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Abstract: To resist the imposed lateral forces on the structures, hysteric dampers are developed from
steel plates and strategically implemented within various structural applications. Structural shear
dampers have recently been used to alleviate damage, while remaining members remain intact and
undamaged. The practical use of the innovative dampers in structural applications is investigated
in this study. For this purpose, the design methodology for a set of innovative shear dampers
is initially elaborated, for which the dampers are designed considering the governing shear and
flexural ductile limit states, while the brittle buckling limit state is prevented. Subsequently, the finite
element modeling methodology is verified and compared to laboratory tests for computationally
analyzing various shapes of the shear damper in structural applications. Three major general
prototype structures are established, and shear dampers are designed to be incorporated in prototype
applications. For each of the proposed applications, at least six different shapes of shear dampers are
designed and subsequently compared with conventional systems. The results determined that the
use of innovative shear dampers could effectively reduce demand forces on the boundary elements
by more than 40% on average, while the strength and the stiffness alter within margin of difference
less than 5%.

Keywords: dampers; cyclic response; energy efficiency; ductility

1. Introduction

Structures are designed to prevent collapse and limit the damage under severe earth-
quakes. For limiting the damage to a structural system, the ductile behavior of steel
structural shear dampers is considered based on the inelastic drift capacity and desired
energy dissipation under excessive loading conditions. These structural fuse systems are
used to protect the surrounding elements from inelastic damage, while concentrating the
inelasticity in a specific of the buildings. One class of structural steel fuse with high energy
dissipation capacity is made of steel plates with shear links cut into them, to initiate yielding
ductile modes of behavior as the plate undergoes the shear loading demand [1].

The structural fuses are intended to be accessible, effective, and replaceable [2–5]. By
the implementation of the structural dampers, the surrounding elements are protected
from serious damage, and the dampers can perform efficiently after being replaced. The
structural shear dampers can be implemented in various applications (Figure 1). Figure 1
shows schematic examples of structural shear damper implementation for various applica-
tions. The structural shear links are developed to improve various system issues, for which
several shapes are represented in Figure 1g.

Several studies have indicated that strategic dampers are able to be incorporated in
different applications [6–9]. Previous works showed that using the slit panels, butterfly-
shaped dampers, or hysteretic structural fuses with different shapes could effectively
reduce the response of multistory structures under earthquake loading condition [3]. To
protect the beam–column connection from considerable plastic strain concentration, Oh
et al. [10] used butterfly-shaped dampers, which effectively saved the beam from the
accumulation of plastic strain under large deformations. Luth et al. [11], and Shin et al. [12]

Materials 2022, 15, 805. https://doi.org/10.3390/ma15030805 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030805
https://doi.org/10.3390/ma15030805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15030805
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15030805?type=check_update&version=1


Materials 2022, 15, 805 2 of 20

used hourglass shape fuses within the web of the beam to promote the yielding mechanism
as the dominant limit state under cyclic loading condition [13–16]. It is shown that straight
links in steel plate shear walls with an appropriate aspect ratio increase the ductility of the
whole system.
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Figure 1. Structural fuse system. (a) Eccentrically braced system; (b) Butterfly-shaped fuse; (c) Coupled
shear wall; (d) Shear wall; (e) Linked column application; (f) Structural fuse; (g) Different shapes.

The structural steel fuses are designed to be replaceable after the occurrence of major
events. Therefore, they decrease the costs by a significant margin. The cost efficiency of
using replaceable dampers is related to less damage to the surrounding members, faster
return to performance level, and lower demand on columns and beams [17–30]. Several
studies have investigated and addressed the common problems associated with structural
fuse systems consisting various dampers [31–36]. Ma et al. [2] concluded that butterfly-
shaped dampers are efficient by aligning the demand moment curves with capacity moment
diagrams. Several works proposed a design methodology with which the butterfly-shaped
and straight dampers are able to effectively resist lateral torsional buckling. Along the same
lines, previous works [14–16] showed that the usage of fuses, if appropriately designed,
leads to a proper distribution of combined shear and flexural stresses within the length
damper [14]. Along the same lines, various computational approaches were previously
suggested to study the behavior of structural systems [32–34].

