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Tumor-infiltrating immune
cells based TMEscore and
related gene signature is
associated with the survival of
CRC patients and response
to fluoropyrimidine-based
chemotherapy
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Background: Tumor-infiltrating immune cells (TIICs) are associated with

chemotherapy response. This study aimed to explore the prognostic value of

a TIIC-related tumor microenvironment score (TMEscore) in patients with

colorectal cancer (CRC) who underwent chemotherapy and construct a

TMEscore-related gene signature to determine its predictive value.

Methods: Gene profiles of patients who underwent fluoropyrimidine-based

chemotherapy were collected, and their TIIC fractions were calculated and

clustered. Differentially expressed genes (DEGs) between clusters were used to

calculate the TMEscore. The association between the TMEscore,

chemotherapy response, and survival rate was analyzed. Machine learning

methods were used to identify key TMEscore-related genes, and a gene

signature was constructed to verify the predictive value.

Results: Two clusters based on the TIIC fraction were identified, and the

TMEscore was calculated based on the DEGs of the two clusters. The

TMEscore was higher in patients who responded to chemotherapy than in

those who did not, and was associated with the survival rate of patients who

underwent chemotherapy. Three machine learning methods, support vector

machine (SVM), decision tree (DT), and Extreme Gradient Boosting (XGBoost),

identified three TMEscore-related genes (ADH1C, SLC26A2, and NANS)

associated with the response to chemotherapy. A TMEscore-related gene

signature was constructed, and three external cohorts validated that the

gene signature could predict the response to chemotherapy. Five datasets
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.953321/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.953321&domain=pdf&date_stamp=2022-08-30
mailto:hubangli@gxmu.edu.cn
mailto:selinalin@hotmail.com
https://doi.org/10.3389/fonc.2022.953321
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.953321
https://www.frontiersin.org/journals/oncology


Guo et al. 10.3389/fonc.2022.953321

Frontiers in Oncology
and clinical samples showed that the expression of the three TMEscore-related

genes was increased in tumor tissues compared to those in control tissues.

Conclusions: The TIIC-based TMEscore was associated with the survival of

CRC patients who underwent fluoropyrimidine-based chemotherapy, and

predicted the response to chemotherapy. The TMEscore-related gene

signature had a better predictive value for response to chemotherapy than

for survival.
KEYWORDS

colorectal cancer, tumor-infiltrating immune cells, TMEscore, chemotherapy,
machine learning, gene signature
Introduction

The prognosis of patients with colorectal cancer (CRC) is

strongly dependent on the clinical stage, as the 5-year survival

rate of patients at an advanced stage is much lower than that of

patients at an early stage (1). Unfortunately, most patients with

CRC are initially diagnosed at an advanced stage. Chemotherapy

remains an important and effective approach for the treatment

of patients with CRC, particularly those at advanced stages.

Fluoropyrimidine-based chemotherapy, including FOLFOX,

FOLFIRI, or CapeOX, is recommended as the first-line

treatment for patients with unresectable and/or recurrent CRC

(2, 3). However, chemotherapy resistance, which occurs in a

significant proportion of patients and results in tumor

progression and ultimately death, is a major obstacle to the

successful treatment of CRC. Many mechanisms have been

found to underlie the occurrence of chemotherapy resistance,

including alterations in drug metabolism, aberrant DNA repair

and proliferation of cancer cells, activation of detoxifying

enzymes, and cancer cell death inhibition (4, 5). In recent

decades, growing evidence has shown that alteration of the

tumor microenvironment (TME) is an important factor that

significantly contributes to chemotherapy resistance (6).

The TME is composed of tumor cells, stromal cells, immune

cells, and other cell types. Changes in the cell diversity and

cytokines in the TME contribute to the pathogenesis,

progression, therapy response, and prognosis of cancers (7, 8).

