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Let a neuronal population be composed of an excitatory group interconnected to an inhibitory group. In theWilson-Cowanmodel,
the activity of each group of neurons is described by a first-order nonlinear differential equation.The source of the nonlinearity is the
interaction between these two groups, which is represented by a sigmoidal function. Such a nonlinearity makes difficult theoretical
works. Here, we analytically investigate the dynamics of a pair of coupled populations described by the Wilson-Cowan model by
using a linear approximation.The analytical results are compared to numerical simulations, which show that the trajectories of this
fourth-order dynamical system can converge to an equilibrium point, a limit cycle, a two-dimensional torus, or a chaotic attractor.
The relevance of this study is discussed from a biological perspective.

1. Introduction

In the last decades, the features of action potentials prop-
agating along axonal membranes have been related to the
oscillations found in electroencephalogram (EEG) records
[1–3]. From a theoretical perspective, analogies between
EEG and nonlinear dynamics [4] were formulated prior to
knowledge of the seminal numerical simulation by Lorenz,
published in 1963, about a chaotic system [5]. All these
studies aim to disclose the neural code; that is, to understand
how information is represented, carried, and transformed
by neurons [6]. The ambition is to explain how cognitive
functions emerge from neuron spikes. In this context, here
we analytically investigate the activity of a simple neuronal
assembly, in order to examine how its parameter values
influence its dynamical behavior.

Consider a population formed by two groups of inter-
acting neurons, so that the synapses of the first group
are excitatory and the synapses of the second group are
inhibitory. Consider also that these two groups are connected.
In 1972, Wilson and Cowan proposed a mathematical model

to describe the time evolution of the activity of this neuronal
population [7]. In this model, the activity 𝑔(𝑡) of each group
obeys a nonlinear first-order ordinary differential equation
with the following form:

𝑑𝑔 (𝑡)

𝑑𝑡
= −𝑘𝑔 (𝑡) + [1 + 𝑟𝑔 (𝑡)] 𝑆 (𝑧 (𝑡)) (1)

in which 𝑡 denotes the time, 𝑘 is a positive constant related to
the natural decay of 𝑔(𝑡), 𝑟 is a positive constant proportional
to the refractory period, and 𝑧(𝑡) represents the input to this
group, written as a linear combination of the activities of both
groups plus the influence of external stimuli. Resting activity
corresponds to 𝑔 = 0; thus, a negative value of 𝑔 expresses
a depression from this background level. The function 𝑆(𝑧)

must be sigmoidal. However, as stated by Wilson and Cowan
[7], “no particular significance is to be attached to the choice
of” 𝑆(𝑧). Usual choices are 1/(1 + 𝑒

−𝑧

) − 1/2 [8], tanh(𝑧) [9],
and arctan(𝑧) [10]. In several studies, the properties of a single
population were explored via numerical simulations [8, 9,
11], since these usual sigmoidal functions pose difficulties to
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analytical works. The dynamics of the two-population model
was also already numerically investigated [10, 12–15].

Monteiro et al. suggested to use 𝑆(𝑧) = 𝑧/√1 + 𝑧2 and
some analytical results were derived for the Wilson-Cowan
model [16]. Here, we also take this particular form of 𝑆(𝑧) to
analytically investigate the dynamics of two coupled Wilson-
Cowan populations (composed of four groups). We also
assume that (1) the isolated populations are identical (in
the sense that they are characterized by the same parameter
values, as considered in other studies [10, 12–15]); (2) the pop-
ulations are coupled by links starting from their excitatory
groups (because most synapses are excitatory; for instance,
they are 84% in the cat cortex [17]); (3) the refractory period
is negligible (which corresponds to taking 𝑟 = 0 in (1), as
supposed in several works [9, 10, 12, 14, 18–20]).