In this study, the effects of fuses with different geometrical configurations are investi-
gated with finite element analysis. Based on the applications studied in Structural Engineers
Association of California (SEAOC) [34,35] examples with typical solid steel plate, three
distinctive groups are selected, and fuses are designed for each set. The design is conducted
based on achieving the same strength for all the fuses within each prototype application
group. The investigated output parameters are selected based on the previous studies,
which are mainly associated with energy dissipation capability, ductility, strength, stiffness,
and fracture prevention. Subsequently, the appropriate structural damper system for each
group is identified and the implementation advantages are elaborated. The limitation of
this study is related to replaceability issues and system performance in the case extreme
events for which the replaceable dampers do not fit into the system due to the occurrence of
several damages. In addition, the cost of preparation and complicated design requirements
could be considered as further limitations for such systems.

2. Discussion for Different Shapes for Structural Fuses
2.1. Uniform Yielding Design Concept

To effectively design structural dampers, one of the main procedures reported previ-
ously in the literature is to have a uniform yielding over the length of the link [2], indicating
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simultaneous ductile yielding limit state occurrence along the length of the seismic shear
damper. Figure 2 shows the schematic hourglass shaped dampers, and the major and minor
bending axes of x and y. Figure 3 presents the moment diagrams resulting in strategic
plastic hinges, and the demand force related to a typical damper system. It is recommended
to have the hinges developed far from sharp geometrically points and to control the strain
concentration over joints. The global shear buckling transform into more ductile mecha-
nisms to have desirable structural performance [2–4]. Figure 3 shows the demand forces
determined in Equations (1) and (2).

Mp =
w(z)2t

4
σy (1)

Mloading = Pz (2)

where t and w(z) are the thickness and width; Mloading indicates the demand; Mp indicates
the capacity. By equating the force demand and force capacity terms, the width of the shear
link varying along the length could be derived:

w(z) =

√
4Pz
tσy

(3)
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Therefore, b determining the end width, is achieved based on Equation (4):

b =

√
2PL
tσy

(4)
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The width of the link at each section is indicated based on Equation (5)

(w(z)/b) =
√( z

L

)
(5)

The proposed shape shown in Figure 4 determines a desirable solution for having
uniform yielding condition and avoiding the lateral torsional buckling limit state.

Materials 2022, 15, x FOR PEER REVIEW 4 of 23 
 

 

𝑤(𝑧) = 4𝑃𝑧𝑡𝜎  (3) 

Therefore, b determining the end width, is achieved based on Equation (4): 

𝑏 = 2𝑃𝐿𝑡𝜎  (4) 

The width of the link at each section is indicated based on Equation (5) (𝑤(𝑧)/𝑏) = 𝑧𝐿  (5)

The proposed shape shown in Figure 4 determines a desirable solution for having 
uniform yielding condition and avoiding the lateral torsional buckling limit state.  

 
b

 
bz

Z

 

Demand 
Moment

Capacity Moment 
for the dashed 

section

Moment

Distance

Capacity 
Moment

 
Figure 4. The damper geometry for uniform yielding design concept. 

2.2. Uniform Curvature Design Concept 
The uniform curvature design concept considered the uniform curvature method for 

reestablishing various efficient geometrical shapes for in-plane structural dampers based 
on previous experimentation [36]. It is suggested that seismic shear fuses with the uniform 
curvature would spread the plasticity along the length of the link to avoid the concentra-
tion of the plastic strains.  

To enjoy the benefits of the same curvature for having subsequent yielding condi-
tions along the length of the link, it is required to set the curvature, as shown in Figure 5 
and summarized in Equation (6).  𝜙 = 𝑀𝐸𝐼 = 𝑃𝑧𝐸𝐼 = 𝑃𝑧𝐸 𝑏 𝑡12  (6) 

After simplification, the width could be established as follows: 

𝑏  = 12𝑃𝑧𝐸𝜙𝑡   (7) 

Similarly, the end width could be established by Equation (8) 

𝑏 = 6𝑃𝐿𝐸𝜙𝑡   (8) 

Therefore, Equation (9) is obtained. 