Alterations in TME cells, especially tumor-infiltrating immune

cells (TIICs), and the protein molecules and cytokines secreted

by these cells, mediate the occurrence of chemotherapy

resistance (9). Recently, the association between TIICs and

chemotherapy resistance in CRC has been reported in several

studies. For example, a study reported that the presence of T

follicular helper cells and M0 macrophages in the TME of
02
patients with CRC who underwent fluoropyrimidine-based

chemotherapy were associated with better survival rates,

whereas eosinophils in the TME were associated with worse

survival rates (10). Another study used a TME-specific gene

signature to identify CRC subtypes. In this study, a “signature

associated with FOLFIRI resistance and the microenvironment”

(SFM) was constructed to identify both TIICs and drug

sensitivity in CRC patients (11). A single-cell atlas of liver

metastases of CRC reveals tumors treated with preoperative

chemotherapy show activation of B cells, lower diversity of

tumor-associated macrophages with immature and less

activated phenotype, lower abundance of both dysfunctional T

cells and ECM-remodeling cancer-associated fibroblasts, and

accumulation of myofibroblasts (12). These results

demonstrate that TIICs in the TME could be used to identify

patients with chemoresistance and predict the prognosis in CRC

patients undergoing chemotherapy.

The TMEscore is an index that reflects the fraction of

immune cells and is calculated from a gene expression matrix

using principal component analysis (PCA) (13). Compared with

the immune cell fraction, the TMEscore could be more reliable

in representing the composition of the TME. The TMEscore has

recently been used to predict the survival rate of patients with

various cancer types, such as gastric cancer (13), glioma (14),

and ovarian cancer (15). However, an association between the

TMEscore and chemotherapy resistance has not been previously

reported. Therefore, in this study, we calculated the TMEscore of

patients with CRC who underwent fluoropyrimidine-based

chemotherapy based on TIICs, and constructed a TMEscore-

related gene signature to predict the survival rate of these

patients. Our results provide novel insights into the role of

TIIC-mediated chemotherapy resistance and precise treatment

options for patients who undergo fluoropyrimidine-

based chemotherapy.
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Materials and methods

CRC dataset acquisition and
preprocessing

The CRC datasets were retrieved and freely downloaded

from the gene expression omnibus (GEO) database (www.ncbi.

nlm.nih.gov/geo/). Datasets containing information from 2061

patients with CRC, including GSE72970 (n=124), GSE39582

(n=585), GSE87211 (n=363), GSE104645 (n=193), and

GSE28702 (n=83) were included in the analysis. The cancer

genome atlas (TCGA)-CORDREAD (n=635) dataset

(transcripts per million normalized) with corresponding

clinical information was downloaded freely from the Xena

database (GDC hub: https://gdc.xenahubs.net). Four GEO

datasets, GSE106582 (n=194), GSE31737 (n=80), GSE117606

(n=208), and GSE74602 (n=60), were downloaded to validate

gene expression differences between tumor and control tissues.

The GEO datasets were preprocessed by performing background

adjustment using the RMA algorithm.
Quantification of TIICs in the TME

The TIICs in the TME of CRC tissues were quantified using

the CIBERSORT algorithm (16), which generates a fraction of 22

immune cell phenotypes by calculating gene expression. The

CRC samples with CIBERSORT P of <0.05 were retained for

subsequent analysis because this inferred a highly reliable

cell composition.
Consensus clustering analysis and
differentially expressed gene analysis

The “ConsensusClusterPlus” package (17) was used to

perform unsupervised consensus clustering of the samples based

on the TIIC fraction. The cumulative distribution function (CDF)

curves determined the optimal number of clusters, which was

indexed by k values from 2 to 6. The DEG analyses between

different clusters in each dataset were performed using the

“limma” package. This package provides an integrated solution

for analyzing data from gene expression experiments. It contains

rich features for handling complex experimental designs. To date,

the “limma” package is a classic method for the differentially

expressed analysis of microarray datasets (18).
Functional enrichment analysis for
the DEGs

Gene set variation analysis (GSVA) was applied to screen

significantly enriched pathways between the two clusters using

the Molecular Signatures Database (MSigDB, version 7.4) (19).
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Those with a P value of <0.05 were considered significant

pathway terms. Kyoto Encyclopedia of Genes and Genomes

(KEGG) terms were identified with a cutoff P value of <0.01 and

a false discovery rate of <0.05. These analyses were conducted

using the clusterProfiler package. The clusterProfiler package

provides a universal interface for functional enrichment analysis

in thousands of organisms based on internally supported

ontologies and pathways, as well as annotation data provided

by users or derived from online databases (20).
TMEscore calculation and
cluster analysis

The TMEscore of the gene dataset was calculated using the

“TMEscore” package (13, 21). This package provides

functionality for calculating the TMEscore using PCA or z-

score methods. For the dataset with survival data, this package

divides the samples into high or low clusters based on the

TMEscore and survival data.
Chemotherapeutic drugs and
immunotherapeutic response prediction

The potential chemotherapeutic drugs that were associated

with the TMEscore clusters were screened using the

“pRRophetic” package (22), which is used to calculate the half-

maximal inhibitory concentration (IC50) based on the gene

expression profi le for 251 chemotherapeutic drugs.

