
Research and Applications

dPQL: a lossless distributed algorithm for generalized

linear mixed model with application to privacy-preserving

hospital profiling

Chongliang Luo1,2, Md. Nazmul Islam3, Natalie E. Sheils3, John Buresh3,

Martijn J. Schuemie4, Jalpa A. Doshi5,6, Rachel M. Werner5,6,7, David A. Asch5,6, and

Yong Chen 1,6

1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 2Divi-

sion of Public Health Sciences, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA, 3OptumLabs, Min-

netonka, Minnesota, USA, 4Janssen Research and Development LLC, Titusville, New Jersey, USA, 5Division of General Internal

Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 6Leonard Davis Institute of Health Economics, Philadel-

phia, Pennsylvania, USA, and 7Cpl Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA

Corresponding Author: Yong Chen, PhD, Department of Biostatistics, Epidemiology and Informatics, University of Pennsyl-

vania, 602 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA; ychen123@upenn.edu

Received 12 January 2022; Revised 19 April 2022; Editorial Decision 21 April 2022; Accepted 10 May 2022

ABSTRACT

Objective: To develop a lossless distributed algorithm for generalized linear mixed model (GLMM) with applica-

tion to privacy-preserving hospital profiling.

Materials and Methods: The GLMM is often fitted to implement hospital profiling, using clinical or administra-

tive claims data. Due to individual patient data (IPD) privacy regulations and the computational complexity of

GLMM, a distributed algorithm for hospital profiling is needed. We develop a novel distributed penalized quasi-

likelihood (dPQL) algorithm to fit GLMM when only aggregated data, rather than IPD, can be shared across hos-

pitals. We also show that the standardized mortality rates, which are often reported as the results of hospital

profiling, can also be calculated distributively without sharing IPD. We demonstrate the applicability of the pro-

posed dPQL algorithm by ranking 929 hospitals for coronavirus disease 2019 (COVID-19) mortality or referral to

hospice that have been previously studied.

Results: The proposed dPQL algorithm is mathematically proven to be lossless, that is, it obtains identical

results as if IPD were pooled from all hospitals. In the example of hospital profiling regarding COVID-19 mortal-

ity, the dPQL algorithm reached convergence with only 5 iterations, and the estimation of fixed effects, random

effects, and mortality rates were identical to that of the PQL from pooled data.

Conclusion: The dPQL algorithm is lossless, privacy-preserving and fast-converging for fitting GLMM. It pro-

vides an extremely suitable and convenient distributed approach for hospital profiling.
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INTRODUCTION

Decades of health services research have revealed that the outcomes

hospitalized patients achieve are considerably determined by where

they are admitted. Hospital profiling allows a quantitative assess-

ment of the quality of hospital care that may help patients decide

which hospital to use, or may guide how those hospitals are accred-

ited or paid. Studying cross-hospital variation in care helps identify

reasons for that variation with the aim of improving care for all.

Such profiling across hospitals is usually conducted by analyzing

clinical or administrative insurance claims data, always considering

what factors to adjust for statistically—for example, patient charac-

teristics like sociodemographic or medical conditions, hospital

characteristics like volume or academic status, or social or commu-

nity characteristics like area-level poverty or uninsurance levels.1,2

In a recent article on hospital profiling for coronavirus disease

2019 (COVID-19) mortality,2 Asch et al. ranked the performance

of 929 hospitals after adjusting for the patients’ characteristics in-

cluding age, sex, Elixhauser comorbidities, insurance type, and hos-

pital’s characteristics including number of beds, number of

intensive care unit beds, urban/nonurban setting, geographic re-

gion, profit status, and academic affiliation. Research of this kind

helps untangle what are often separate contributors to the produc-

tion of good patient outcomes and is essential for identifying ways

to improve those outcomes.

Recent years have seen the development of statistical methodolo-

gies for the purpose of hospital profiling. A commonly used model is

the generalized linear mixed model (GLMM), which assumes com-

mon fixed-effects of covariates, for example, patient- and hospital-

level factors, and hospital-specific random effects, that is, intercepts

on the interested clinical outcome.1–3 Based on the estimated fixed

and random effects, the risk standardized event rates (RSERs) can

be calculated for each site. GLMM estimation, though complicated,

could be obtained by methods such as Gaussian-Hermite approxi-

mation of the integrated likelihood, Monte-Carlo-based approaches,

and the penalized quasi-likelihood (PQL) approach.4,5

For example, Drye et al,6 studied the in-hospital and 30-day mor-

tality rate of acute myocardial infarction (AMI), heart failure (HF),

and pneumonia for more than 3000 hospitals using Medicare claims

data from the Centers for Medicare and Medicaid Services (CMS).

