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Abstract

In a ‘‘block-copying paradigm’’, subjects were required to copy a configuration of colored blocks from a model area to a
distant work area, using additional blocks provided at an equally distant resource area. Experimental conditions varied
between the inter-area separation (walking distance) and the complexity of the block patterns to be copied. Two major
behavioral strategies were identified: in the memory-intensive strategy, subjects memorize large parts of the pattern and
rebuild them without intermediate visits at the model area. In the acquisition-intensive strategy, subjects memorize one
block at a time and return to the model after having placed this block. Results show that the frequency of the memory-
intensive strategy is increased for larger inter-area separations (larger walking distances) and for simpler block patterns. This
strategy-shift can be interpreted as the result of an optimization process or trade-off, minimizing combined, condition-
dependent costs of the two strategies. Combined costs correlate with overall response time. We present evidence that for
the memory-intensive strategy, costs correlate with model visit duration, while for the acquisition-intensive strategy, costs
correlate with inter-area transition (i.e., walking) times.
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Introduction

Getting around in a constantly changing world relies on

contributions from multiple behavioral or cognitive processes

competing for common resources such as metabolic energy,

information processing capacity, or processing time. The alloca-

tion of such resources to the individual processes requires some

sort of ‘‘decision making’’ or ‘‘executive function’’ [1–4], taking

into account the relative value of each choice’s expected

consequences, i.e. its costs and pay-offs. In this paper, we study

this resource allocation process for the interaction of (or trade-off

between) memorization of large amounts of information and the

repeated acquisition of smaller amounts of information when

acquisition involves walking between various locations. Similar

interactions are common both in animal behavior and in human

activities such as optimal foraging or economic decision making.

For memorization and processing of visual information, the

visual working memory (WM) is an essential resource. WM can be

defined as a system for maintaining and processing a certain

amount of information temporarily [5,6]. In a large body of

research two general limitations of WM have been demonstrated:

a temporal limitation [e.g., 7–10] and a storage capacity limitation

[e.g., 11–13]. With respect to time, WM representations decay

within several seconds when no active rehearsal processes [14]

take place. Regarding storage capacity, visual WM can maintain

information on approximately three to five items at a time.

Additionally, these items appear to be coded in the form of

integrated object representations, rather than as a collection of

disconnected visual features [e.g., 12,15,16]. Visual representa-

tions in WM are maintained and updated throughout the course of

a task either by using continuous, ‘just-in-time’ acquisition of

environmental information, as has been shown for saccadic gaze

behavior [17], or by making inferences on already existing

memorized information, or both.

‘Just-in-time’ acquisition of visual information by repeated

looking as opposed to keeping more information in memory [17] is

a central example of strategy trade-offs minimizing certain overall

costs. Such costs arise at various levels and processes including

physiological costs for storing information [18], for gaze

movements and redirecting attention [19], or for perceptual or

attentional processing [20]. In addition, the time needed to

complete a task is in itself an important cost factor, since it

precludes or inhibits other relevant performances [21]. Since these

costs are likely to vary with environmental and task constraints,

cognitive routines are needed to balance the investment into each

resource [22].

Trade-offs between gaze movements and WM use have been

studied in a number of tasks which involve looking back and forth

between two or more experimental areas [17,23–25]. In the block-

copying paradigm of Ballard et al. [17], a pattern of colored blocks

is presented at a ‘‘model area’’, together with additional blocks

provided in a ‘‘resource area’’. Subjects pick up blocks from the

resource area with the computer mouse and drag them to the

‘‘workspace area’’ where they built a copy of the model. The more
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the working memory is used, the fewer fixations on the model area

are required. In the comparative visual search paradigm of

Hardiess et al. [24] and Pomplun et al. [25], differences between

two patterns have to be detected by looking back and forth

between these patterns. In both paradigms (block copying and

comparative visual search), the putative costs of data acquisition

are manipulated by varying the distances between the different

areas and thus requiring larger or smaller gaze-shifts. In the block

sorting paradigm of Droll and Hayhoe [23], blocks with different

properties have to be picked up from a reservoir site and moved to

one of two ‘‘conveyor belts’’, depending on their property. In this

paradigm, costs of memory load are manipulated by varying the

predictability of the necessary information. Independent of where

cost changes were applied (i.e., gaze or memory systems), all

studies show an adaptation of the trade-off between gaze

movement behavior and memorization processes. When the costs

for gaze behavior were increased experimentally, participants

shifted the balance point towards a more intense use of WM. In

contrast, in the case of low stimulus predictability, participants

reduced the involvement of WM and maximized the amount of

gaze shifts, achieving ‘just-in-time’ processing. In summary, all

investigations identified a trade-off function capable of optimizing

the arising costs throughout the course of a task. Droll and Hayhoe

[23] conclude that such trade-offs are an intrinsic, unconscious,

pervasive, and stable aspect of human behavior.