Furthermore, the response of the TMEscore clusters to

immunotherapy was predicted by comparing the expression of

immune checkpoint inhibitors.
Screening and validation of key
genes using multiple machine
learning algorithms

The datasets were randomly classified into training and

testing sets in a ratio of 7:3. First, support vector machine

(SVM), decision tree (DT), and Extreme Gradient Boosting

(XGBoost) algorithms were used to screen the most important

genes via the e1071, rpart, and XGBoost packages in the R

language. The predictive value of the three machine learning

algorithms for important gene selection in the training set was

estimated by the receiver operating characteristic (ROC) curves

and areas under the curve (AUC) using the “pROC” package.

Then, the intersecting genes among the three algorithms were

considered as the key genes and visualized using a Venn

diagram. Finally, multivariate logistic regression analysis was

conducted to construct the predictive signature using the key

genes, which evaluated the predictive value of the signature via

AUC indices.
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Reverse transcription-polymerase chain
reaction assay for clinical samples

The expression of key genes in the CRC clinical samples was

determined using RT-PCR. Forty tumor tissues and their

corresponding adjacent tissues were collected between

February 2020 and August 2021. This study was approved by

the hospital’s ethics committee. Total RNA extraction, RT-PCR,

and analysis were performed as previously described (23).

TaqMan probe-based RT-PCR was performed using a

commercial kit (Thermo Fisher Scientific, Inc.) according to

the manufacturer’s instruction. The primers used for RT-PCR

were as follows: ADH1C forward: TGA TAA AGT CAT CCC

GCT CTT T, reverse: CAT TCT CAT CCA CCA CTG TGT A;

SLC26A2 forward: AAG AGC AAC ATA ACG TTT CAC C,

reverse: GTC TGC ATT GAT CAT TGG TCT C; NANS

forward: TCA GAA GCT CTT TCC TGA CAT T; reverse:

GTC CAA AGT TAT GTG ACG TTC C. The reaction

conditions for the RT-PCR were as follows: 1 cycle at 95°C for

5 min; 15 cycles at 95°C for 25 sec, 64°C for 20 sec, 72°C for 20

sec; and a final 31 cycles at 93°C for 25 sec, 64°C for 20 sec, 72°C

for 20 sec. Amplicons were detected using capillary

electrophoresis on an ABI 3130xl Genetic Analyzer (Life

Technologies, Grand Island, NY).
Statistical analysis

Data with normally distributed variables were tested using

the unpaired Student’s t test for two-group comparisons;

otherwise, the Mann–Whitney U-test was used. The Kruskal–

Wallis test and one-way analysis of variance were used for

multiple group comparisons. The chi-squared test was used to

compare categorical variables. Kaplan–Meier and log-rank

(Mantel–Cox) tests were employed to compare patient survival

rates using the “survminer” package. All statistical analyses were

conducted using the R language. P values of <0.05 were

considered statistically significant. P values were two-sided.
Results

Establishment of clusters based on the
TIIC fraction

The GSE72970 dataset included 124 samples from CRC

pa t i en t s who unde rwen t fluoropy r im id ine -ba s ed

chemotherapy, including FOLFOX, FOLFIRI, FOLFIRINOX,

combined with bevacizumab. The dataset only included

patients with metastatic CRC. Sixty-three patients had shown

a response (complete response + partial response) to

chemotherapy, whereas 61 patients had not (stable disease +
Frontiers in Oncology 04
progressive disease). The TIIC fraction of the dataset was