Asch et al2 studied COVID-19 mortality or discharge to hospice in

929 hospitals using the UnitedHealth Group Clinical Discovery Por-

tal. Both investigations were based on a large integrated database,

where patient-level data from multiple hospitals were available in a

single dataset. But often such integrated datasets are not available.

Indeed, an important limitation of most other investigations is that

they rely on data sets from single institutions and so are smaller,

more homogenous, and less representative of broader populations.

Ideally, if individual patient-level datasets from across multiple

payers and institutes could be shared, the profiling methods can be

applied to a larger and more general study population. However, it

is often the case that these individual patient-level data are typically

protected by privacy regulations and sharing of individual patient

data (IPD) is difficult. To extend hospital profiling to cover a wider

spectrum of patient populations, privacy-preserving distributed

algorithms can be used. Specifically, when fitting GLMM, the dis-

tributed algorithm is expected to require aggregated data (AD) from

each hospital (often iteratively) but obtains accurate estimates of the

model parameters, and therefore accurate estimates of RSERs. Re-

cently, Zhu et al7 proposed a distributed algorithm based on Expec-

tation–Maximization (EM) that involves the Metropolis-Hasting

algorithm. However, it is well known that the EM algorithm usually

takes many iterations to converge—the distributed EM algorithm of

Zhu et al7 requires 500�1000 iterations for results to be converged.

As a result, the distributed algorithm also requires many rounds of

data communication between institutes.

This article aims to fill this important methodological gap by

proposing a novel distributed algorithm to fit GLMM that is lossless

(ie, it obtains identical results as if the IPD are pooled from all hospi-

tals), computationally stable, and, importantly, requires only a few

rounds of communications of AD across institutes. The algorithm is

based on the PQL approach and a newly developed distributed algo-

rithm for linear mixed model (LMM). We demonstrate the applica-

bility of the proposed distributed PQL (dPQL) algorithm by hospital

profiling for COVID-19 mortality or referral to hospice using data

from 929 hospitals that have been previously studied by Asch et al.2

METHODS

Fitting GLMM via penalized quasi-likelihood
GLMM is an extension of GLM with random effects. We introduce

notations of GLMM in the context of hospital profiling. Assume

there are K hospitals with numbers of patients ni, and the total num-

ber of patients is N ¼
P

ini. For subject j at hospital i, we denote yij

the outcome, xij the p-dimensional covariates with fixed effects b,

and ui the random effect (ie, random intercept),

i ¼ 1; . . . ;K; j ¼ 1; . . . ;ni. Conditional on the covariates

Xi ¼ ðxi1; . . . ; xini
ÞT and random effects ui, yi ¼ ðyi1; . . . ; yini

ÞT are

assumed to be independent observations with means and variances

specified by a GLM. Specifically,

EðyijjuiÞ ¼ lij ¼ hðgijÞ ¼ hðxij
Tbþ uiÞ; (1)

VarðyijjuiÞ ¼ vðlijÞ; (2)

where g ¼ h�1 is the link function that connects the conditional

means lij to the linear predictor gij, vð�Þ is the variance function.

The random effects ui are assumed to follow a normal distribution

with mean 0 and variance h. We note that the above model dictated

by Equations (1) and (2) could be extended to hierarchical models as

in George et al3 for more flexibilities; for example, the covariate Xi

can include hospital-level characteristics (eg, the (log) volume of a

hospital) and the variance of the random effects ui could also be de-

pendent on the hospital-level characteristics.

Standard estimation of the GLMM parameters ðb; hÞ is based

on maximizing the integrated quasi-likelihood

Lðb; hÞ ¼ f2phg�K=2
YK

i¼1

ð1
�1

exp½�
Xni

j¼1
dijðyij; lijÞ=2

� ui
Th�1ui=2�dui;

where

dij

�
y; lÞ ¼ �2

ðl

y

ðy� uÞ=vðuÞ du:

Maximization of this objective function is generally compli-

cated,4 as the integrations must be performed numerically unless in

the case of Gaussian outcome and identity link.

