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Cognitive control impairments in schizophrenia (SZ) can be evaluated using antisac-
cade tasks and functional magnetic resonance imaging (fMRI). Studies, however, often 
compare people with SZ to high performing healthy people, making it unclear if anti-
saccade-related disruptions are specific to the disease or due to generalized deficits in 
cognitive control. We included two healthy comparison groups in addition to people with 
SZ: healthy people with high cognitive control (HCC), who represent a more typical com-
parison group, and healthy people with low cognitive control (LCC), who perform similarly 
on antisaccade measures as people with SZ. Using two healthy comparison groups may 
help determine which antisaccade-related deficits are specific to SZ (distinguish SZ from 
LCC and HCC groups) and which are due to poor cognitive control (distinguish the LCC 
and SZ groups from the HCC group). People with SZ and healthy people with HCC 
or LCC performed an antisaccade task during fMRI acquisition. LCC and SZ groups 
showed under-activation of saccade circuitry. SZ-specific disruptions were observed in 
the left superior temporal gyrus and insula during error trials (suppression of activation in 
the SZ group compared to the LCC and HCC group). Differences related to antisaccade 
errors may distinguish people with SZ from healthy people with LCC.

Keywords: schizophrenia, cognitive control, functional magnetic resonance imaging, antisaccades, specificity

inTrODUcTiOn

Cognitive control involves filtering out distracting information in order to perform goal-directed 
responses, utilizing aspects of attention, inhibition, and working memory. Cognitive control 
abilities can be assessed using antisaccade tasks. To begin the task, participants fixate on a central 
target. When a cue appears in a peripheral location in the horizontal plane, they are instructed to 
direct their glance to the mirror image location (opposite direction, same distance from center) (1); 
glances toward the cue are errors and considered failures of cognitive control. Antisaccade tasks 
measure cognitive control because successful performance relies on the several key operations: 
attention to a visual cue, inhibition of the pre-potent response to look toward the cue when it 

https://www.frontiersin.org/Psychiatry/
https://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2018.00107&domain=pdf&date_stamp=2018-04-11
https://www.frontiersin.org/Psychiatry/archive
https://www.frontiersin.org/Psychiatry/editorialboard
https://www.frontiersin.org/Psychiatry/editorialboard
https://doi.org/10.3389/fpsyt.2018.00107
https://www.frontiersin.org/Psychiatry/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jemcd@uga.edu
https://doi.org/10.3389/fpsyt.2018.00107
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00107/full
https://loop.frontiersin.org/people/198583
https://loop.frontiersin.org/people/430469
https://loop.frontiersin.org/people/164024/
https://loop.frontiersin.org/people/6561
https://loop.frontiersin.org/people/198643


Table 1 | Subject characteristics.

hcc (n = 21) lcc (n = 27) sZ (n = 23)

SPAN composite 0.64 (0.31) −1.35 (0.88) −1.55 (1.1)
Age (years) 33.6 (12.6) 38.9 (10.5) 39.9 (10.7)
Gender (male) 14 13 9
Handedness (right,  
left, ambidextrous)

19, 1, 1 25, 3, 0 19, 2, 2

Psychotropic medication
Unmedicated 6
Anti-psychotic  
(typical, atypical, both)

– – 2, 10, 1

Anti-depressant – – 5
Benzodiazepines – – 2
Polypharmacy – – 8

Cells show numbers for each item except SPAN Composite and Age, which show 
mean (SD). SPAN data for four participants (one HCC and three LCC) were lost at 
a later date due to technical difficulties. Polypharmacy was defined as taking more 
than one psychotropic medication. One SZ subject was taking lithium in addition to 
antipsychotics and one SZ subject was taking Adderal. HCC = high cognitive control 
group; LCC = low cognitive control group; SZ = schizophrenia group.
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appears, and the generation of a voluntary response (the glance 
in the opposite direction), all while engaging working memory 
for task rules (2, 3). Results of functional magnetic resonance 
imaging (fMRI) studies show that antisaccade performance is 
supported by regions distributed throughout the brain [supple-
mentary and frontal eye fields (FEFs), posterior parietal cortex, 
and subcortical regions] (4–9), although frontal regions like the 
dlPFC are particularly important given that lesions result in 
elevated antisaccade error rates (10–13).