Some authors took 𝑆(𝑧) as a piecewise linear function [14,
19–21]. In our analyses, we assume that the parameter values
related to this neuronal assembly allow us to take 𝑆(𝑧) ≃ 𝑧;
thus, the model becomes linear. From this approximation,
the occurrence of a Hopf bifurcation in the nonlinear model
is analytically inferred. Other bifurcations are numerically
found. Recall that bifurcation corresponds to a qualitative
change in the dynamical behavior of a system caused by
variation of parameter value(s).

This manuscript about the dynamics of a pair of coupled
Wilson-Cowan neuronal populations is structured as follows.
In Section 2, the model is presented and analyzed by taking
into account the linear approximation just described. In
Section 3, the analytical results are compared to numerical
simulations performed by considering the nonlinear version
of the model. We found that, as the time passes, the variables
of the model can converge to an equilibrium point, a limit
cycle, a two-dimensional torus, or a chaotic attractor. In
Section 4, the results of this work are discussed from a
biological point of view.

2. Analytical Results

Let two identical populations be coupled by links that can
be symmetrical or asymmetrical. Assume that the variables
𝑥
𝑖

(𝑡) and 𝑦
𝑖

(𝑡) denote the activity of the excitatory group
and the activity of the inhibitory group, respectively, of 𝑖th
population, with 𝑖 = 1, 2. According to Wilson and Cowan,
the dynamics of these coupled populations can be described
by
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Figure 1: Schematic representation of the two-population model.
The variables of the model are the activities of the neuronal groups
𝑥
1

, 𝑥
2

, 𝑦
1

, and 𝑦
2

.The connection strengths are denoted by 𝑏, 𝑐, 𝑒,𝑤,
𝛼
1

, 𝛼
2

, 𝛽
1

, and 𝛽
2

. Stimuli from other sources correspond to 𝐼
1

, 𝐼
2

,
𝐽
1

, and 𝐽
2

.
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(2)

The parameters 𝑎 and 𝑑 represent the natural (exponential)
decay. The parameters 𝑏, 𝑐, 𝑒, and 𝑤 are the strengths of the
connections between the excitatory and inhibitory groups
of an isolated population, as shown in Figure 1: 𝑏 is the
inhibitory connection from 𝑦

𝑖

to 𝑥
𝑖

, 𝑐 is the excitatory
connection from 𝑥

𝑖

to 𝑦
𝑖

, 𝑤 is the self-excitatory connection
(from 𝑥

𝑖

to 𝑥
𝑖

), and 𝑒 is the self-inhibitory connection (from
𝑦
𝑖

to 𝑦
𝑖

). The strengths of the connections between the
populations are denoted by the parameters 𝛼

𝑖

and 𝛽
𝑖

: 𝛼
1

is the
connection from 𝑥

2

to 𝑥
1

, 𝛼
2

is the connection from 𝑥
1

to 𝑥
2

,
𝛽
1

is the connection from 𝑥
2

to 𝑦
1

, and 𝛽
2

is the connection
from 𝑥

1

to 𝑦
2

. All these ten parameters are positive constants.
The constants 𝐼

1

, 𝐽
1

, 𝐼
2

, and 𝐽
2

stand for stimuli from external
sources reaching 𝑥

1

, 𝑦
1

, 𝑥
2

, and 𝑦
2

, respectively. Thus, the
dimension of the parameter space is 14.

A steady state is a stationary solution, corresponding to
an equilibrium point (𝑥∗

1

, 𝑦
∗

1

, 𝑥
∗

2

, 𝑦
∗

2

) in the four-dimensional
state space 𝑥

1

× 𝑦
1

× 𝑥
2

× 𝑦
2

. The constants 𝑥
∗

1

, 𝑦∗
1

, 𝑥∗
2

,
and 𝑦

∗

2

are obtained from 𝑑𝑥
1

/𝑑𝑡 = 0, 𝑑𝑦
1

/𝑑𝑡 = 0,
𝑑𝑥
2

/𝑑𝑡 = 0, and 𝑑𝑦
2

/𝑑𝑡 = 0. By taking into consideration
the linear approximation proposed in Section 1, there is only
one equilibrium point given by
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with𝑊 ≡ 𝑤−𝑎 and𝐸 ≡ 𝑑+𝑒. Note that if the populations are
isolated, that is, if 𝛼