calculated using the CIBERSORT algorithm. Then, the 22

TIIC fraction was clustered using unsupervised clustering

methods via the ConsensusClusterPlus package. The results

suggested that TIICs can be optimally divided into two

clusters (cluster I, n=83; cluster II, n=41; Figure 1A). Figure 1B

shows a heatmap of the clusters for the TIIC fraction. The

frequency of the clusters was not significantly different to that of

the response to chemotherapy (Figure 1C, P=0.407). Figure 1D

shows a comparison of the TIIC fraction between clusters I and

II. These results indicated that the TIICs of patients who

underwent fluoropyrimidine-based chemotherapy could be

divided into two clusters, and that the results were associated

with the response to chemotherapy.
GSVA and DEG analyses for the TIIC
clusters

To reveal the potential pathways involved in the TIIC

clusters of patients with CRC, the GSVA algorithm was

applied to clusters I and II. Generally, GSVA is used to

estimate the variation in pathway activity over a sample

population in an unsupervised manner. As illustrated in

Figure 2A, the top three enriched pathways by GSVA between

the two clusters were primary immunodeficiency, the intestinal

immune network for IGA production, and arachidonic acid

metabolism, suggesting that these two clusters were involved in

the immune system processes. Next, DEGs between clusters I

and II were screened using the “limma” package in the

GSE72970 dataset with the criterion of a P value of <0.05. A

total of 2267 immune cell-related DEGs were identified between

the two clusters (Figure 2B). Afterwards, the pathways that the

DEGs were involved in were determined using the top 200

upregulated and downregulated DEGs via the “clusterProfiler”

package. The results revealed that the upregulated DEGs were

mainly involved in the regulation of the actin cytoskeleton,

calcium signaling pathway, and cGMP-PKG signaling pathway

(Figure 2C); the downregulated DEGs were mainly involved in

the cell cycle, DNA replication, and p53 signaling pathway

(Figure 2D). Altogether, these results provided information on

the role of TIIC clusters and DEGs in biological processes and

the pathophysiology of diseases.
TMEscore calculation and the association
with chemotherapy response
and survival

Next, the TMEscore was calculated by incorporating the

2267 DEGs and survival data of the GSE72970 dataset using the

“TMEscore” package. The TMEscore was lower in those who did

not respond to chemotherapy compared to those who did
frontiersin.org
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A B

D

C

FIGURE 1

Establishment of clusters based on immune cells infiltrating fraction. (A) Unsupervised consensus clustering for the samples based on the TIICs
infraction, with the k value as 2; (B) Clustering of the tumor-infiltrating immune cells; (C) Comparison of cluster frequency with the response status;
(D) Comparison of tumor-infiltrating immune cells between Cluster I and Cluster II. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
A B

DC

FIGURE 2

Functional enrichment of clusters and the DEGs. (A) Heatmap of GSVA analysis revealed the significant pathways that Clusters involved; (B)
Volcano plot showed the DEGs between the two clusters; (C) KEGG pathways that up-regulated DEGs involved; (D) KEGG pathways that down-
regulated DEGs involved.
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respond to chemotherapy (Wilcoxon test, P=0.018; Figure 3A).

The ROC curve revealed that the TMEscore had a moderate

predictive value for identifying patients who responded to

chemotherapy (AUC:0.642, Figure 3B). Next, the samples were

divided into two groups, TMEscore-High (TMEscore-H) and

TMEscore-Low (TMEscore-L) based on the optimal cutoff point

of the TMEscore. The Kaplan-Meier plot showed that there was

a significantly different survival time between TMEscore-H and

TMEscore-L patients (Figure 3C). Subsequently, the association

of the TMEscore group with the survival of CRC patients who

underwent fluoropyrimidine-based chemotherapy was validated

in three datasets (GSE39582, n=585; GSE87211, n=363; TCGA-

CORDREAD, n=635; Figures 3C–F). The results revealed that

patients with a high TMEscore showed better survival time

compared to those with a low TMEscore. In addition, we

conducted subgroup analyses by dividing the samples into two

groups according to the administration of irinotecan or

oxaliplatin in combination with fluoropyrimidine. We then

compared the TMEscore and other clinical parameters

between the two groups, and the results failed to show any

significance regarding the TMEscore, patients’ age, T stage, N

stage, and response status (Supplementary Table S1). Altogether,

these results indicate that the TMEscore based on the TIIC-

related DEGs could predict the prognosis of CRC patients who

underwent chemotherapy.
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Clinical therapeutic strategies using
the TMEscore