Antisaccade tasks have been used as a research tool to evalu-
ate cognitive control disruptions in schizophrenia (SZ) [see 
(14–17) for reviews]. People with SZ make more antisaccade 
errors than healthy comparisons and sometimes exhibit slower 
reaction times (RT) when they perform a correct antisaccade 
response (5, 8, 18–23). Neural disruptions underlying poor 
antisaccade performance in SZ (as measured by fMRI) include 
under-activation of the FEFs, visual regions, basal ganglia, and 
most consistently the dlPFC when compared to healthy controls 
(5, 8, 21, 24–27). Under-activation of other frontal regions also 
is apparent during antisaccade errors, including the anterior 
cingulate and insula, indicating that additional deficits in error 
processing may contribute to poor antisaccade performance 
(28). More importantly, deviations in both behavior and brain 
circuitry are seen in unaffected first-degree relatives (8, 20,  
29, 30), suggesting that these measures serve as possible endo-
phenotypes for the disorder.

While antisaccade-related disruptions in SZ are well-established  
and their status as endophenotypes seems promising, a majority 
of studies compare people with SZ to healthy groups who have 
intact cognitive control (31–33). Antisaccade-related deficits 
in SZ, therefore, could be due to differences in cognitive ability 
rather than specific to the disorder. Evidence that this may be 
the case comes from studies of healthy people who perform 
just as poorly as people with SZ on antisaccade tasks (34, 35). 
Healthy individuals who have poor antisaccade performance 
exhibit similar underlying brain disruptions as people with SZ, 
including under-activation of frontal regions during both correct 
and error antisaccade trials (35). These same healthy individuals, 
however, also exhibit hyper-activation in visual regions, which 
is not reported in people with SZ. The lack of inclusion of low 
performing healthy individuals and people with SZ in the same 
study design makes direct comparisons between the two groups 
difficult, leaving the question open as to whether antisaccade-
related disruptions are specific to SZ.

This study uses two healthy comparison groups: people with 
intact cognitive control, who are representative of healthy com-
parison groups commonly used in the literature [referred to here 
as the high cognitive control group (HCC)], and people who 
have low cognitive control [referred to here as the low cogni-
tive control group (LCC)] as a more appropriate comparison 
sample for the SZ group. By including two healthy comparison 
groups, we aim to isolate antisaccade disruptions that are specific 
to SZ (i.e., differentiate the SZ group from the LCC and HCC 
groups) from those that are due to general deficits in cognitive 
control and are not associated with the psychiatric diagnosis 
(i.e., differentiate the LCC and SZ groups from the HCC group). 
Additionally, we evaluate activation associated with correct and 

error trials, given that distinctions between groups could arise 
from separable disruptions related to correct responses, error 
responses, or both.

We hypothesized that the SZ and LCC groups would show 
similar deficits in antisaccade performance compared to the 
HCC group. We also hypothesized that disruptions underlying 
poor performance would manifest as under-activation of brain 
circuitry, particularly in frontal regions, in both the LCC and the 
SZ groups, although hyper-activation in visual regions may be 
solely present in the LCC group.