In the above studies of the acquisition vs. memory trade-offs,

acquisition behavior amounted to gaze shifts carried out by

movements of the eyes and/or the head. Clearly, this kind of

motor behavior is executed within small spatial scales and within

very short periods of time. For example, a saccade is usually

performed in less than 100 ms [26]. Together with the fixation

time for extracting information (e.g., 0.4 s for fixations during

making tea: [27]; 0.3 s for fixations during comparative visual

search: [24]; or 0.2 s for reading: [28]) the time required for a gaze

movement and thus for visual acquisition of one piece of

information amounts to about one second. If acquisition is

realized by gaze movements, the load that can be experimentally

imposed on this side of the trade-off is therefore rather limited. It is

not clear, how the strategies of resource allocation extend to

acquisitive behaviors consuming much more time - in the range of

several seconds.

In the present study we approach this question by replacing the

gaze-shift component of the block-copying task [17,29,30] by

actual bodily locomotion (i.e. walking) in a large room.

Locomotion consumes much more time and energy than gaze

movements and should therefore increase the costs for acquiring

or updating information substantially. Model, resource, and

workspace areas were placed at the corners of an equilateral

triangle. Participants had to walk between these three operating

areas to acquire new pattern information throughout the course of

the copying task. In contrast to previous studies, two different types

of cost were manipulated in a full factorial design: First, the costs

for walking between the operating areas were varied by using two

arrangements with different walking distances (‘‘near’’ and ‘‘far’’

conditions). Second, different memorization costs were generated

by using two types of block patterns, ‘‘simple’’ and ‘‘complex’’,

differing in their memory load.

The goal of the present study was to assess and quantify strategy

trade-offs in a walking paradigm including manipulations in

acquisition and memorization costs. With overall higher costs for

locomotion compared to saccadic motor behavior, we expect a

general shift of the task solving strategies towards a greater reliance

on memory. Furthermore, we hypothesize that both types of cost

manipulations are capable of modulating walking strategies. This

modulation can be modeled as a linear optimization of combined

costs.

Methods

Participants
48 naı̈ve subjects volunteered to participate in this study (24

male and 24 female). Participants were under- and postgraduate

students from the University of Tübingen and their ages ranged

from 19 to 36 years (mean 24.6 years). Participants were paid for

their participation and gave informed written consent. This

research was performed in accordance with the 1964 Declaration

of Helsinki and was approved by the ethical committee of the

University Hospital of Tübingen.

Material
Block patterns. Each block pattern was composed of six

quadratic LEGOH duploH blocks of six different colors, forming a

connected pattern. Blocks were placed on a grid where every block

covered two by two grid cells. To control memorization demands,

we varied the neighborhood rules between adjacent blocks. In

‘‘simple patterns’’, adjacent blocks shared a complete edge

(Figure 1a); in ‘‘complex patterns’’, block adjacency could also

be defined by sharing a half edge (like in a staggered brick wall) or

just one corner point (diagonal neighbors, see Figure 1b). Thus, for

blocks of the simple type, just one possibility or rule exists to

contact another one (full edge connection), whereas for blocks of

the complex patterns three of such possibilities were available (full

edge, half edge, or diagonal configuration). Each complex pattern

comprises one to two full edge, two to three half edge, and one to

two diagonal connections. In summary, the two pattern types

varied with respect to their information content (degrees of

freedom), and with respect to possible chunking into salient a sub-

pattern. For each type, ten different patterns were created.

Experimental setup. Three separate areas arranged in the

shape of an equilateral triangle were defined for model (M),

resource (R), and workspace (W) operations (cf. Figure 2a).

Subjects had to copy each particular block pattern presented at the

model area into the workspace area by using blocks provided at

the resource area. Each of the three areas consisted of a box

without top cover (height 0.3 m, depth 0.22 m, width 0.3 m)

placed on a 0.9 m high pedestal allowing convenient handling of

the blocks. The model patterns were presented within the box at

the model area. Within the box at the resource area, participants

were provided with four blocks of each color for picking up. The

box at the workspace was initially empty, but on the bottom a grid

texture was provided allowing a more accurate alignment of

blocks. The boxes were used to prevent subjects from looking at

the blocks or patterns at a particular area when operating

elsewhere. To vary the costs for locomotion, two different sizes of

the triangular arrangement were used. In the near condition, area-

to-area distance was 2.25 m while twice this distance (4.5 m) was

used in the far condition (see Figure 2a).

Position tracking
To record the walking trajectories produced by subjects while

operating between the three areas (i.e., 2-dimensional body-in-

space movements) an infrared light-based tracker system (ART-

track/DTrack from A.R.T. GmbH, Weilheim, Germany) with 6

degrees of freedom was used. This device tracked a rigid target

object (i.e., configuration of five light reflecting balls) that was fixed

on a special helmet participants had to wear. The temporal

tracking frequency of the system was 60 Hz. From the trajectories,

area visits were detected using a criterion of 0.5 m. For analysis of

Acquisition vs. Memorization Trade-Offs
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the areas subsequently visited during a trial, subjects’ body-in-

space positions were evaluated (cf. Figure 2b).

Procedure
Experimental groups. In a 262 factorial, between subject

design, the 48 subjects were randomly assigned to one of four

different experimental groups (12 to each group; gender was

counterbalanced). Across these groups, we varied pattern

complexity and locomotion distance in order to quantify the

trade-off between memorization and acquisition intensive strategies.

Thus, the four experimental groups include the combinations:

simple/near, simple/far, complex/near, and complex/far.