To explore the clinical therapeutic strategies using the

TMEscore, we applied the “pRRophetic” package (22) to

predict the potential therapeutic effects of CRC first-line

chemotherapy drugs, including 5-fluorouracil, cisplatin,

docetaxel, gemcitabine, and paclitaxel. As shown in

Figures 4A, B, the IC50 of the TMEscore-H group was not

significantly different to that of the TMEscore-L group for

cisplatin and docetaxel (P>0.05), but was significantly different

for 5-fluorouracil, gemcitabine, and paclitaxel (Figures 4C–E).

Furthermore, five chemotherapy drugs (temozolomide (24),

pyrimethamine (25), lapatinib (26), doxorubicin (27), and

ruxolitinib (28)), which are reported to be associated with the

treatment of CRC, showed significant differences between the

TMEscore-H and TMEscore-L groups (Figures 4F–J).

Thereafter, the expression levels of six known immune

checkpoint inhibitors, namely PD1 (PDCD1), PD-L1, PD-L2

(PDCD1LG2), CD80, CD86, CTLA4, and CD274, were

compared based on the TMEscore clusters. Only the

expression of CD86 and PD-L2 was significantly different

between the TMEscore-H and TMEscore-L groups

(Figure 4K). In summary, these results suggest that CRC

patients in the TMEscore-H group tend to benefit from
A B

D E F

C

FIGURE 3

Association of TMEscore with chemotherapy response and survival in CRC patients. (A) Comparison of TMEscore between response and non-
response to the chemotherapy; (B) ROC of the TMEscore in predicting the response to chemotherapy; Association of TMEscore with survival of
CRC patients underwent chemotherapy in (C) GSE72970 dataset; (D) GSE39582 dataset; (E) GSE87211 dataset; (F) TCGA-CORDREAD dataset.
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specific chemotherapy drugs but are unlikely to benefit

from immunotherapy.
Machine learning methods screened key
genes for chemotherapy response

To screen key genes associated with the response to

chemotherapy of CRC patients, three machine learning

methods (XGBoost, SVM, and DT) were employed to analyze

the 2267 TIIC-related DEGs in the datasets. The samples were

divided into training and test sets at a ratio of 7:3, with 768 and

321 samples in the training and test sets, respectively. The

number of key genes screened by each method was 18, 30, and

8 in the training sets, which suggested that these genes are

important in identifying the patients who respond to

chemotherapy. Thereafter, we determined the predictive value

of the above key genes using each machine learning method in

the tested set. The results showed that the AUC values for the

tested set were 0.690, 0.663, and 0.729, respectively (Figures 5A–

C), suggesting that the key genes from each machine learning

method achieved a moderate predictive value. Finally, three key

genes (ADH1C, SLC26A2, and NANS) were obtained by
Frontiers in Oncology 07
overlapping the genes found using the three machine learning

methods (Figure 5D). A logistic regression model was employed

to determine the predictive value using these three key genes,

and the results indicated that the signature constructed by the

three key genes had good predictive performance, with an AUC

of 0.867 (Figure 5E), indicating that the three key genes derived

from the three machine learning methods improved the

predictive performance of the model.
Validation of the predictive value of the
three-gene signature for
chemotherapy response

To validate the predictive value of the three-gene (ADH1C,

SLC26A2, and NANS) signature in patients with CRC who

underwent fluoropyrimidine-based chemotherapy, two GEO

datasets (GSE104645, n=193; GSE28702, n=83) were screened,

which provided the response status data of CRC patients who

underwent FOLFOX or FOLFOX-based regimens. Logistic

regression was then employed to determine the predictive

value of the three-gene signature. As Figures 6A, B shows, the

predictive value of the signature constructed using the three
A B D E

F G IH J

K

C

FIGURE 4

Clinical therapeutic strategies using the TIIC-related DEGs. Comparison of the IC50 values between the TMEscore-H and TMEscore-L groups of
(A) Cisplatin; (B): Docetaxel; (C) Gemcitabine; (D) Paclitaxel; (E) 5-Fluorouracil; (F) Temozolomide; (G) Pyrimethamine; (H) Lapatinib; (I)
Doxorubicin; (J) Ruxolitinib; (K) Comparison of six immune checkpoint inhibitors between TMEscore clusters. TIIC, tumor-infiltrating immune
cell; DEG, differentially expressed gene; IC50, half-maximal inhibitory concentration; TMEscore, tumor microenvironment score, TMEscore-H,
high TMEscore; TMEscore-L, low TMEscore.
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genes was moderate, with AUC values of 0.616 and 0.719,