MaTerials anD MeThODs

Participants
Sample characteristics are described in Table  1. SZ subjects 
(N  =  23) were recruited from the community and outpatient 
facilities in Athens, GA, USA and Augusta, GA USA. Healthy 
subjects were recruited from the community in Athens, GA, USA. 
HCC and LCC healthy comparison groups were drawn from a 
large initial sample (N = 235; mean age = 31 years, SD = 11; 53% 
female) and defined based on a composite score calculated from 
averaging the z-transformed scores of three complex working 
memory SPAN tasks: reading span, operation span, and sym-
metry span. Despite the label of “working memory,” these tasks 
evaluate an individual’s ability to not only maintain information 
(like typical tasks of working memory) but also maintain infor-
mation in the face of distracting and irrelevant stimuli, much like 
tasks involving cognitive control. Furthermore, SPAN tasks have 
good test–retest reliability (36) and predict performance on both 
higher order and lower order cognitive control tasks (34, 37), 
including antisaccades (3, 34, 38). Using established norms (39), 
comparison subjects with composite scores in the upper quartile 
(above 75%) were included in the high cognitive control group 
(HCC; n  =  21), whereas comparison subjects with composite 
scores in the lower quartile (below 25%) were included in the 
LCC group (LCC; n = 27). SZ subjects also completed the SPAN 
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FigUre 1 | Stimuli and timing. Participants performed 120 trials across two 
runs of an antisaccade task (60 trials per run). The above image outlines a 
single trial, which began with a central stimulus. Central stimulus timing was 
pseudorandomly jittered between 2,300 and 6,000 ms in order to deconvolve 
the stimulus-related hemodynamic response in the rapid event-related 
design. A 200-ms gap was then introduced followed by the peripheral 
stimulus presentation. Participants were given 1,000 ms after the peripheral 
stimulus onset to execute a glance in the opposite direction. The white arrow 
pointing to the left indicates a correct response (a glance to the mirror image 
of the peripheral stimulus) and the white arrow pointing to the right with the 
red “X” indicates an error response (a glance toward the peripheral stimulus). 
Arrows and the red X were not present during the task.
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tasks. SPAN scores in the SZ and LCC group were not signifi-
cantly different [t(44) = 0.68, p = 0.49]. Groups also did not differ 
in regards to age [F(2,68) = 2.0 p = 0.14], sex [χ2(2, N = 71) = 3.4, 
p = 0.17], or handedness [χ2(4, N = 71) = 2.8, p = 0.17].

Participants were administered the Patient or Non-Patient 
Edition of the Structured Clinical Interview for DSM-IV TR. 
Exclusion criteria for all groups included substance abuse 
within the last month and/or substance dependence within the 
last 6  months. Additional exclusions for comparison subjects 
included having past personal history of a psychotic or mood 
disorder, or a first-degree relative with psychosis. All subjects 
were free from contraindications for MRI (metal in the body and 
pregnancy) and reported no history of head trauma. All subjects 
signed consent forms and were paid for their time. Study proce-
dures were reviewed and approved by the University of Georgia 
Institutional Review Board.

antisaccade Task Design
Participants performed two runs of antisaccades (60 trials each) 
in the scanner using an event-related design. Stimuli and task 
timing are shown in Figure  1. Stimuli were 1.5° gray filled 
circles presented on a black background. Each trial began with 
the stimulus located in the center of the screen, followed by its 
disappearance and reappearance at ±5° or 10° from center in the 
horizontal plane. Participants were told to look at the stimulus 
when it was in the center and execute a glance in the opposite 
direction, same distance from center, when it appeared in one of 
the four peripheral locations.

Procedure and imaging Parameters
MRI data were collected at the Bio Imaging Research Center at the 
University of Georgia, using a 3T GE Signa MRI (General Electric 