𝑖

= 𝛽
𝑖

= 0, then 𝑥∗
𝑖

= (𝐸𝐼
𝑖

−𝑏𝐽
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)/(𝑏𝑐−𝐸𝑊)

and 𝑦
∗

𝑖

= (𝑐𝐼
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)/(𝑏𝑐 − 𝐸𝑊), for 𝑖 = 1, 2. Obviously, if
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.
The local stability of an equilibrium point can be deter-

mined from the eigenvalues 𝜆 of the Jacobianmatrix obtained
from the system of (2) linearized around this point [22–24].
By the Hartman-Grobman theorem, such a point is locally
asymptotically stable if all eigenvalues have negative real parts
[22–24]. For this fourth-order system, the eigenvalues 𝜆 are
the roots of the polynomial:

𝜆
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𝜆
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+ 𝛾
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Routh-Hurwitz criterion states that all eigenvalues have
negative real parts if 𝛾

1

> 0, 𝛾
2

> 0, 𝛾
3

> 0, 𝛾
4

> 0,
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For instance, in the case of isolated populations, local stability
of the steady-state solution is assured if 𝐸 > 𝑊 and 𝑏𝑐 > 𝐸𝑊.

Observe that the stability conditions do not depend on
the values of 𝐼

𝑖

and 𝐽
𝑖

. Thus, constant external stimuli do not
modify the stability of the stationary solution (in the linear
approximation). Observe also that a necessary condition for
stability is𝐸 > 𝑊; that is,𝑤 < 𝑤

𝑐

≡ 𝑎+𝑑+𝑒 or 𝑒 > 𝑒
𝑐

≡ 𝑤−(𝑎+

𝑑). Therefore, the equilibrium point is locally asymptotically
stable only if the strength of the self-excitatory connection is
below the critical value 𝑤

𝑐

and/or if the strength of the self-
inhibitory connection is above the critical value 𝑒

𝑐

.
If 𝛼
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between the populations, characterized by 𝛼
𝑖

and 𝛽
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, can
singly destabilize the equilibrium point, if their strengths
exceed critical numbers.

If the parameter values are varied so that 𝛿
2

= 0, then
a Hopf bifurcation [22–24] can occur (because two roots of
(4) are purely imaginary complex-conjugate numbers and
the other two roots have negative real parts; i.e., (4) can be
written as (𝜆2 + 𝐴𝜆 + 𝐵)(𝜆

2

+ 𝐶) = 0, with 𝐴, 𝐵, 𝐶 > 0).
As a consequence, a limit cycle with oscillation period 𝜏 ≃

2𝜋/√𝐶 appears. Recall that a limit cycle is an isolated closed
trajectory in the state space, corresponding to a periodic
solution [22–24].
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.
As shown in the next section, other bifurcations can

take place by varying the parameter values of this dynamical
system.

3. Numerical Simulations

In the simulations presented in this section, the values of 𝑎, 𝑏,
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is influenced by the strengths of the self-excitatory loops and
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Figure 2: Temporal evolutions of 𝑥
1

(𝑡) obtained by numerically integrating (2). In all cases, the initial condition is the origin of the state
space. In all cases, 𝑎 = 𝑑 = 0.01, 𝑏 = 20, 𝑐 = 10, 𝑒 = 10, 𝐼
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1