respectively. Next, samples from patients who only underwent

5- fluorouracil treatment (n=36) were extracted from the TCGA-

COADREAD dataset, and the predictive value increased, with an

AUC value of 0.764 (Figure 6C). These results indicate that the

signature constructed by ADH1C, SLC26A2, and NANS could

help to identify patients who will probably benefit from

fluoropyrimidine-based chemotherapy.
Validation of the expression of key genes
in external cohorts and clinical samples

The expression of ADH1C, SLC26A2, and NANS was

determined in the TCGA-COADREAD dataset (n=689) and

four large external cohorts (GSE106582, n=194; GSE31737,

n=80; GSE117606, n=208; GSE74602, n=60), and the

expression of the three genes were compared between tumor

and control tissues. As shown in Figures 7A–E, the results from

the above five datasets revealed that the levels of all three genes

were decreased in tumor tissues compared with those in control

tissues in CRC samples (P<0.01). Finally, clinical samples of

CRC were collected and gene expression was tested using RT-

PCR. Consistent with the results from the datasets, the
Frontiers in Oncology 08
expression levels of ADH1C, SLC26A2, and NANS were

substantially decreased in tumor tissues compared with those

in the corresponding adjacent tissues (P<0.01; Figure 7F). These

results demonstrated that the levels of ADH1C, SLC26A2, and

NANS were decreased in CRC tissues compared to those in

control tissues.
Discussion

Currently, fluoropyrimidine-based chemotherapy regimens,

mainly 5-fluorouracil and its oral prodrug capecitabine

combined with irinotecan or oxaliplatin, remain the mainstay

of treatment for many types of solid tumors (29), such as CRC,

gastric cancer, and pancreatic cancer. However, only half of the

patients respond to this regimen, which substantially hampers

the treatment effect (30). Due to the relatively slow advancement

of new agents to substitute traditional chemotherapeutics,

predicting whether the patient will develop fluoropyrimidine-

based chemotherapy resistance is critical in achieving effective

clinical management of patients with CRC. Many biomarkers

have been shown to be associated with fluoropyrimidine-based

chemotherapy resistance, such as complement component 3

(31), ZEB2 (32), and PKM2 (33). These biomarkers may help
A B

D E

C

FIGURE 5

Machine learning methods screen key genes response to chemotherapy. Predictive value of TMEscore-relate genes in testing set by (A)
XGBoost algorithms; (B) SVM algorithms; (C) DT algorithms; (D) Venn plot revealed three overlapped among the three machine learning
methods; (E) Predictive value of the three TMEscore-relate genes signature in the response to chemotherapy by multivariate logistic regression.
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identify patients who are suitable for fluoropyrimidine-

based chemotherapy.

In the present study, the TIIC fraction was analyzed in a

dataset with information on fluoropyrimidine-based

chemotherapy. It was found that TIICs could be divided into

two clusters, which were associated with the response to

chemotherapy. The DEGs between the two clusters of TIICs

were screened and then used to calculate the TMEscore and

construct the TMEscore signature. These results indicated that

the TMEscore was significantly associated with the survival of

patients with CRC who underwent chemotherapy, suggesting
Frontiers in Oncology 09
that it could serve as an important indicator for predicting the

prognosis of patients with CRC. Given that chemotherapy

resistance is induced not only by a variety of cells, but also by

protein molecules and cytokines in the cells, the genes that

represent the TMEscore signature were also screened using three

machine learning methods; three genes with good performance

in predicting the response to chemotherapy in CRC patients

were identified. Finally, the expression of these three genes was

validated in larger cohorts and clinical samples. These results

demonstrated that TIICs were associated with the response to

fluoropyrimidine-based chemotherapy in patients with CRC,
A B

D E F

C

FIGURE 7

Validation key genes expression in external cohorts and clinical samples. (A) TCGA-COADREAD dataset; (B) GSE106582 dataset; (C) GSE117606
dataset; (D) GSE31737 dataset; (E) GSE74602 dataset; (F) Clinical samples by RT-PCR assay.
A B C