Medical Systems, Milwaukee, WI, USA) and an eight channel 
head-coil. Participants were given task instructions before being 
positioned in the scanner. A high resolution structural scan was 
conducted to identify the plane of the anterior and posterior com-
missure (AC–PC) and for later use in preprocessing [T1-weighted 
3D FSPGR, repetition time (TR)  =  8.1, echo time (TE)  =  3.1, 
flip angle  =  20°, field of view (FOV)  =  240  mm  ×  240  mm, 
matrix size  =  256  ×  256, 150 axial slices, in-slice resolu-
tion = 0.94 mm × 0.94 mm, slice thickness = 1.2 mm]. Following the 
structural scan, participants completed two functional scans while 
performing the antisaccade task [T2*-weighted gradient echo EPI 
sequences, repetition time (TR)  =  2,000  ms, TE  =  30  ms, flip 
angle = 90°, FOV = 220 mm × 220 mm, matrix size = 64 × 64, 33 
interleaved oblique slices, in-slice resolution = 3.4 mm × 3.4 mm, 
slice thickness = 4 mm, slice gap = 0 mm, scan time = 5:26, 158 
volumes plus 4 initial dummy scans to allow for magnet stabiliza-
tion]. Participants viewed the stimuli on a screen positioned at 
their feet (174 cm from the nasion) via a mirror box placed on 
top of the head coil (16 cm above and in front of the eyes). Stimuli 
were displayed using Presentation Software (Neurobehavioral 
Systems, Albany, CA, USA) and eye movements during the scan 
were recorded using an IView X MRI-LR system with a sampling 
rate of 60 Hz (SensoMotoric Instruments, Berlin, Germany).

analysis
Antisaccade Behavior
Eye movement data from the scanner environment were scored 
using an in-house program generated in MATLAB (The Math-
works Inc., Natick, MA, USA). Antisaccade trials were scored for 
initial direction (correct or error response) and correct RT (time 
taken to initiate a correct response from appearance of peripheral 
cue). Trials with no response, blinks at stimulus onset, anticipatory 
saccades (faster than 90  ms RT from peripheral stimulus onset  
or during the gap window), or with insufficient data quality due to 
loss of pupil tracking were considered unscorable and eliminated 
from behavioral analysis. Error rate [(number of error trials/total 
number of scorable trials)  ×  100] and average correct RT were  
calculated for each participant. Means were compared with one-
way ANOVAs followed by Tukey–Kramer post hoc comparisons.

Neuroimaging
Imaging analysis was performed with Analysis of Functional 
NeuroImages (AFNI) (40). Three-dimensional datasets were 
created from individual DICOM files for each antisaccade run. 
Preprocessing of functional images included despiking, slice 
timing correction, registration to a representative volume for 
movement, alignment of functional data to anatomy, smooth-
ing with a 4-mm full-width at half-maximum Gaussian filter, 
and scaling each voxel to a mean of 100 as in Camchong et al. 
(24) and Dyckman et al. (41). One 4D file was created for each 
subject by concatenating the two preprocessed antisaccade runs. 
Concatenated time series were analyzed with a generalized least 
squares time series fit after temporal auto-correlation estimation 
using the Restricted Maximum Likelihood Model procedure in 
AFNI [REML; ARMA (1,1)]. The time series fit used a model with 
separate regressors for correct and error trials that were specific to 
each subject’s behavioral performance; non-scorable trials were 
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FigUre 2 | Group Differences in Antisaccade Behavior. Bars show mean 
(SE) antisaccade error rate (top) and mean (SE) correct reaction time (bottom) 
for each group. Asterisks indicate significant differences between groups 
p < 0.05 [HCC vs. LCC: t(46) = −3.2, p = 0.005; HCC vs. SZ: t(48) = −2.62, 
p = 0.02]. HCC, high cognitive control group; LCC, low cognitive control 
group; SZ, schizophrenia group.
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incorporated as a separate regressor to avoid inclusion in the 
baseline. The model also included regressors for linear, quadratic, 
and cubic drifts as well motion regressors (3 translational and 
three rotational) from the alignment step as regressors of no 
interest.

Group analyses were performed with a whole brain mixed-
effects multilevel analysis (MEMA), which accounts for hetero-
geneity within groups by taking into account the accuracy and 
precision of estimates from individual parameter estimates. This 
makes group-level analysis less susceptible to spurious results 
when the variance in the effect of interest within a group is 
comparable to the variance across groups or when outliers are 
present [for details see Chen et al. (42)]. Two MEMA analyses 
were performed to determine if there were activation differences 
between each of the three groups: one for correct trials and one 
for error trials. To avoid false positives, group maps from the 
MEMA analysis were corrected using a clustering procedure 
derived from Monte Carlo simulations; the minimum number of 
voxels that constituted a cluster at a family-wise α = 0.05 was 45.

