragam-like kernel) were presented to successfully fit the DQ build-up curves
affected by six years of natural aging of a series of cross-linked natural rubber, whereas
the classical ones fail. Finally, the aging effects on the dynamics of the NR polymer chain
were discussed, and we find out that the aging of NR in natural conditions will increase
the mobility of the majority of mobile polymer segments. At the same time, while aging,
part of these polymer chains will become more rigid.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13203523/s1, Figure S1: (a) General set-up of a double quantum (DQ) NMR experiment;
(b) five pulses DQ experiment and (c) seven pulses DQ experiment with two refocusing pulses in the
middle of excitation and reconversion periods; Figure S2: Double quantum (DQ) build-up curves
measured for a 6 years natural aged NR1 sample using the 5 pulse DQ sequence (open red square)
and 7 pulse DQ sequence (open blue circle); Figure S3: (a) The simulated bar plot distribution of

ωD given by the Equation (S10) for constant
→
q

2
Dres considering an isotope angular dependence

described by sin function of azimuthal angle β shown in the small inclusion; (b) the comparison
between the positive simulated bar plot distribution of ωD from Figure S3 (a) and a specific powder
spectrum; Figure S4: The simulated bar plot distribution of ωD given by the Equation (S10) for
constant DresP2{cos(β)} considering only the distribution of dimensionless squared end-to-end
vector; Figure S5: The simulated bar plot distribution of ωD given by the Equation (S10) for con-
stant Dres for a combined isotope angular dependence described by sin function of azimuthal angle
β and (a) a 3D Gaussian distribution of the end-to-end vector and (b) an Gaussian distribution
of dimensionless squared end-to-end vector with the center

∣∣∣→q 0

∣∣∣ = 2.5; Figure S6: (a) Simulated
bar plot distributions of residual dipolar coupling constant P(Dres) for a: (I) mono-Gaussian with
D0

res = 500 rad/s; (II) mono-Gaussian with D0
res = 2000 rad/s and (III) bi-Gaussian with

D0
res,1 = 500 rad/s and D0

res,2 = 2000 rad/s. (b) The simulated DQ build-up curves using
Equation (S12) and kernel (SI.13) for the simulated distributions presented in a) and T∗2 = 2 ms;
Figure S7: (a) Simulated bar plot bi-Gaussian distributions of residual dipolar coupling P(Dres)
with D0

res,1 = 500 rad/s and D0
res,2 = 5000 rad/s and the resulting residual dipolar coupling con-

stant distribution P(Dres) (continuous line) after Laplace-like analysis based on Equation (S14) with
T∗2,1 = 2 ms and T∗2,2 = 0.2 ms. (b) The simulated DQ build-up curve (open circles) using Equation
(S14) and the fitting of simulated DQ build-up data (continuous line); Figure S8: (a) The DQ-build-up
curve (open circle) similarly with those measured by Bertmer et al. in [24] for a PDMS1 sample, the fit-
ting curve obtained after the Laplace-like inversion using Equation (S13) (dashed line), the DQ NMR
signals corresponding to the small Dres values (continuous orange line) and to the large Dres values
(dotted olive line); (b) The distributions of residual dipolar coupling constants resulted from the
analysis of data presented in (a) by Laplace-like inversion using Equation (S14) with T∗2,1 = 0.22 ms
and T∗2,2 = 3.92 ms.
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