One approach to the integration is to make a Laplace approxi-

mation, which eventually leads to the PQL algorithm.4 The PQL al-

gorithm iteratively fit the linear mixed model

yij
� ¼ xij

Tbþ ui þ �ij; �ij � Nð0;wij
�1Þ; (3)

with the working outcome
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yij
� ¼ xij

Tbb þ ~ui þ ðyij � bl ijÞg0ðbl ijÞ; (4)

and the weight

wij ¼ g0ðbl ijÞ�2vðblijÞ: (5)

The obtained estimates are denoted as ðbb; bhÞ. See Breslow et al4

for more details about the derivation.

The proposed dPQL algorithm
We develop a dPQL algorithm for GLMM estimation in the case

that the IPD are distributed across multiple centers and direct trans-

fer of the IPD is not allowed. The dPQL algorithm is based on the

distributed linear mixed model (DLMM) algorithm, which fits

LMM exactly by requiring each site to contribute some AD only

once.8 Specifically, in each iteration of the PQL algorithm, the

weighted LMM (3) is fitted by the DLMM algorithm, requiring

each site to contribute AD

• p� p matrix Si
X ¼ Xi

T
WiXi;

• p� dim vector Si
Xy ¼ Xi

T
Wiyi

�; and
• scalars si

y ¼ yi
�TWiyi

�; and sample size ni.

See the Supplementary Materials for details of the DLMM algo-

rithm. The dPQL algorithm thus reconstructs the PQL iterations

and obtains identical results as if the IPD are pooled together.

Distributed calculation for standardized mortality rates

based on dPQL
Hospital profiling results are often reported with the standardized

mortality rates (SMRs) of hospitals. We demonstrate that the SMRs

of hospitals can also be calculated in a privacy-preserving fashion.

We provide 2 approaches for risk standardization, the Indirectly

Standardized Mortality Rate (denoted as ISMR)1 and the Directly

Standardized Mortality Rates (denoted as DSMR).3,6 While both

approaches measure adjusted mortality rates effectively, DSMR in

contrast to SMR, has an interpretation in an amenable probability

scale.

The ISMR of hospital k is estimated1 as

ISMRk ¼
bpkbek
� �y; (6)

where

bpk¼ nk
�1
Xnk

j¼1
hðxkj

Tbb þ ~ukÞ (7)

is the average expected mortality rate for patients at hospital k,

bek¼ nk
�1
Xnk

j¼1
hðxkj

TbbÞ (8)

is the average expected mortality rate for hospital k patients had

they been treated at the “population level,” and �y is the overall ob-

served mortality rate. This SMR measure has been used to compare

the performance of nonfederal acute care hospitals in the United

States for AMI (n¼3135 hospitals), HF (n¼4209 hospitals), and

pneumonia (n¼4498 hospitals) from 2004 to 2006.6

The DSMR of hospital k is defined as the average mortality rate

assuming patients from all the hospitals being treated at this hospi-

tal,4 thai is,

DSMRk ¼ N�1
XK

i¼1
nibp ik; (9)

where

bpik ¼ ni
�1
Xni

j¼1
hðxij

Tbb þ ~ukÞ (10)

is the average expected mortality rate of patients at hospital i had they

been treated at hospital k. When i ¼ k; bpik ¼ bpk, and if i 6¼ k; bpik

is a counterfactual probability. This SMR measure has been applied to

profiling 4289 hospitals in the United States for AMI using Medicare

records from 2009 to 2011,3 and to evaluating COVID-19 mortality

in 929 hospitals.2 While both approaches measure adjusted mortality

rates effectively, DSMR in contrast to ISMR, has an interpretation in

an amenable probability scale.

We note that both types of SMR measures (ISMR and DSMR)

can be calculated distributively without sharing IPD. Specifically,

for the ISMR, each individual hospital calculates and shares its aver-

age expected mortality rates (ie, 2 probabilities bpkk and bek as in Fig-

ure 1, and Equations 7 and 8) using its own patient-level data and

the public estimates from dPQL (ie, bb and ~u as in Figure 1). For the

DSMR, each individual hospital calculates and shares the average

expected mortality rates had its patients been treated at other hospi-

tals (ie, K probabilities bp i1; . . . ; bpiK as in Figure 1, and Equation 10)

using its own patient-level data and the public estimates from dPQL.