Figure 1. Example block-patterns. Model examples of the simple (a) and the complex (b) condition. Each pattern consisted of six quadratic
LEGOH duploH blocks (length: 32 mm, height: 24 mm) colored differently. Highlighted edges illustrate the different possibilities in which blocks could
make contact with each other (black: full edge contact, white: half edge contact, and gray: diagonal block configuration, for a detailed explanation
see section ‘block patterns’).
doi:10.1371/journal.pone.0018494.g001

Figure 2. Task setup and analysis of walking trajectory. a) Scheme of the experimental setup with the spatial arrangement of the three
operating areas (M: model, W: workspace, R: resource area, S: start and end point of a subjects’ trajectory) for the two distance conditions (black
boxes: far distance condition, gray boxes: near distance condition). b) Example of a subject’s single trial trajectory in the long distance and complex
pattern condition. Temporal course is coded with a gray-scale gradient. b) Relevant sub-strategies (together with their names) and their demand on
WM from low to high usage. The W-M-W sub-strategy was applied as ‘control’ strategy without any block operation. ‘Other’ denotes all remaining
sub-strategies which had individual frequencies of occurrence below 2% (for a detailed explanation see section ‘walking sub-strategies’).
doi:10.1371/journal.pone.0018494.g002

Acquisition vs. Memorization Trade-Offs
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Experimental procedure. Subjects were familiarized with

the particular task operations in a pre-test where one four-block

pattern had to be copied. Afterwards, each subject had to

complete ten experimental trials consecutively, each with a

different block pattern. Subjects started and finished each trial

by standing still for about ten seconds at the central point of the

triangular configuration (cf. Figure 2a and b). After each trial the

copied pattern was photographed by the experimenter for later

analysis of copying errors. Subsequently, all three areas were

prepared for the next trial, i.e., placing a new block pattern in the

model box and putting back all blocks from the workspace to the

resource area. Thus, subjects found a new block pattern at the

model area, a sufficient amount of blocks at the resource area, and

an empty workspace area.

Subjects could visit each of the three areas in any sequence as

often as necessary for replicating the current block pattern. They

were instructed to do so as quickly and reliably as possible. No

feedback was given to subjects during the experiment, neither

about their copying performance nor about the walking strategies.

In all conditions subjects had to follow three rules throughout

the copying task: i) it was forbidden to carry more than one block

while walking between the areas ii) once a block was placed at the

workspace area no repositioning was allowed, and iii) after placing

the last block at the workspace area subjects had to go back

immediately to the central point of the area configuration denoting

the end of the trial.

Data analysis
Copying errors. We analyzed the errors made during

copying the block patterns for each of the four experimental

groups. Errors were analyzed as pattern errors and block errors.

Pattern errors denote the proportion of incorrectly copied

patterns. Block errors denote the amount of single blocks copied

at a false position or with the false color and were calculated as the

proportion of the total number of blocks in the 10 patterns (n = 6

blocks610 patterns = 60) averaged over subjects. A pattern was

considered erroneous if at least one block error occurred.

Walking sub-strategies. The focus of the present study was

to identify and characterize the trade-off between WM load and

re-acquisition via locomotion. For that purpose a method was

needed that assessed the extent of memory usage quantitatively.

Following Ballard et al. [17] we divided the locomotion sequence

of each trial into different walking sub-strategies (see Figure 2c). All

sub-strategies could be classified without ambiguity.

A sub-strategy is a section of the walking sequence between two

subsequent visits of the workspace area; it usually (except for the

‘control’ sub-strategy W-M-W) corresponds to the placement of

one block. As an example, the sequence of visited areas …-W-R-

W-M-R-W-R-M-W-… was divided into the sub-strategies W-R-

W, W-M-R-W, and W-R-M-W. The W-R-W (i.e., ‘high-memory’)

sub-strategy is the strategy with the highest memory involvement.

Here, all required information concerning (at least) the next block

(i.e., color and position) is retrieved from memory and no

additional visit of the model is needed. In contrast, the sequence

W-M-R-M-W (i.e., ‘just-in-time’) denotes the sub-strategy with the

lowest memory involvement, where subjects walk to the model

area to look for the color of the next block. After picking a suitable

block from the resource area, they come back to the model area

once again, presumably because they did not remember the

position of that block. Thus, color is remembered during the M-R

step and position during the M-W step of the sequence. In contrast

to the ‘high-memory’ sub-strategy, the associated walking distance

is doubled when using the ‘just-in-time’ strategy. The ‘low-

memory’ sub-strategy (W-M-R-W) uses an intermediate amount of

memory and path length; color has to be remembered during the

M-R step, while position has to be remembered during both the

M-R and R-W steps. An overview of the different sub-strategies

(together with the name that is used throughout the manuscript)

and the demands on memory is provided in Table 1 and Figure 2c.

Starting at the central point, the initial sub-strategy of all

subjects for all trials was M-R-W. Since this sequence was a simple

consequence of the task design, it was not significant for later

analysis of walking strategies and thus excluded. In addition to the

analysis of walking trajectories, the time subjects needed for

walking and the time spent at each area was recorded. The

duration for an area visit was measured from entering until leaving

a catchment area defined by a radius of 0.5 meters around each

operating area. The time subjects spent at the model area was

separated into time for the first and subsequent visits in the course

of the analysis of memorization processes.