Figure 4. The damper geometry for uniform yielding design concept.

2.2. Uniform Curvature Design Concept

The uniform curvature design concept considered the uniform curvature method for
reestablishing various efficient geometrical shapes for in-plane structural dampers based
on previous experimentation [36]. It is suggested that seismic shear fuses with the uniform
curvature would spread the plasticity along the length of the link to avoid the concentration
of the plastic strains.

To enjoy the benefits of the same curvature for having subsequent yielding conditions
along the length of the link, it is required to set the curvature, as shown in Figure 5 and
summarized in Equation (6).

φ =
M
EI

=
Pz
EI

=
Pz

E
(

b3
z t

12

) (6)
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After simplification, the width could be established as follows:

bz =
3

√(
12Pz
Eφt

)
(7)
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Similarly, the end width could be established by Equation (8)

b = 3

√(
6PL
Eφt

)
(8)

Therefore, Equation (9) is obtained.

w(z)
b

=
3

√
2z
L

(9)

Based on Equations (5) and (9), the uniform yielding along the damper length occurs if
the width of the hourglass-shaped damper, w(z), corresponds to the square root of z. Along
the same lines, the constant curvature occurs if the width aligns with the cube root of z
which is schematically shown in Figure 6.
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2.3. Limit States and Ductile Based Design Concept

The elaborated guideline in this section is proposed to determine the procedures to
design various dampers with different shapes, as shown in Figure 7 for use in seismic
structural fuses [14,15].
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The provided guidelines improve the energy dissipation capability of the shear
dampers by having the flexural modes as the dominant mode of behavior for ductile
performance. It is shown that butterfly-shaped dampers with the dominant flexural mode
of behavior are able to dissipate energy efficiently with full hysteretic behavior while the
plastic strain concentration areas would occur far from the sharper geometrical changes,
which leads to a lower probability of fracture protentional [15].
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The transitional equations are obtained as follows (For a < b/2). For having flexure limit
states governed over the shear, the geometry should satisfy the following Equations (3)–(6):

(b− a)/L < 0.28 (or α > 148◦) Flexure dominated (10)

In addition, the strength limit states are as follows:

P f lexure
p =

2n(b− a)atσy

L
(11)

Pshear
p = n

σyat
√

3
(12)

For a > b/2 or slit (a = b):

b/L < 1.15 Flexure dominated (13)

The shear and flexure capacity are summarized as follows:

P f lexure
p =

nb2t
2L

σy (14)

Pshear
p = n

σybt
√

3
(15)

2.4. Brittle Modse, and Developing the Ductile Limit State

The lateral torsional buckling brittle limit state, flexure, and shear limits state are the
most common limit states related to butterfly-shaped dampers [2,3] and the minimum
values should be considered according to Equation (16). Based on the parametric study [4,6],
the over strength factor (W) for different shapes is derived and summarized in Table 1 [15].
By satisfying Equation (18), the buckling limit state shown in Equation (17) is prevented
while the governing mode of behavior would be ductile shear or flexural limit state.

Table 1. The over strength factor established for butterfly-shaped dampers.

BF Links b/L Over Strength Ω

a/b

0.1

0.1 4.1
0.2 3.3
0.3 2.8
0.4 1.8

0.33

0.1 2.3
0.2 1.65
0.3 1.35
0.4 1.3

0.75

0.1 4.13
0.2 3.18
0.3 2.51
0.4 1.95

1

0.1 4.35
0.2 3.35
0.3 2.75
0.4 2.45
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Pp = min
{

P f lexure
p , Pshear

p

}
(16)

PLTBcr =
2E[0.533 + 0.547(a/b)− 0.281(a/b)2 + 0.096

(
a/b)3]bt3

L2
√

1 + v
(17)

ΩPp < Pcr
LTB (18)

It is shown that the oval-shaped dampers are designed based on the uniform yielding
concept, while circular-shaped dampers are designed based on the critical section at the
middle of the shear damper. For slits or straight dampers, shear and flexural butterfly-shaped
shear links are established according to proposed guidelines elaborated in this study.