FIGURE 6

Validation of predictive value of TMEscore-relate genes signature in the response to chemotherapy in (A) GSE104645 dataset; (B) GSE28702
dataset; (C) TCGA-COADREAD dataset (36 patients underwent 5- Fluorouracil treatment).
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and that the TMEscore signature derived from TIICs could

predict patient survival rate. In addition, the genes representative

of the TMEscore signature could better predict the response to

chemotherapy, rather than patient survival rates.

Previous studies have shown that TIICs are associated with

chemotherapy resistance. The cytokine IL-22, which is produced

by T and natural killer cells, protects CRC cells from

chemotherapy by activating the STAT3 pathway and inducing

the autocrine expression of IL-8 (34). A study described that 5-

fluorouracil-based chemotherapy regimens increase the

expression of CXCR2 and ligand CXCL7 in liver metastasis of

CRC, thus explaining the aggressiveness of relapsed drug-

resistant tumors (35). The TMEscore, a novel index that

characterizes TIICs, is associated with the survival of patients

with several cancer types. Since the TMEscore is calculated by

the DEGs from different clusters, the TMEscore-based signature

generally has a more reliable predictive value compared to that

of individual TIIC fractions. Studies have also reported that the

TMEscore could predic t the responses to severa l

immunotherapies in neuroblastoma (36) and breast cancer (37).

Although the TMEscore is closely associated with the

response to chemotherapy or immunotherapy, the clinical

application value of the TMEscore remains to be determined.

In this study, by overlapping the results from the three machine

learning methods, three genes (ADH1C, SLC26A2, and NANS)

were identified that showed good predictive value regarding the

response to chemotherapy. ADH1C has been shown to inhibit

the progression of CRC through the ADH1C/PHGDH/PSAT1/

serine metabolic pathway (38), and downregulation of ADH1C

has been associated with poor prognosis in patients with CRC

(39). Higher SLC26A2 expression in tumor tissues indicates a

longer survival for patients with CRC (40). NANS, together with

seven other genes, could better predict the survival rate of

patients with CRC (41). The results also suggested that these

three genes participate in the development of CRC, and can be

used to predict the prognosis of CRC patients. However, the role

of these three genes in chemotherapy resistance have previously

not been investigated. Thus, future relevant studies may further

uncover the mechanism of chemotherapy resistance of each

gene, and their association with the immune cells in CRC is

worth further exploration.

Compared to previous studies (42–44), this study identified

the prognostic value of the TMEscore in CRC and the predictive

value of TMEscore-related genes in the response to

fluoropyrimidine-based chemotherapy, which has not

previously been reported. Moreover, our results were derived

from a gene dataset with large cohorts of public databases, and
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validated in several independent cohorts, thereby guaranteeing

the robustness of the results. Furthermore, the results from the

individual analysis of each gene were consistent with the overall

analysis, which makes the utility of our findings in clinical

decision-making easier, and doctors can estimate the prognosis

of CRC patients based on fewer gene expressions, and

administer appropriate treatment.

However, there were several limitations in this study. Firstly,

the GSE72970 dataset used in the analysis only includes patients

with metastatic CRC who receiving fluoropyrimidine-based

chemotherapy as first-line therapy; therefore, the results might

not be representative of non-metastatic CRC. Secondly, the

fraction of TIICs obtained were from microarray datasets, and

the exact number of TIICs will still need to be determined by the

immunohistochemistry method or flow cytometry. Thirdly, the

predictive value of the TMEscore in this study was verified using

microarray datasets; thus, the exact predictive value will still

need to be validated in a larger clinical cohort. Finally, more

experiments are needed to confirm the association of the key

genes with resistance to chemotherapy agents.
Conclusion

In the present study, the TIIC-based TMEscore was

associated with the survival rate of patients with CRC who

underwent fluoropyrimidine-based chemotherapy and could

predict the response to chemotherapy. Furthermore, the

TMEscore-related gene signature had a better predictive value

for the response to chemotherapy compared to that of

survival rates.
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