Results

Task performance: Errors and overall response times
Task performance was quantified by the number of pattern

errors and block errors. In all conditions participants showed a

high level of performance, i.e., on average 9 out of 10 patterns

were copied correctly (Figure 3a). Furthermore, only about two to

three blocks out of all 60 blocks were copied at a false position.

Statistical analysis showed no influence of distance condition or

pattern complexity on pattern errors (Kruskal-Wallis-Test:

x2 = 1.4, p = .71) nor on block errors (Kruskal-Wallis-Test:

x2 = 3.78, p = .29).

Response time was analyzed in terms of the overall time

participants needed to finish a single trial (Figure 3b). For an

analysis of durations of model visits, see section ‘memorization and

model usage’ below. Regarding overall time, a two-factorial

ANOVA with pattern complexity (complex vs. simple) and distance

condition (far vs. near) as factors was conducted. We found

significant main effects of pattern complexity (F(1,44) = 34.59,

MSE = 173.54, p,.001, gp
2 = .44) and the distance condition

(F(1,44) = 56.81, MSE = 173.54, p,.001, gp
2 = .56). We found

no interaction between these two factors (F(1,44) = 1.17,

MSE = 173.54, p = .28). Independent of pattern complexity,

subjects needed significantly more time to reproduce the patterns

in the far as compared to the near distance condition (Figure 3b).

Additionally, compared to the simple pattern condition, trial

duration for the complex patterns was significantly increased in

both distance conditions.

Locomotion strategies
As described in the methods section (cf. ‘walking sub-strategies’),

trajectories of each trial were analyzed by means of a number of

sub-strategies indicating various amounts of memory usage.

Separately for each experimental group the frequency of

occurrence of these sub-strategies was evaluated. A summary of

sub-strategies together with their demand on WM is given in

Figure 2c and Table 1. Overall, two predominantly used sub-

strategies (i.e., ‘high-memory’ and ‘low-memory’) and several sub-

strategies with generally low occurrence (below 5%) were found in

all four experimental groups.

The sub-strategies with low frequencies of occurrence (see

Figure 4) were ‘control’ (means between .96 and 3.15%), ‘med-

memory’ (means between .5 and 3.38%), and ‘other’ (means

between .92 and 4.93%). The category of ‘other’ contains the sum

of all remaining walking strategies with individual frequencies of

occurrence below 2% on average. Interestingly, the sub-strategy

with the lowest memory involvement at all, i.e., ‘just-in-time’, was

Acquisition vs. Memorization Trade-Offs
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part of the ‘other’ category; it was applied only in the complex/

near and the complex/far group with means of 1.45% and .16%,

respectively. We never found this sub-strategy in any of the near

distance trials. The ‘control’ sub-strategy was applied as the

control strategy without any block operation.

The two main (i.e., predominantly used) sub-strategies were

‘high-memory’ (WRW) and ‘low-memory’ (WMRW, see Figure 4).

The ‘high-memory’ sub-strategy was applied if subjects could rely

on memories of both color and position of (at least) the next block.

No model visit was required with this sub-strategy. In contrast, if

neither color nor positional information of the next block was

available from memory the ‘low-memory’ sub-strategy was

applied. In this case, subjects had to visit the model for

memorizing both block features before picking up and placing

the block.

Statistical analysis reveals an influence of both, distance and

pattern complexity on the frequency of occurrence of the two main

sub-strategies. By calculating a two-factorial ANOVA for the

proportion of ‘high-memory’, we identified main effects of pattern

complexity (simple vs. complex: F(1,44) = 22.15, MSE = 187.42,

p,.001, gp
2 = .33) and distance (far vs. near: F(1,44) = 4.9,

MSE = 187.42, p,.05, gp
2 = .1). Thus, with an increase in

distance and a decrease of pattern complexity the trade-off

between acquisition and memory is shifted towards the memory-

intensive sub-strategy ‘high-memory’. This shift of the trade-off is

also reflected in the other main sub-strategy ‘low-memory’. Here,

the influence of both factors was inverted (complexity:

F(1,44) = 15.38, MSE = 160.16, p,.001, gp
2 = .26; distance:

F(1,44) = 7.33, MSE = 160.16, p,.01, gp
2 = .14). A decrease in

distance and an increase in pattern complexity induced a shift of

the trade-off between acquisition and memory towards the ‘low-

memory’ sub-strategy. For both main sub-strategies no significant

interaction between the two factors (distance and complexity) was

found (‘high-memory’: F(1,44) = .75, MSE = 187.42, p = .39; ‘low-

memory’: F(1,44) = .44, MSE = 160.16, p = .51). However, based

on the estimated parameters of the linear model of the ANOVA

on the proportion of ‘high-memory’ (goodness of fit = Radj
2 = .35)

a difference in distance condition depending on model complexity

was apparent, indicating an ordinal interaction.

Memorization and model usage
In order to assess the degree to which the model is used in the

various conditions, we analysed the duration and number of model

visits and the number of blocks processed after the initial model

visit of each trial.