3. Designing Prototype Buildings with Innovative Seismic Shear Dampers
3.1. Single Row of Links (SRLs)

The Structural Engineers Association of California (SEAOC) prototype application for
eccentrically braced systems (EBF) [34,35] is considered and redesigned with innovative
seismic structural shear dampers. The design procedures are elaborated in previous
sections [34,35].

The design for the first prototype system is established for the force of 530 kN based
on the reported capacity for the EBF system in SEAOC for EBF system. The EBF system is
located on the permitted part of the building is shown in Figure 8a,b. The designed beam
is a W10 × 68 with a yielding stress of 322 MPa and 1% hardening. Figure 8 shows the top
view and elevation view for which the SRLs are developed.

3.2. Design of Single Row of Dampers for EBF System

Six different seismic shear dampers are investigated and compared with the corre-
sponding EBF system. The first set of seismic dampers is flexurally dominated butterfly-
shaped ones (FBF), elaborated based on guidelines [15] and shown in Figure 9. The circular
(named Circle and shown in Figure 9) and shear dominated butterfly shaped dampers
(named SBF and shown in Figure 9) are generally used to accumulate the stresses at the
middle section of the seismic damper. The oval shape model (Oval) is developed based
on the uniform yielding design concept [15], for which the inelasticity spreads out more
uniformly along the length of beam (Figure 9). The straight damper (named straight or slits,
and it is shown in Figure 9) is a commonly used straight seismic shear damper. The simple
solid plate (named solid and shown in Figure 9) is the conventional shape for which the
EBF systems were previously established. Figure 9 shows the designed seismic structural
shear dampers. For this purpose, L/60 and L/15 are used as recommended in previous
studies for the end angles and the middle [15,34,35].

3.3. Design of for MRLs System

Coupled shear wall application based on the SEAOC example is considered and re-
designed with innovative seismic shear dampers following the elaborated design method-
ology [34,35]. Six different seismic shear damper configurations are accordingly considered
for this specific application. The geometrical properties used for the mentioned coupling
beam systems were determined in SEAOC examples [34,35] and are shown in Figure 10.

The demand force of 2200 kN and the constitutive material property with steel yielding
stress of 322 MPa steel and 1% hardening are considered. Figure 11 shows the designed
seismic systems based on the provided guidelines. Flexurally butterfly-shaped dampers
are investigated to obtain desirable stress distribution, as shown in Figure 11a. The circular
and shear dominated butterfly shaped dampers are represented in Figure 11b,c. The oval
shaped link shown in Figure 11d is established based on the uniform curvature concept.
The straight damper is a straight shaped geometry used in shear walls and seismic systems
to generate the hinges at the ends, as shown in Figure 11e. The simple solid plate, shown in
Figure 11f, is the conventional shape.
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Figure 9. The designed models for EBF system (a) FBF (b) SBF (c) Circle (d) Solid (e) Straight (f) Oval.
(a) t = 2.2 mm. (b) t = 2.2 mm. (c) t = 2.2 mm. (d) t = 0.8 mm. (e) t = 3.0 mm. (f) t = 2.5 mm.
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Figure 10. The coupled shear wall and implementation of MRLs (a) Top view (b) Plan view.

3.4. Perforated Rows of Links (PRLs)

Various cutout geometries are considered, and specific properties are suggested to
study the innovative systems determined in Figure 12. The design is based on the demand
force of 1300 kN and material model follows the previous studied computational models.
The plan view and elevation view of the conventional lateral resisting system is shown in
Figure 12.