Us hospital ranking based on the mortality rates for

patients admitted with COVID-19
Asch et al2 conducted a cohort study assessing 38 517 adults

who were admitted with COVID-19 to 929 US hospitals from

The proposed dPQL algorithm

1. Initialize: the lead site send an initial value of the fixed effects bð0Þ, and the random effects ui
ð0Þ ¼ 0 to the collaborative

sites i¼1, . . ., K.

2. For iteration s¼0, 1, . . . ,

2.1 Site i calculates the working outcome yi
� ¼ gi

ðsÞ þ ðyij � li
sð ÞÞg0ðli

sð ÞÞ; gi
sð Þ ¼ Xib

ðsÞ þ ui
ðsÞ, and the weights

Wi ¼ diagfg0ðli
ðsÞÞ�2vðli

ðsÞÞg,
2.2 Site i calculates aggregated data

• p � p matrix: Si
X ¼ Xi

T Wi Xi ,

• p� dim vector: Si
Xy ¼ Xi

T Wi yi
� and

• scalars: si
y ¼ yi

�T Wi yi
�and sample size ni , and transfers them to the lead site,

2.3 The lead site fits weighted DLMM algorithm based on the aggregated data from 2.2, to obtain updated bðsþ1Þ; ui
ðsþ1Þ,

and send them back to the collaborative sites.

3. Stop iteration when converged, for example, jjgðsþ1Þ � gðsÞjj=jjgðsÞjj < 1e-6. The final estimates are bb ¼ bðsÞ; ~ui ¼ ui
ðsÞand bh.
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January 1, 2020 to June 30, 2020 using the data from United-

Health Group Clinical Discovery Portal. The hospital’s standard-

ized rate of 30-day in-hospital mortality or referral to hospice

was calculated, after adjusting for patient-level characteristics,

including demographic data, Elixhauser comorbidities,9 commu-

nity or nursing facility admission source, and time since January

1, 2020; hospital-level characteristics, including size, the number

of intensive care unit beds, academic and profit status, hospital

setting; and regional characteristics, including COVID-19 case

burden. See Supplementary Figure S1 for a description of the

data.

We demonstrate the applicability of the proposed dPQL algo-

rithm by using it to rank hospitals with only transferring AD from

each hospital. Specifically, we compare the predicted mortality rate

(via ISMR or DSMR) of the 929 hospitals by either pooled analysis

(PQL) of the patient-level data or the distributed analysis (dPQL) of

the AD across hospitals. We also check the number of iterations for

reaching convergence, and compare the estimation of fixed effects,

best linear unbiased predictors (BLUPs), and mortality rates using ei-

ther pooled or distributed analyses.

RESULTS

The predicted mortality rate (via ISMR or DSMR) of the 929 hospi-

tals by either pooled analysis (PQL) or the distributed analysis

(dPQL) is compared in Figure 2. The dPQL algorithm reached con-

vergence with only 5 iterations, and the estimation of fixed effects,

BLUPs, and mortality rates were identical to that of the PQL from

pooled data. The estimated fixed and random effects from the dPQL

algorithm and from the PQL are also identical, as shown in Supple-

mentary Figure S2.

DISCUSSION

We propose a novel dPQL algorithm, a privacy-preserving distrib-

uted learning algorithm to fit GLMM. The dPQL algorithm does

not require sharing of individual patient-level data. The algorithm

only requires sharing of minimal AD from each site over few rounds

of communication and obtains identical results as if fitting GLMM

to the pooled data using PQL. The calculation of AD at each indi-

vidual site is implemented in the R package “pda.”10,11 We also de-

...

Yes

DPQL

SMR

Converge?
No

...

Figure 1. A distributed procedure for hospital profiling. The dPQL algorithm fit the GLMM in a distributive fashion by requiring some aggregated data (AD) from

each hospital in a few iterations, and obtains the estimated fixed effects (bb) and random effects (~u ). Next, standardized mortality rates (SMRs) of the hospitals can

be calculated distributively. Based on the results of dPQL algorithm, each hospital calculates its average expected mortality rates using its own individual patient

data (ie, for hospital k , be k is the average expected mortality rate had its patients been treated at the “population level,” and bp ki is the average expected mortality

rates had its patients been treated at hospital i ¼ 1; . . . ;K ). The indirectly and directly standardized mortality rates can then be calculated (ISMRk and DSMRk for

hospital k).
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veloped an “over-the-air” online portal called PDA-OTA (http://

pda-ota.pdamethods.org/) to facilitate secure and convenient collab-

oration on the basis of the “pda” package. See the Supplementary

Materials for detailed instructions for using the PDA-OTA.