The total time for all visits subjects spent at the model (Figure 5a)

depended on pattern complexity but not on distance (two-factorial

Table 1. Sub-strategy characterization.

sub-strategies

memorization parameter
W-M-R-M-W
just-in-time

W-M-R-W
low-memory

W-R-M-W
med-memory

W-R-W
high-memory

# and type of block features memorized
before sub-strategy

0 0 1
(color)

2
(color+position)

# and type of block features memorized
during sub-strategy

1+1
(color, position)

2
(color+position)

1
(position)

0

# of visits at the model during sub-strategy 2 1 1 0

Characterization of all sub-strategies used by subjects for the purpose of copying a block regarding the involvement of memory (M: model, W: workspace, and R:
resource area). Each sub-strategy is given a name which is used throughout the manuscript.
doi:10.1371/journal.pone.0018494.t001

Figure 3. Task performance: error rate and overall response
time. a) Box-Whisker plot of proportion of errors made during copying
the ten simple patterns (left) and the ten complex patterns (right) for
the far and the near distance conditions. Black boxes display the pattern
errors: the proportion of false on all patterns (n = 10) averaged over
subjects of the respective group. White boxes display the block errors:
the proportion of false blocks on all blocks in all ten patterns (n = 6
blocks610 patterns = 60) averaged over subjects of the respective
group. b) Box-Whisker plot of response time to complete a single trial
averaged over all subjects of the respective group for the simple (left)
and complex (right) pattern situations and for the far (black boxes) and
near (gray boxes) distance conditions. Statistical effects (post-hoc
analyses) are presented for each pattern complexity/distance combi-
nation (wp,.05; wwp,.01; www p,.001).
doi:10.1371/journal.pone.0018494.g003

Acquisition vs. Memorization Trade-Offs
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ANOVA, complexity: F(1,44) = 20.1, MSE = 39.92, p,.001,

gp
2 = .31; distance: F(1,44) = .9, MSE = 39.92, p = .35). Within each

experimental condition, subjects spent significantly more time for the

first model visit compared to subsequent model visits (Figure 5a).

Similar to the results for the overall response time, the time for initial

memorization (i.e., first model visit) was also found to increase with

longer distance and higher pattern complexity (Figure 5a). However,

for the initial memorization times, dependence on conditions did not

reach significance in a two-factorial ANOVA with pattern

complexity (complex vs. simple) and distance condition (far vs. near)

as factors (complexity: F(1,44) = 2.8, MSE = 37.02, p = .1; distance:

F(1,44) = 3.41, MSE = 37.02, p = .07). Since no significant differenc-

es were found for subsequent model visits within each experimental

group all subsequent time values were averaged for each group.

Regarding time for subsequent model visits, a two-factorial ANOVA

with pattern complexity and distance condition as factors was

conducted. We found only a significant main effect of pattern

complexity (F(1,44) = 12.881, MSE = 1.297, p,.01, gp
2 = .23). No

significant influence of the distance (F(1,44) = .012, MSE = 1.297,

p = .91) was found.

To estimate the amount of memory subjects allocated in the

different experimental conditions we analyzed the number of

model visits per trial and the number of consecutive ‘high-

memory’ cycles after the initial model visit (Figure 5b and c). Initial

and consecutive ‘high-memory’ cycles were chosen for two

reasons: i) the initial ‘high-memory’ cycles include only knowledge

obtained through a single memorization process (first model visit)

without pre-knowledge of the pattern and ii) consecutive ‘high-

memory’ cycles exclude intermediate memory refresh.

The number of model visits per trial was dependent only by

pattern complexity but not by the distance (two-factorial ANOVA,

complexity: F(1,44) = 13.86, MSE = .55, p,.001, gp
2 = .24; dis-

tance: F(1,44) = 2.14, MSE = .55, p = .15). Subjects visited the

model for memory refresh more often in the complex conditions

(means: 2.77 for the far and 3.19 for near distance) than for simple

patterns (means: 2.08 for the far and 2.28 for near distance).

We found an overall higher number of consecutive ‘high-

memory’ cycles in the simple pattern conditions (means: 3.2 for the

far and 2.57 for near distance) than in the complex pattern

conditions (means: 2.18 for the far and 1.54 for near distance).

Within pattern complexity, also an increase of memorization was

found with an increase of the distance. The two-factorial ANOVA

with pattern complexity (complex vs. simple) and distance

condition (far vs. near) as factors showed significant main effects

of pattern complexity (F(1,44) = 14.03, MSE = .89, p,.001,

gp
2 = .24) and distance condition (F(1,44) = 5.33, MSE = .89,

p,.05, gp
2 = .11). No significant interaction between these two

factors was found.

In a trial by trial analysis of blocks processed after the initial

model visit, we found moderate correlations between the duration

of the initial model visit and the number of consecutive ‘high-

memory’ cycles. Correlations reached significance for all condi-

tions (simple/far: Rho-S = .23, p,0.05; simple/near: Rho-S = .51,

p,0.01; complex/far: Rho-S = .6, p,0.01; complex/near: Rho-

S = .34, p,0.01).

Trade-off stability
The influence of trial order on the occurrence of used sub-

strategies was analyzed by comparing the frequencies of sub-

strategies per trial within each experimental group. No influence of

the trial order on any of the walking sub-strategies could be found.

Figure 6 illustrates this stability of sub-strategy usage within each

experimental group for the main sub-strategy ‘high-memory’.