The flexurally dominated butterfly-shaped damper is considered to improve the
uniformity of stress distribution (Figure 13a). The circular (Figure 13b) and shear dominated
butterfly shaped dampers (Figure 13c) are typically used to concentrate the stress within
the middle section, while the circle shaped system initiates a better distribution of plastic
strains. The oval shape model (Figure 13d) is based on the uniform curvature concept for
which the inelasticity spreads along the length of the damper uniformly, and the straight
dampers impose the flexural hinge formations at the far ends (Figure 13e). The simple
conventional application is shown in Figure 13f. The studied design shapes are summarized
in Figure 13.
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Figure 11. The multiple rows of links (a) FBF (b) Circle (c) SBF (d) Oval (e) Solid (f) Straight.
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4. Finite Element Modeling Methodology

Finite element software packages [37] are implemented to verify the modeling method-
ology of seismic shear links. Two laboratory tests are considered for verification pur-
poses [2,12]. The first specimen is B10-36W, adopted by Ma et al. [2] for having lateral
torsional buckling and a ductile flexural yielding mechanism, as shown in Figure 14. In this
model, the top edge is fixed against all degrees of freedom except horizontal displacement,
and the bottom edge is completely restrained against all degrees of freedom. Four-nodded
shell element reduced integration (S4R) is implemented with the capability of shear locking
and hour glassing resistance, in which five integration points through the thickness are
considered. The finest mesh size of 10 mm is chosen for meshing the butterfly shaped shear
dampers. To run the analysis, the dynamic explicit solver is used and the AISC 341 [38]
cyclic loading protocol for eccentrically braced systems is applied at the unrestrained edge.
The constituted material model is applied based on the coupon test reported by Ma et al. [2],
in which the material had a yield stress of 273 MPa, ultimate stress of 380 MPa, and linear
kinematic hardening between yielding and ultimate stress. The results of verification study
for monotonic and cyclic loading are summarized in Figure 15.
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Figure 15. Verification of Finite Element Modeling with the aid of FE software under (a) cyclic
behavior and (b) monotonic loading conditions.

The second laboratory test specimen is a beam with circular cutouts along the length of
the web section [38]. A twenty-nodded solid element is used to avoid hourglass and shear
locking effects. Based on the computational study by Shin et al. [38], a bilinear stress-strain
constitutive model is considered with 379 MPa yield stress and elastic modulus of 200 GPa.
The story shear is calculated by multiplying the beam shear obtained from FEA analysis by
1.43 and the story drift is estimated by the beam chord rotation divided by 1.43 according
to the frame geometry. The chord rotation is monitored from the transverse displacement
divided by the clear span of the modeled beam. Figure 16a shows the specimen and
the computational model, while Figure 16b shows the verified hysteretic behavior of the
experiment and corresponding cyclic pushover curve.
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5. Discussion of the Results

The results obtained from the FEA for the use of different seismic innovative shear
dampers in various applications are investigated and elaborated in detail. The envelope
pushover behavior, plastic strain values, yielding and ultimate strength, over strength, and
initial stiffness of each model are derived and compared with other innovative dampers
and conventional systems. The modeling methodology precisely follows the verified
specimens [2,38].

5.1. Investigation of Single Rows Seismic Behavior

Figure 17 shows the pushover behavior of the system with seismic links. In general,
the fuse system resists the applied loading and subsequently experiences the catenary
action up to a specific point at which the buckling or excessive rotations within various
elements occur, leading to a large degradation in the stiffness and strength of the systems.
The results are estimated and represented in Tables 2 and 3.
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As shown in Figure 17, the results are summarized in Table 2. The equivalent plastic
strain at 0.08 drift ratio is monitored for different models to investigate the possibility of
brittle effects which is determined in Table 2.

Considering the plastic strains (PEEQ) FBF, circle and oval shapes could be appropriate
options. If the over strength is considered, the circle-shaped and oval-shaped dampers could
work efficiently. Figure 18 shows the Von-Mises stress distribution for each damper. The
FBF model developed the hinges at the quarter points. The circle- and SBF-shaped models
developed the maximum shear stress at the middle portion of the dampers, for which the
strain accumulation points are closer to sharper geometrical changes. The straight damper
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developed the two flexural hinges at the ends. Hence, fracture is more likely to occur in these
systems. The oval-shaped system shows fewer strain values due to the constant curvature
design. In addition, Table 3 summarizes the performance behavior results.

Table 2. The computational results for SRLs.