= 𝛽
2

= 0; in (c), 𝑤 = 8, 𝛼
1

= 𝛼
2

= 1, and 𝛽
1

= 𝛽
2

= 0; in (d), 𝑤 = 8, 𝛼
1

= 𝛼
2

= 3, and 𝛽
1

= 𝛽
2

= 0; in (e), 𝑤 = 8, 𝛼
1

= 𝛼
2

= 1,
𝛽
1

= 0, and 𝛽
2

= 3; in (f), 𝑤 = 12, 𝛼
1

= 𝛼
2

= 1, and 𝛽
1

= 𝛽
2

= 0; in (g), 𝑤 = 12, 𝛼
1

= 𝛼
2

= 1, and 𝛽
1

= 𝛽
2

= 2; in (h), 𝑤 = 13, 𝛼
1

= 𝛼
2

= 3,
and 𝛽

1

= 𝛽
2

= 0; and in (i), 𝑤 = 13, 𝛼
1

= 𝛼
2

= 3, and 𝛽
1

= 𝛽
2

= 2. In (a) and (c), the system converges to an equilibrium point; in (b), (d),
(e), (g), and (i) to a limit cycle; in (f) to a two-dimensional torus; and in (h) to a chaotic attractor.

(2) were numerically solved by employing the fourth-order
Runge-Kutta integration method with integration step of
0.01. In addition, in all simulations, the initial condition is
(𝑥
1

(0), 𝑦
1

(0), 𝑥
2

(0), 𝑦
2

(0)) = (0, 0, 0, 0).
In (a) and (b), the populations are isolated.Therefore, the

attractor can be either an equilibrium point or a limit cycle,
because (2) split into two decoupled second-order systems. In
fact, these are the attractors that can exist in the state space of
second-order autonomous nonlinear systems [22–24].

In (a), the conditions for the asymptotical stability of the
steady-state solution are satisfied (because 𝐸 = 10.01 > 𝑊 =

7.99 and 𝑏𝑐 = 200 > 𝐸𝑊 ≃ 80.0). In this case, 𝑥
1

(𝑡)

converges to 0.167, which is the same value obtained from the
analytical expression 𝑥

∗

1

= (𝐸𝐼
1

− 𝑏𝐽
1

)/(𝑏𝑐 − 𝐸𝑊). Thus, the
linear approximation of the sigmoidal function 𝑆(𝑧) can be
considered as valid to determine this equilibrium point and
its stability. For 𝑤 = 𝑤

𝑐

= 10.02, the system experiences a
Hopf bifurcation. Hence, in (b), as 𝑤 = 12 > 𝑤

𝑐

, 𝑥
1

(𝑡) tends
to a periodic solution.

In cases (c)–(i), the populations are coupled. Now, the
nature of the attractor is determined from its Lyapunov
exponents 𝐿

1

, 𝐿
2

, 𝐿
3

, and 𝐿
4

, which were numerically
computed by using the algorithmproposed byWolf et al. [26].
When 𝐿

1,2,3,4

< 0, the attractor is an equilibrium point; when
𝐿
1

= 0 and 𝐿
2,3,4

< 0, the attractor is a limit cycle; when
𝐿
1

= 𝐿
2

= 0 and 𝐿
3,4

< 0, the attractor is a two-dimensional

torus; when 𝐿
1

> 0, 𝐿
2

= 0, and 𝐿
3,4

< 0, the attractor is
chaotic [22–24].

In (c), the Routh-Hurwitz criterion is satisfied (because
𝛾
1

= 4.04 > 0, 𝛾
2

≃ 243 > 0, 𝛾
3

≃ 465, 𝛾
4

≃ 14300 > 0,
𝛿
1

≃ 128 > 0, and 𝛿
2

≃ 13.6 > 0) and 𝑥
1

converges to 0.175,
which matches the number calculated from (3). In this case,
𝐿
1,2

≃ −0.52 and 𝐿
3

≃ 𝐿
4

= −1.51.
As stated in Section 2, by varying the parameter values,

if 𝛿
2

becomes equal to zero, then a Hopf bifurcation can take
place. For instance, for 𝑤 = 8 < 𝑤