resUlTs

antisaccade behavior
Error rates and correct RTs for each group are shown in Figure 2. 
There were significant differences in error rate among the three 
groups [F(2, 68) = 5.7, p = 0.005]. Groups with poor cognitive 
control (LCC and SZ) had higher error rates than the HCC group 
(HCC: M  =  0.23, SD  =  0.19; LCC: M  =  0.42, SD  =  0.23; SZ: 
M = 0.39, SD = 0.19). Individuals with SZ were slightly slower 
at executing correct antisaccade responses than both healthy 
groups, but this was not statistically significant [F(2, 68) = 1.9, 
p = 0.14]. The proportion of scorable trials did not differ across 
groups (HCC: M = 0.85, SD = 0.13; LCC: M = 0.82, SD = 0.12; SZ: 
M = 0.85, SD = 0.10; F(2,68) = 0.41, p = 0.66). The proportion of 
corrected errors also did not differ across groups indicating that 
all participants understood the task and performed the task with 
sufficient motivation [HCC: M = 0.88, SD = 0.12; LCC: M = 0.86, 
SD = 0.15; SZ: M = 0.85, SD = 0.12; F(2,68) = 0.34, p = 0.71].

neuroimaging
All groups showed robust BOLD percent signal change in sac-
cade circuitry during correct and error trials (see Figure  3). 
Groups did not differ in their amount of stimulus-correlated 
movement in any parameter (see Table S1 in Supplementary 
Material). BOLD percent signal change during antisaccade cor-
rect and error trials was reduced in both the LCC and SZ groups 
(see Figure 4; Table 2). Both LCC and SZ groups showed signifi-
cantly lower BOLD percent signal change than the HCC group in 
inferior frontal gyrus (IFG) and anterior insular regions. In the 
remaining clusters (for both correct and error trials), the LCC 
group displayed intermediate levels of BOLD percent signal 
change between the SZ and HCC group, although there were no 
significant differences between the HCC and LCC groups in these 
clusters as determined by the MEMA analysis. The exception 
was bilateral precuneus and left superior temporal gyrus (STG), 
where error-related BOLD percent signal change was reduced in 

the SZ group only. Differences between the SZ and HCC group, 
however, were only significant for the left STG/insula cluster 
[t(42) = 2.19, p = 0.03].

DiscUssiOn

People with SZ exhibit cognitive control deficits, as evidenced 
by poor antisaccade performance and deviations in circuitry 
activation as measured by fMRI. To investigate the specificity of 
these patterns to disease vs. those associated with overall effects of 
poor cognitive control, we used two healthy comparison groups 
(HCC and LCC). Results were mostly supportive of a general 
cognitive control impairment, with many antisaccade devia-
tions shared between the LCC and SZ groups. Both groups had 
high antisaccade error rates and under-activated key regions of 
antisaccade circuitry. This under-activation was mostly consist-
ent with previous reports (8, 24, 35, 43), although we did not see 
hyper-activation of visual regions in the current LCC group (35).

For correct and error trials, under-activations in the LCC 
and SZ groups were predominant in the IFG, insula, cingulate 
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FigUre 3 | Antisaccade activation for correct and error trials. Maps show activation as measured by BOLD percent signal change for correct trials (top) and error 
trials (bottom) for each of the three groups (HCC, LCC, SZ). Warm colors indicate positive activation during correct and error trials, cool colors indicate task-induced 
suppression during correct and error trials. Activations are shown on an anatomical image averaged across all subjects in Talairach space (z = 0 to z = 44) in 
radiological orientation (right side shown on the left). HCC, high cognitive control group; LCC, low cognitive control group; SZ, schizophrenia group.