The results of the PQL estimation are comparable to that of

other approaches used to fit the GLMM model. For example, in the

hospital ranking for COVID-19 mortality rates, the PQL estimation

is almost identical to that of the Gaussian-Hermite approximation

approach used in the original paper.2 Although fitting GLMM by

PQL is sometimes criticized for its biased estimation when the out-

come is binary and clusters are small,4,5 it is still an appropriate esti-

mation approach for hospital profiling purposes, as the sample sizes

in hospitals are usually large enough.

The communication efficiency of the dPQL algorithm is attribut-

able to the fast convergence of the PQL algorithm. See Supplementary

Figure S3 showing the convergence in just a few iterations in the hospi-

tal profiling example for COVID-19 mortality. The communication

efficiency can be further improved by a one-shot (or few-shots) version

of the dPQL algorithm, that is, run only one (or few) iteration of the

dPQL algorithm proposed in Section “The proposed dPQL algo-

rithm.” Such a one-shot approach has been pursued by many distrib-

uted algorithms and is considered communication-efficient.8,12–17 The

one-shot version dPQL algorithm will sacrifice some accuracy of the

estimation, but obtains very appealing communication cost, as each

hospital needs only to share the AD once. Meanwhile, the number of

iterations required in the PQL algorithm depends on the choice of ini-

tial values. While default initial values (ie, all fixed effects being 0) pro-

vide satisfactory results, the performances can be improved with smart

choices of initial values. We recommend setting a maximum number

of iterations (eg, within 5 iterations) when using dPQL in practice.

However, we do not recommend applying dPQL in the high-

dimensional setting (ie, large p) as it will involve communication of

massive aggregate data (ie, the p-by-p matrices SX
i ).

We provide indirect (ISMR) and direct (DSMR) standardization to

interpreting the hospital ranking for the purpose of public reporting.

Examples of conducting hospital profiling using either approach exist

in literature.2,3,6 The directly standardized approach is considered to

behave better for models that consider the interaction between the hos-

pital and the patients.4 On the other hand, using GLMM for ranking

hospitals assumes overlap of patient characteristics at different hospi-

tals. Other statistical models, for example, without random effects,

could also be considered when there is poor overlap of patient charac-

teristics between hospitals. The choice of standardization approaches

and statistical models is beyond the scope of this paper. The hospital

Figure 2. The estimated mortality rate (indirectly standardized mortality rate (A) and (B) and directly standardized mortality rates (C) and (D)) of 30-day in-hospital

mortality or referral to hospice of the 929 hospitals by either pooled analysis (PQL) or the distributed analysis (dPQL).
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profiling can be conducted for other tasks, as long as the outcome can

be modeled by GLMM. This includes binary outcomes such as

COVID-related mortality, ventilator usage or hospital readmission,

and count outcomes such as hospitalization length of stay, etc.

Our proposed dPQL algorithm is in a similar fashion as feder-

ated learning methods, which have found profound applications in

many clinical settings in recent years.18 However, our AD release

mechanism has not been investigated in rigorous privacy framework

such as k-anonymity19 or differential privacy,20,21 and thus is not

guaranteed to be protected from the risk of re-identification or mem-

bership inference attacks22 (MIAs). Specifically, the risk of re-

identification arises from linking potential quasi-identifiers (eg,

combinations of patient’s characteristics) to external sources,19 and

the risk of MIAs refers to inferring whether a data point (eg, a spe-

cific patient’s record) is used to train the model.22,23 To avoid poten-

tial risk of re-identification, we suggest excluding or suppressing

values representing 10 or fewer patients24 when sharing the aggre-

gate data and using random initial values if possible when initiating

the iteration. These will prevent the aggregate data from containing

sparse elements and hence re-identifying sensitive patient informa-

tion.8 We also suggest avoiding high-dimensional GLMM models,

and using a representative sample for training. These will prevent

overfitting and improve the generalizability of the model, which re-

sult in mitigating the risk of MIAs.22 In the future, we plan to extend

our dPQL algorithm via techniques such as differential privacy and

multiparty homomorphic encryption.25
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