𝑐

and 𝛽
1

= 𝛽
2

= 0, then
𝛿
2

= 0 if 𝛼
1

= 𝛼
2

= 𝛼
𝑐

= 2.02; thus, for 𝛼
1

= 𝛼
2

= 3 >

𝛼
𝑐

, the attractor is a limit cycle, as shown in (d). In this case,
𝐿
1

≃ 0.00, 𝐿
2

≃ −0.67, 𝐿
3

≃ −1.48, and 𝐿
4

≃ −3.32. Recall
that 𝛿

2

= 0 is equivalent to 𝜖
1

≡ (𝑤 + 𝛼) − (𝑎 + 𝑑 + 𝑒) = 0

when 𝛼
1

= 𝛼
2

= 𝛼 and 𝛽
1

= 𝛽
2

= 𝛽; thus, 𝜖
1

= 0 corresponds
to 𝛼
𝑐

= 𝑎 + 𝑑 + 𝑒 − 𝑤 = 2.02, which is equal to the value
numerically found. For 𝛼 = 𝛼

𝑐

, the oscillation period is about
2𝜋/√𝜖

2

≃ 0.63. In (d), for 𝛼 = 3, the period is still 0.63.
Evenwhen𝑤 = 8 < 𝑤

𝑐

and 𝛼
1

= 𝛼
2

= 1 < 𝛼
𝑐

, a limit cycle
arises if 𝛽

2

> 𝛽
𝑐

= 2.25. Hence, in (e), with 𝛽
2

= 3 > 𝛽
𝑐

, the
asymptotical behavior is a regular oscillation. It corresponds
to a limit cycle, because 𝐿

1

≃ 0.00, 𝐿
2

≃ −0.31, and 𝐿
3,4

≃

−2.16.
It is easy to check that the steady state loses its stability

when𝑊 > 𝐸, that is, when 𝑤 > 𝑤
𝑐

. In (f), with 𝑤 = 12 > 𝑤
𝑐

,
𝛼
1

= 𝛼
2

= 1, and 𝛽
1

= 𝛽
2

= 0, the trajectories in the
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state space converge to a two-dimensional torus. In fact, the
Lyapunov exponents are 𝐿

1

≃ 𝐿
2

≃ 0.00 and 𝐿
3

≃ 𝐿
4

≃

−0.55. Therefore, by increasing 𝑤, the system experiences a
bifurcation concerning the birth of a toroidal attractor. In (g),
by taking 𝛽

1

= 𝛽
2

= 2, the trajectories tend to a limit cycle,
with 𝐿

1

≃ 0.00, 𝐿
2,3

≃ −0.54, and 𝐿
4

≃ −0.58. Thus, by
increasing 𝛽

1

and 𝛽
2

, the transition from torus towards cycle
occurs.

In (h), for 𝑤 = 13 > 𝑤
𝑐

, 𝛼
1

= 𝛼
2

= 3 > 𝛼
𝑐

, and 𝛽
1

=

𝛽
2

= 0, the attractor is chaotic, because 𝐿
1

≃ 0.28, 𝐿
2

≃ 0.00,
𝐿
3

≃ −0.62, and 𝐿
4

≃ −1.40. Observe that, when compared
to (d), by increasing 𝑤, a transition from regular oscillation
towards chaotic solution can occur. For these values of 𝛼

𝑖

and
𝛽
𝑖

, there is chaos if 12.5 ≲ 𝑤 ≲ 16.5. In (i), by taking 𝛽
1

=

𝛽
2

= 2, the attractor comes back to be a limit cycle, because
𝐿
1

≃ 0.00, 𝐿
2

≃ −0.07, and 𝐿
3,4

≃ −0.15. Thus, by increasing
the values of 𝛽

1

and 𝛽
2

, a bifurcation related to the transition
from chaos to periodic behavior takes place.