FigUre 4 | Group-wise differences in antisaccade activation. Top panel shows group-wise differences in antisaccade correct trial activation. Bottom panel shows 
group-wise differences in antisaccade error trial activation. Bars (SE) show levels of activation for each group in each labeled cluster from Table 2. Clusters are 
shown on an anatomical image averaged across all subjects in Talairach space (top z = 2, 6, 10; bottom z = 31, 35, 39) I radiological orientation. Colors indicate in 
which comparison the cluster was significant. HCC, high cognitive control; LCC, low cognitive control; SZ, schizophrenia; IFG, inferior frontal gyrus; MTG, middle 
temporal gyrus; STG, superior temporal gyrus.
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Table 2 | Mixed-effects multilevel analysis (MEMA) results.

analysis hemi-
sphere

region x y z cluster 
size 

(voxels)

letter in 
Figure 3

correct trials
HCC > LCC

R IFG/Insula 35 20 7 45 a
HCC > SZ

R/L Cingulate 0 12 34 88 b
R MTG/STG 55 −32 −1 57 c

error trials
HCC > LCC

R IFG 46 17 9 66 d1

L IFG/Insula −44 14 12 82 e2

HCC > SZ
R STG/Insula 48 −31 9 149 f
R IFG/Insula 42 16 9 140 g1

R/L Cingulate 0 9 38 74 h
R/L Thalamus −2 −13 14 47 i
L STG/Insula −43 −13 12 221 j2,3

LCC > SZ
R/L Precuneus 1 51 35 52 k
L STG/Insula −48 −22 11 176 l3

Significant clusters from the mixed effects multilevel analysis for correct and error 
antisaccade trials. x, y, z coordinates are in Talairach space and indicate center of mass 
for each cluster. Some clusters extended beyond a single region, primarily between 
the insula and temporal regions. Superscript numbers indicate clusters that spatially 
overlapped with each other among comparisons. HCC, high cognitive control group; 
LCC, low control group; SZ, schizophrenia group; IFG, inferior frontal gyrus;  
MTG, middle temporal gyrus; STG, superior temporal gyrus.
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cortex, and temporal cortex. Overlap of under-activated regions 
between correct and error trials is expected given that fronto-
insular and cingulate cortices comprise a distributed salience 
network (44) that is activated during multiple stages of cogni-
tive processing: cue presentation (related to initial processing 
of behaviorally salient cues), task performance (facilitation of 
attention and task set maintenance), and error-related process-
ing (45). Fronto-insular and cingulate regions also are recruited 
across tasks requiring responses that involve more than one 
competing response set (46, 47), like antisaccades, and provide 
vital information to dorsal attention systems via inputs to the 
dorsal lateral prefrontal cortex (DLPFC) (45, 48).

Nodes within this salience network are involved in a number 
of cognitive operations relevant to antisaccade performance. 
The IFG, particularly in right hemisphere, is involved in 
inhibitory control as well as action updating and selection 
when non-dominant responses are required (49–51). Inhibition 
is important for successful antisaccade performance, as the 
competing and more dominant response of looking toward the 
peripheral cue must be suppressed before a “non-dominant” 
response is generated in the opposite direction. Additionally, 
the right IFG and insula are part of the ventral attention net-
work, which allows for orientation to salient and behaviorally 
relevant stimuli as well as volitional redirection of attention 
(52, 53). Fronto-insular activation is particularly strong for 
unexpected cues that require reorientation of attention (48). 
Attentional processes are central to antisaccade performance 
given the spatial uncertainty of the peripheral cue, the initial 
requirement to covertly attend to it, followed by switching 

attention to the opposing location. Under-activation of fronto-
insular regions during correct responses may indicate deficits 
in both inhibition and attentional allocation that may make 
people with poor cognitive control (LCC and SZ groups) 
susceptible to higher antisaccade error rates regardless of 
psychiatric diagnosis.