Discussion

Working memory (WM) supports many higher cognitive

functions by maintaining representations of a limited number of

Figure 4. Proportion of walking sub-strategies. Box-Whisker plot of proportion of walking sub-strategies used by subjects during copying the
simple patterns (left) and the complex patterns (right) averaged over all subjects of the respective group. Black boxes display the frequencies of
walking sub-strategies for the far distance condition and gray boxes these for the near distance condition. Post-hoc analyses are calculated for ‘low-
memory’ and ‘high-memory’ referring the proportion of walking sub-strategies between far and near and simple and complex pattern conditions
(wp,.05; wwp,.01; www p,.001; n.s. not significant). The characteristics of all individual sub-strategies are explained in detail in the results chapter
(see section ‘walking sub-strategies’).
doi:10.1371/journal.pone.0018494.g004
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items, and by selecting and attending to those representations

which are most relevant for the current task. Memory items

include multiple types of information, such as verbal or

visuospatial, as well as task rules and are represented in WM

through sustained patterns of neural activity [31]. Executive

decisions or choices are needed between all possible and

competing courses of actions based on the relative value of their

expected consequences [2–5]. The allocation of resources to the

competing strategies or actions requires trade-off decisions which

will show in the preference for one or another strategy or action,

and in the dependence of such trade-offs on task constraints.

[22,32].

The main objective of the present study was to investigate if

such a trade-off, already described for the balancing of WM and

gaze movements [17,23–25], also exists for locomotion behavior,

i.e., actions that demand larger time frames (seconds) and distance

scales (meters). If such a trade-off exists, variation of memory load

and required walking distance should affect the behavioral

strategies employed by the subjects. To prove this hypothesis,

the block-copying task introduced by Ballard et al. [17] was

adapted to fit the needs of our walking paradigm. Additionally,

pattern complexity was added as a second dependent variable to

investigate the relative weights of locomotion and memory load.

Strategy trade-off
The main result of this paper is that alternative behavioral

strategies, which can be used to achieve the same goal, are used to

various extents if task parameters are varied. In our block-copying

task, the main behavioral strategies are i) initial acquisition of large

amounts of information and subsequent operation from memory

(‘‘memory-intensive strategy’’), and ii) the repeated acquisition or

re-acquisition of smaller pieces of data and subsequent processing

of these individual packages (‘‘acquisition-intensive strategy’’). The

Figure 6. Sub-strategy stability over trials. Occurrence of the main
sub-strategy ‘high-memory’ as a function of trial number. The frequency
of the sub-strategy was averaged over all subjects within the respective
group and is plotted separately for each experimental group.
doi:10.1371/journal.pone.0018494.g006

Figure 5. Model operations. a) Box-Whisker plot of time subjects
spent to visit the model area averaged over all subjects of the
respective group for the simple (left) and complex (right) pattern
situations and for the far and near distance conditions. Black boxes
display the total time, subjects spent at the model. White boxes display
the duration of the first model visit. Gray boxes display the average
duration of individual subsequent model visits. Statistical effects (t-test)
are calculated between first model visit and second to last model visit
times for each pattern complexity/distance combination. Post-hoc
analyses are calculated between the distance conditions for each
complexity. b) Box-Whisker plot of the number of model visits per trail
averaged over all subjects of the respective group for the simple (left)
and complex (right) pattern situations and for the far (black boxes) and
near (gray boxes) distance conditions. Statistical effects (post-hoc
analyses) are presented for each pattern complexity/distance combi-
nation. c) Box-Whisker plot of the number of blocks processed after the
initial model visit per trail (i.e., number of consecutive ‘high-memory’

cycles after the initial model visit) averaged over all subjects of the
respective group for the simple (left) and complex (right) pattern
situations and for the far (black boxes) and near (gray boxes) distance
conditions. Statistical effects (post-hoc analyses) are presented for each
pattern complexity/distance combination. (wp,.05; wwp,.01; www

p,.001; n.s. not significant).
doi:10.1371/journal.pone.0018494.g005
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memory-intensive strategy is realized by long initial model visits

and high proportions of the ‘high-memory’ sub-strategy. The

acquisition-intensive strategy, in contrast, uses relatively short

initial model visits and a high proportion of the ‘low-memory’ sub-

strategy.

For more complex patterns, the use of the memory-intensive

strategy is reduced, while more re-acquisition steps are performed.

A similar but weaker effect was found for walking distance: if

walking of larger distances is required, the frequency of the

memory-intensive strategy increases.

The observed pattern of the dependence of sub-strategy usage

(Figure 4) on conditions is evidence for a functional trade-off

balancing the relative costs of WM involvement (memory-intensive

strategy) and locomotion behavior (acquisition-intensive strategy).

The nature of these costs will be discussed in more detail below.

Here we note that the variations in the costs of each strategy

induced by varying pattern complexity seem to be larger than the

variation induced by walking distance. Thus, the condition-

dependent strategy shift for simple vs. complex pattern is more

pronounced than for the near vs. far conditions.