Output Oval Circle FBF Simple Straight SBF

PEEQ at 0.08 (−) 0.22 0.25 0.28 0.68 0.61 0.26
displacement, Dy (m) 0.012 0.008 0.0089 0.01 0.009 0.01
displacement, Dm (m) 0.13 0.115 0.21 0.115 0.14 0.135
Displacement ratio (−) 10.8 14.4 23.6 11.5 15.6 13.5
Ultimate Strength (kN) 908 862 1037 767 802 808
Yielding Strength (kN) 561 582 496 577 450 520

Over strength (−) 1.62 1.48 2.09 1.33 1.78 1.55
Stiffness (kN/m) 46,750 72,750 55,730 57,700 50,000 52,000

Table 3. The mode of behavior for SRLs up to at 0.08 drift ratio.

Performance
investigation

Oval End of dampers elements excessive plasticity are obtained with
minor buckling.

Circle Middle section of the dampers yields, and excessive rotation occured
are the end section

FBF End elements start to yield by 0.08 drift ratio with uniform stress
distribution.

Simple The buckling occurred, and the tension Field Action (TFA) is
observed clearly.

Straight End of dampers are subject to excessive rotation The plasticity and
fracture potentials have been indicated.

SBF The dampers are yielded in shear at the middle, with minor buckling.
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5.2. Investigation of Multiple Rows of Links (MRLs) Results

MRLs are designed for the demand force of 2200 kN [34]. Tables 4 and 5 show the
results related to multiple rows of dampers.

Table 4. The computational results for MRLs.

Oval Circle FBF Simple Straight SBF

PEEQ at 0.03 (−) 0.055 0.084 0.044 0.14 0.09 0.09
PEEQ 0.08 (−) 0.065 0.137 0.12 0.47 0.51 0.11

Displacement, Dy (m) 0.011 0.0084 0.011 0.0078 0.008 0.0056
Displacement, Dm (m) 0.21 0.22 0.185 0.19 0.38 0.197
Displacement ratio (−) 19.1 26.2 16.8 24.4 47.5 35.2
Ultimate Strength (kN) 4744 3073 2927 2505 7627 3476
Yielding Strength (kN) 1474 1481 1954 2284 2173 2354

Over strength (−) 3.22 2.07 1.50 1.10 3.51 1.48
Stiffness (kN/m) 134,076 176,354 177,673 292,895 271,680 420,443

Table 5. The mode of behavior for MRLs up to at 0.08 drift ratio.

Performance
investigation

Oval
The uniform yielding occurs with the length of the damper. Buckling
is prevent and stress has been uniformly distributed; the plastic strain

are low; therefore, the fraction prevention is occurred.

Circle Majority of the yielding occurs at the middle section. The buckling
and excessive rotation did not happen

FBF The flexural limit state is clear and the stresses are uniformly
distributed and excessive rotation at the middle is observed.

Simple The tension field action has occurred and buckling was clear.

Straight The end elements are yielded and the plastic strain at the end of the
damper are high. Therefore, fracture potential is high.

SBF At the middle yielding occurred and buckling as the subsequent limit
state occurs.

The MRLs rotation at the middle part is highly reduced;. Hence, the local carrying
capacity is reduced. It is concluded that the rotation of the middle part prevents the
system from each ductile mechanism and the whole system from performing in a desirable
fashion or reaching the yielding stage as expected. The backbone curves for the MRLs are
summarized in Figure 19. The major decrease in lateral load capacity is determined due to
the middle steel plate rotation, and the performance biobehavioral change from the local
flexure or shear yielding and subsequent axial yielding. This rotation prevents the dampers
from performing in a desirable fashion.

The behavior of MRLs is not desirable since the desirable mode of behavior did
not occur, and the inelasticity was not distributed uniformly. The Von-Mises stresses are
determined in Figure 20 for various innovative MRL dampers, indicating that either a
stiffener is recommended at the middle to prevent the middle rotation or larger size SRLs
could be directly used as proper substitutions.