The salience network, composed of these fronto-insular regions 
and cingulate cortex, also shows significant activation during 
error commission and is essential for successful error processing. 
Network nodes reach peak activation early, before other control 
regions like the DLPFC (7, 45), indicating that they may feed  
forward information to top-down portions of saccade circuitry 
to adapt future behavior. Ham and colleagues (54) suggest a 
hierarchy of regions that communicate information immediately 
after an error has occurred, starting with the right insula. The insula 
then serves as an output hub to the cingulate, which provides 
error-related signals to dlPFC, resulting in post-error adjust-
ments in behavior (54). Blunted error responses, in the form of 
fronto-insular and cingulate under-activation, are common in 
people with SZ and contribute to poor behavioral performance 
(28, 55–57), although the LCC group showed similar patterns of 
under-activation in our sample. Both LCC and SZ groups also 
corrected errors to the same degree as the HCC group, suggesting 
that groups with poor cognitive control did not have problems 
detecting errors, but instead, may have had problems using 
immediate feedback from error commission to establish and 
implement appropriate task sets, making errors more common. 
This interpretation seems likely given involvement of fronto-
insular and cingulate regions in task set implementation (45).

Although the LCC and SZ groups shared a majority of antisac-
cade-related deviations, one aspect that distinguished the SZ group 
from the LCC group was suppression of the left STG and more 
posterior parts of the insula during antisaccade errors. A similar 
pattern was observed in the same regions in the right hemisphere, 
but did not significantly differ from the LCC group. The STG co-
activates with, and structurally connects to fronto-insular regions 
(58–61), making it an important contributor to the functions of 
the aforementioned brain networks. Additionally, the STG plays 
a role in maintaining information related to prior outcomes over 
time in order to assess, prepare, and act on current decisions (62). 
Such operations are essential parts of performing any type of cog-
nitive control task in that a recent response outcome, whether it 
be a correct or error response, could influence how an individual 
performs on subsequent trials. Since only the SZ group showed 
suppression in this region, SZ-specific deficits could be related to 
these more sustained forms of processing which could compound 
with other error processing or performance monitoring deficits.

As with any study involving participants with psychiatric 
disorders, the effects of symptom severity and psychotropic 
medication could influence SZ-specific results. There were 
no significant associations, however, between activation in 
SZ-specific clusters and symptom subscale scores or CPZ 
equivalents (see Table S2 in Supplementary Material). Previous 
research also has failed to find such associations (30). Another 
possibility is that poor antisaccade performance in both LCC 
and SZ groups could be due to other underlying factors, like IQ, 
rather than poor cognitive control per se. IQ is highly associated 
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with, and accurately predicted by working memory capacity 
(36, 63), the sole factor we used to establish our LCC and HCC 
groups. As in previous studies (14), the nature of this IQ/working 
memory capacity relationship extended to antisaccade perfor-
mance in our sample; there was a significant positive correlation 
between the percentage of correct responses and scores on the 
Information scale from the Verbal Comprehension Subtests 
of the WAIS (a coarse approximation of IQ) [r(70)  =  0.39, 
p = 0.0008]. While IQ and cognitive control may not be differ-
entiable in this study, the antisaccade measures of performance 
and brain activation demonstrate that not all deficits are specific 
to SZ. Future studies with these groups should include larger 
sample sizes, as well as the inclusion of a group of people with 
SZ with preserved cognitive control. The latter would provide 
further insight into brain mechanisms underlying poor cogni-
tive control in healthy people and people with SZ.

This study used two healthy comparison groups, people  
with HCC and people with LCC, to better understand which 
antisaccade deficits were specific to SZ and which were due to 
poor cognitive control abilities. When compared to the HCC 
group, both the LCC and SZ groups had poorer antisaccade 
performance and showed dysfunction of a distributed salience 
network composed of fronto-insular and cingulate regions dur-
ing processing of correct and error responses. Strong overlap in 
behavior and brain between the LCC and SZ group should inform 
the selection of control groups in future neuroimaging studies. 
SZ-specific disruptions were evidenced by suppression of the 
STG which could indicate problems in sustained maintenance of 
outcome information to inform future behavior. Understanding 
the neural similarities and differences between groups that display 
similar behavioral performance may inform models of cognitive 

control, especially in disorders like SZ, where deficits in cognitive 
control are common, but treatment is limited.
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