As compared to the findings of Ballard et al. [17], who used gaze

shifts rather than locomotion, we find a much smaller frequency of

the ‘just-in-time’ sub-strategy W-M-R-M-W. This sub-strategy was

the main strategy with a frequency of about 35% in the gaze-study,

whereas our results show a predominant use of the ‘high-memory’

sub-strategy in all experimental conditions (between 50% and 80%)

and only a negligible proportion of the ‘just-in-time’ processing

strategy (less than 2%). We conclude that for our task parameters

(walking distance and pattern complexity), the trade-off operated on

an overall higher memory level, whereas in the case of the gaze

movement experiment, the trade-off seems to operate on a lower

memory level. This general shift towards higher memory involve-

ment was most likely induced by the overall higher costs for

acquisition; pattern complexity had a stronger influence on the

selection of sub-strategies at this high memory level.

Processing time and memory operations
As measures of memory involvement in a given strategy we

analyzed the duration and number of model visits (i.e. the time

spent with the encoding of information) and the number of blocks

processed (i.e., the information taken from memory while

copying), see Figure 5. As a consistent result, we found that for

the simple pattern condition (both in the near and far case), model

visit duration is shorter, the number of model visits is smaller, and

the number of blocks processed after a model visit is larger than in

the complex pattern condition. This indicates that the complex

pattern condition (as compared to the simple one) requires more

and longer model visits to build up memory. The memorized

information, however, suffices only for the placement of a smaller

number of blocks. Also, when comparing near and far conditions,

the number of blocks processed after a model visit is larger in the

far condition, indicating that more memory has been stored.

These findings support the idea that longer and more frequent

model visits lead to the build-up of extended memory which in

turn is available for the processing of blocks. This idea can be

tested directly by calculating within each condition trial-by-trial

correlations between the duration of the first model visit and the

number of blocks processed consecutively. Here we did indeed

find moderate but significant correlations.

The first model visit was significantly longer than the second or

any later visit, indicating that it plays a special role. Conceivably,

the subject could use this first visit to built up a memory of some

global features of the pattern which is not necessarily used for

immediate block positioning but may be useful for later

information intake. Examples of such features are chunks or

templates known to reduce working memory load [33,34].

Simple and complex patterns require different amounts of

storage capacity. A simple estimate of this capacity can be derived

from the following consideration: Suppose the first block of a

simple pattern is placed. For the next block, there are four possible

positions observing the neighborhood rules described in the

methods section (Figure 1). Ignoring effects of boundaries and

mutual intersection of individual block positions, the number of

possible six-block patterns will be about 45 = 210, corresponding to

an information content of 10 bits per pattern. A similar calculation

for the complex pattern, where 16 positions of the second block

are possible, yields 165 = 220 possible patterns corresponding to an

information content of 20 bits per pattern. If we assume that the

same total memory capacity is used for both cases, we should

expect that the number of blocks processed per model visit in the

simple conditions is about twice the number processed in the

complex conditions. As can be seen from Figure 5c, this ratio is

about 1.5 to 1 in our data. Clearly, the above calculation suffers

from a number of shortcomings which may cause the observed

deviation. First, the actual number of patterns is smaller than

assumed, since the possible positions for block placement are

constraint by previously placed blocks. Second, if the assumed

trade-off actually takes place, the memory capacity allocated to the

task should be larger in the complex condition, predicting ratios

below 2 to 1. Third, memory capacity needed for the storage of a

pattern will depend on chunking or the possibility of recognizing

templates in the pattern. Simple block configurations are more

likely to comprise familiar sub-patterns such as letter shapes (e.g.,

‘I’ or ‘L’) or other geometric figures that facilitate memorization.

Chunking processes serve to bind isolated pieces of information

together to form a meaningful combination (block positions and

sub-patterns) that can be associated with previously stored long-

term memories. However, we found that subjects processed

between 1.54 and 3.2 blocks in a row (i.e., without model visits in

between), a rate that is below the range of the generally assumed

WM capacity of 3 to 7 items [e.g., 12,16,35]. Thus, it seems that

one block in our task is represented by more than one of the WM

items as discussed in the gaze-shift literature cited above. Such an

increased amount of WM demand could be caused by the

elongated maintenance of memory [e.g., 36] required in our large-

scale walking paradigm but not in gaze-shift paradigms. Moreover,

temporal forgetting of memorized material is caused by memory

decay [37] and processes of interference [38].

Costs and optimization
The trade-off idea states that behavioral strategies are selected

so as to minimize certain task and condition dependent costs.

Generally two types of costs are considered: i) processing time and

ii) energy consumption or other, non-temporal measures of

cognitive effort. The soft constraints hypothesis Gray et al. [21]

suggests that on the memory side ‘‘the only factors that matter are

the time required to encode, the time required to retrieve an item

from memory, and the probability that an encoded item can be

retrieved (i.e., is not forgotten) when needed’’. That is, the soft

constraints hypothesis presupposes a control system selecting

sequences of routines (sub-strategies) that tend to minimize

performance costs measured in time for processing (i.e., temporal

cost-benefit trade-offs). At the same time, the amount of memory

used may gradually change, in relation to the costs incurred by

acquisition-intensive strategies. Alternatively, it has been suggested

that behavioral decisions are always made so as to minimize WM

allocation [23,39,40] even when the costs of information access (as

measured by time) for ‘just-in-time’ (perceptual-motor) strategies
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are greater than the costs for memory strategies [41]. Since WM

capacity is limited, the control system is biased to assign work to

the perceptual-motor system [42]. For block-copying, Ballard et al.