5.3. Investigation of Perimeter Rows of Links (PRLs) Results

The considered designed demand force for PRL computational models is 1300 kN
based on the prototype application [34], which is determined in Figure 21 and Table 6. It
is concluded that, for the simple shear wall, the field action is generated over lower drift
values which is summarized in Table 7. Therefore, the equivalent plastic strain values are
lower. Additionally, the simple solid plate system has lower over strength values. However,
the boundary element forces are tangibly larger, as shown in Table 8. The tension field
action for the first and last floor generates significant demands on boundary elements.
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The Von-Mises stress distribution is indicated in Figure 22 at 0.08 drift ratio. It is
determined that for various systems with seismic shear dampers, the yielding starts in the
damper and plastic strains are concentrated in dampers rather than plates. Additionally,
the moments at the middle of the beam and at the middle of the column are estimated as
shown in Figure 23.

Table 8 determines the mid-point demand values for moments to determine the
boundary element forces. The tension field action occurred in a simple application, while for
the shear walls with innovative dampers, the boundary elements undergo lower demand
forces due to a local yielding mechanism produced by dampers. The demand forces on
boundary elements for the solid plate system and a system equipped with dampers are
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considered as the main reason the plate with dampers could be selected as a desirable
substitute over the solid plate. It is shown that different innovative dampers could be
designed and used to address the high boundary element demand force issues.
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Table 6. The computational results for PRLs.

Oval Circle FBF Simple Straight SBF

PEEQ at 0.02 (−) 0.24 0.11 0.40 0.045 0.3 0.21
Displacement, Dy (m) 0.0174 0.027 0.0162 0.0348 0.0099 0.023
Displacement, Dm (m) 0.478 0.349 0.332 0.61 0.468 0.62
Displacement ratio (−) 27.47 12.93 20.49 17.53 47.27 26.96
Ultimate Strength (kN) 2916 2232 3158 1591 2915 1998
Yielding Strength (kN) 1526 1525 1435 1497 1503 1476

Over strength (−) 1.91 1.46 2.20 1.06 1.94 1.35
Stiffness (kN/m) 87,720 56,483 88,565 43,009 151,818 64,156

Table 7. The post-processing results for PRLs.

Performance
investigation

Oval The corner dampers undergo high buckling without the frame
damaging from the plastic concentration.

Circle The top corner damper at left experiences high inelasticity
stress concentration.

FBF The bottom left-hand side and right-hand side dampers
undergo elongating and shortening.

Simple Tension field action is occured and high demands on the
boudary elements are determiend.

Straight The whole panel initiates to buckle. The hinges are
concentrated at the ends of each dampers.

SBF The middle part is subjected to rotational elements without
occurrence of early buckling.



Materials 2022, 15, 805 18 of 20

Table 8. The demand moment forces captured at the middle point of beam and column.

Type
M (kN·m) at 0.02 Drift

Beam Column

Straight 447 125
Simple 373 273
Oval 378 50
Circle 307 85
SBF 373 72
FBF 313 76

Mp (kN·m) 1288 2566.3
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6. Conclusions

The structural fuses used in prototype buildings are divided into major three groups.
Three groups are considered as follows:

• Single row of links (e.g., EBF system, linking beam and linked column applications).
• Multiple rows of links with multiple rows of dampers (e.g., bay bridge application).
• Perimeter rows of links (e.g., steel shear walls).

The strategic transformation of the behavior mechanism from brittle behavior to local
flexure and shear yielding improves the cyclic resistance capability. Based on the results of
the different prototype investigations using FE models, methodologies are determined that
allow structural tuning. By controlling the buckling limit state, the ductile mechanisms would
develop from the flexural and shear stresses. The investigations are summarized as below.

1. Global shear deformations and the transformation to local flexural yielding mecha-
nism are studied.

2. For steel structural applications, due to the improvement of energy dissipation and
reduction of demands on the structural boundary elements, the new generation of
innovative damper are suggested for use.

3. Different shapes of innovative dampers could be designed and used to improve the
high boundary element demand force issue and reduce the demand forces up to more
40% in average.

The limitations of this study are related to replaceability issues and system perfor-
mance in the case extreme events for which the replaceable dampers do not fit into the
system due to the occurrence of several damages. In addition, the cost of preparation and
complicated design requirements could be considered as further limitations.
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