Starting from a stationary solution, regular oscillations
can be created by increasing𝑤 (please see (a)→ (b) and (c)→
(f)), or𝛼

𝑖

(see (c)→ (d)), or𝛽
𝑖

(see (c)→ (e)). Fromaperiodic
behavior, chaos can appear by a similar way (see (d) → (h)).
Thus, by enhancing the excitatory connections, the activities
of both populations can regularly or irregularly oscillate.
However, when the strength of any excitatory connection is
“too high,” the linear approximation of 𝑆(𝑧) can no longer be
valid. In this scenario, a suitable approximation is |𝑆(𝑧)| ≃ 1

(because |𝑆(𝑧)| → 1 when |𝑧| → ∞). Therefore, from (2),
|𝑥
𝑖

| → 1/𝑎 and |𝑦
𝑖

| → 1/𝑑 as the time passes. For instance,
by simulating the system with 𝑤 = 20, 𝛼

1

= 𝛼
2

= 3,
and 𝛽

1

= 𝛽
2

= 0, the variables asymptotically converge to
𝑥
∗

1

≃ 𝑥
∗

2

≃ 99.3 and 𝑦
∗

1

≃ 𝑦
∗

2

≃ 98.5.
It is important to stress that the attractors and bifurcations

reported in this section were already found in earlier works
based on computer simulations on two-population models
[10, 13–15]. We hope that the analytical and numerical results
presented here can guide experimental researches on the
detection of such attractors and bifurcations in actual neural
networks, in particular the ones underlyingworkingmemory,
as discussed in the next section.

4. Discussion

In this work, we explicitly derived analytical conditions
concerning the stability of the steady state derived from
the approximation 𝑆(𝑧) ≃ 𝑧. Now, we discuss the possible
relevance of this result.

Neural codes based on chaotic activity have been pro-
posed [27–29]. We observed here that chaos can be found
in a simple neuronal assembly composed of two coupled
Wilson-Cowan populations subject to constant stimuli, when
the strengths of the excitatory connections are above critical
numbers. Since excitatory synapses are more often encoun-
tered than inhibitory ones [17], then these strengths can
naturally be above such critical numbers. Thus, the irregular
activity commonly found in EEG would be, at least partially,
a simple consequence of the neuronal connectivity, in partic-
ular, the predominance of excitatory synapses.

The strengths of excitatory connections, however, cannot
be “too high,” because in this case 𝑆(𝑧) ≃ 1 and the activity
would tend to be stationary. Thus, the balance between
excitation and inhibition must satisfy constraints assuring
normal oscillatory behavior. Abnormalities in this balance in
the cortical circuitry have been associated with neurological
disorders, such as autism and epilepsy [30, 31].

The conditions presented in Section 2 can guide labora-
tory experiments, in order to verify their validity. Observe
that these analytical expressions were derived by supposing
that 𝑆(𝑧) ≃ 𝑧. It is far from being trivial to find the
regions in the 14-dimensional parameter space where this
approximation holds. However, from (1) with 𝑟 = 0, note that
𝑑𝑔/𝑑𝑡 = 0 implies 𝑘𝑔∗ = 𝑆(𝑧

∗

). Since 𝑆(𝑧) = 𝑧/√1 + 𝑧2 ≃ 𝑧

only if 𝑧 ≪ 1, then 𝑘𝑔
∗

≃ 𝑧
∗

≪ 1 in the steady-state
condition. Hence, in the numerical simulations, we took 𝑎 =

𝑑 = 0.01 ≪ 1 (obviously, 𝑘 in (1) is equivalent to 𝑎 and 𝑑

in (2)). Neuronal populations with “slow” exponential decay
(i.e., 𝑎, 𝑑 ≪ 1) can be responsible for supporting working
memory [32]. Hence, the validity of our conclusions could be
first tested in such populations. Perhaps, these tests can reveal
the true nature of the attractors and bifurcations involved in
maintaining and manipulating new information.
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