[41] reported that participants preferred a ‘just-in-time’ (i.e., low

WM allocation) strategy that took 3 s to execute over the more

memory-intensive strategy that took 1.5 s to execute. Hence time

was not the factor determining WM processes in that task. We

suggest that the reason why the ‘just-in-time’ strategy is not used in

our experiment is the higher cost of inter area transitions

associated with physical walking as compared to mere gaze-shifts.

In any case, the data reported here seem to support a soft

constraint scheme in which memory costs can be ‘‘traded’’ for

acquisition costs. For further experimental evidence supporting the

soft constraints and minimum memory hypotheses, see [24] and

[23].

As revealed by the overall response times (Figure 3b), harder

tasks (i.e., the far and complex conditions) require longer overall

time. It therefore seems likely that time does play a role as a cost

factor in our experiment. To further analyze this hypothesis, we

evaluated three timing parameters, i) the initial model visit

duration, ii) overall walking time, and iii) overall response time.

Within each condition, we analyzed the frequency of the various

sub-strategies per trial. Note that these data do not appear in

Figure 4 which shows only the frequencies averaged over all trials

and subjects within each condition. Next we analyzed the

dependence of the three timing parameters on the sub-strategy

frequencies per trial. Strategy shift as depicted in Figure 4 is mostly

between the sub-strategies ‘high-memory’ (W-R-W) and ‘low-

memory’ (W-M-R-W). We therefore expressed the strategy shift by

the ratio of sub-strategy usage, (#W-R-W/(#W-R-W+#W-M-R-

Figure 7. Linear cost optimization. Experimental data for a) costs for memorization (i.e., duration of 1st model visit) with power function fits for
simple (dashed line) and complex (dotted line) patterns, b) costs for acquisition (i.e., overall time for transitions) with linear regression lines for near
(gray) and far conditions (black), and c) total time costs (i.e., overall response time; regressions indicate quadratic functions). All data are shown as a
function of the ratio between ‘high-memory’ and ‘low-memory’ sub-strategies. d) Model: Total costs are divided in costs for memorization (CMe) and
acquisition (CAc). If more information is processed at each model visit (i.e., if the task is solved with fewer visits), memory costs increase while
acquisition costs decrease. These individual costs vary also with the experimental conditions for walking distance (near and far) and pattern
complexity (simple and complex). Total costs for the complex/far condition are depicted as the sum of the according individual cost curves (blue line),
leading to an optimum of processed information per model visit at point b. The location of each optimum for the four experimental groups is
indicated with a–d.
doi:10.1371/journal.pone.0018494.g007
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W)) for each trial. Figure 7a–c shows the timing parameters as a

function of this sub-strategy ratio. The duration of the initial

model visit (Figure 7a) increases with the proportion of the ‘high-

memory’ sub-strategy. It may thus be considered a cost factor

associated with memorization, favoring the ‘low-memory’ sub-

strategy. The curves show power functions fitted to all trials in the

simple and complex conditions (lumping together near and far).

Conversely, overall walking time (Figure 7b) increases with the

proportion of the ‘low-memory’ sub-strategy. It may thus be

considered a cost factor associated with acquisition, favoring the

‘high-memory’ sub-strategy. The curves show linear regression

lines fitted to all trials in the near and far conditions (lumping

together simple and complex). The overall response time

(Figure 7c) shows a U-shaped dependence on sub-strategy ratio.

The curves are second order polynomials fitted to all trials of each

of the four conditions. The minima of the U-curves for the four

conditions appear in the order complex/near,complex/far,

simple/near<complex/near, which is consistent with the actual

strategy usage shown in Figure 4.

Figure 7d shows the overall idea of trade-offs generated by the

minimization of combined costs (soft constraints). The individual

components, i.e. acquisition costs and memorization costs follow

convex functions, either decreasing or increasing, whose vertical

position depends on the experimental condition. Acquisition costs

are assumed to depend only on walking distance and memoriza-

tion costs are assumed to depend only on pattern complexity. The

blue curve shows the sum of the acquisition costs in the far

conditions and the memorization costs in the complex conditions.

Its minimum corresponds to the sub-strategy ratio optimizing

overall response time in the complex/far condition. Models for the

other U-curves are obtained by summing the respective individual

cost curves, but are not shown in the figure. Their minima occur

roughly at the intersections of the individual cost curves and are

marked by letters a–d in the figure. The model is in good general

agreement with the data shown in Figure 7a–c.

In this analysis, the individual cost functions are assumed to be

stable and known by the trade-off controller. This is in line with

the trade-off stability reported in Figure 6: subjects use the same

sub-strategies throughout the course of the experiment without

need to adjust to the experienced costs.

In summary, the analysis presented in Figure 7 supports the idea

that time is a correlate of overall costs and the trade-off results

from the optimization of combined soft constraints (continuous

cost functions in Figure 7a and b) for which again temporal

correlates can be given. We cannot exclude the possibility that

non-temporal costs (e.g., energy consumption, distraction of WM

from other important tasks, memory decay) play a role, since they

are likely correlated with temporal parameters.
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