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Proton magnetic resonance spectroscopy (MRS) provides a means of measuring

cerebral metabolites relevant to neurodegeneration in vivo. In amyotrophic lateral

sclerosis (ALS), neurochemical changes reflecting neuronal loss or dysfunction

(decreased N-actylaspartate [NAA]) is most significant in the motor cortex and

corticospinal tracts. Other neurochemical changes observed include increased

myo-inositol (mIns), a putative marker of gliosis. MRS confirmation of involvement of

non-motor regions such as the frontal lobes, thalamus, basal ganglia, and cingulum are

consistent with the multi-system facet of motor neuron disease with ALS being part of a

MND-FTD spectrum. MRS-derived markers exhibit an encouraging discriminatory ability

to identify patients from healthy controls, however more data is needed to determine

its ability to assist with the diagnosis in early stages when upper motor neuron signs are

limited, and in distinguishing from disease mimics. Longitudinal change of NAA and mIns

do not appear to be reliable in monitoring disease progression. Technological advances

in hardware and high field scanning are increasing the number of accessible metabolites

available for interrogation.

Keywords: biomarker, magnetic resonance spectroscopy, neuroimaging, amyotrophic lateral sclerosis,

neurodegeneration

BACKGROUND AND TECHNICAL CONSIDERATIONS

Magnetic resonance imaging has emerged as a promising tool to provide a biomarker in
neurological and psychiatric disorders. Routine structural MRI is not helpful in this regard in ALS
as signal intensity and gross volume changes in T1 and T2 weighted images is not apparent in
the vast majority of cases (1). Advanced imaging and post-processing methods are necessary to
reveal pathology that is not evident to the naked eye. Numerous studies have demonstrated the
potential of MRS in research and clinical care in brain disorders, including ALS. Results have been
consistent amongst investigators using different methods to quantify key metabolites such as NAA,
and renewed interest along with advancing technology are leading to studies probing previously
inaccessible chemicals such as Gama-aminobutyric acid (GABA).

With routine structural MRI, the abundance and microenvironment of protons is quantified
resulting in essentially images of the distribution of water since it is the most abundant proton-rich
molecule. The most basic MRS experiment quantifies instead protons in molecules other than
water. The experiment is usually a measurement from a defined volume (rather than the whole
brain), and produces a spectrum rather than an image. Different peaks in the spectrum arise
from different protons and their microenvironment. The positioning along the x-axis of peaks is
dependent on the spin frequency of the protons contributing to the peak, with the area under the
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peak dependent on the number of protons. Small shifts in
frequency can occur due to magnetic field perturbations arising
from nearby molecules, leading to a change the shape of a peak
(singlets, doublets, triplets, etc.). The frequency of a peak and its
splitting structure are key elements used in the identification of
the metabolite from where the peak arises.

Images can be produced from metabolites such as NAA,
however these are of much lower resolution than structural MRI
(which is essentially MRS of water) because of the very low
concentrations of suchmolecules. The lower concentration of the
target metabolites also means that MRS scans are comparatively
longer than routine structural imaging. Rather than a structural
evaluation, MRS is a means of quantifying neurochemistry in the
brain of low abundance metabolites. MR spectra can be obtained
using other nuclei, including phosphorus, fluorine, carbon, and
sodium. These typically require alternate hardware (e.g., specific
RF coils) to that typically available with clinical and clinical
research systems used for proton MRS.

Metabolites
The metabolites that are visible and quantifiable is dependent
on a number of factors, and requires a sufficient concentration
typically in the range of micromoles/gm. Spectral resolution
and SNR must be sufficient to accurately identify and quantify
individual peaks, and this is determined by many factors
including B0 field strength and homogeneity, acquisition
sequence (PRESS, STEAM, MEGA-PRESS, etc.), and TE,
amongst others. Higher field strengths and lower TE in general
give access to more metabolites.

There are a number of metabolites detectable using
contemporary methods that have relevance in neurological
disease (Figure 1). N-acetylaspartate (NAA), along with a small
contribution from N-acetylaspartylglutamate, is localized only
in neurons and their processes, and thus NAA serves as a
marker of neuronal integrity. The total creatine peak arises
from metabolites (creatine plus phosphocreatine) involved in
energy metabolism. Total choline (choline, phosphorylcholine,
glycerophosphorylcholine) is a marker of membrane turnover.
Increased levels are reported with cell proliferation, both
neuronal and glial.

Beyond NAA, there are a number of metabolites that can be
measured which are of particular relevance to neurodegeneration
in ALS. Myo-inositol (mIns) has a preferential distribution in
glial cells, and is as such a putative glial marker. Glutamate is
the primary CNS excitatory neurotransmitter. It is difficult to
separate using routine MRS techniques from glutamine, and is
thus may be expressed as “Glx.” GABA is the primary inhibitory
neurotransmitter in the brain. Glutathione functions as an
antioxidant. Glutamate, GABA, and glutathione can be measured
at ultrahigh field (7 T), or high field (3 T) using advanced spectral
editing methods.

Acquisition
MRS can be performed using the same hardware systems as for
structural imaging. The lowest field strength advised, and indeed
what many papers to date report experiments from, are studies
at 1.5 T. The benefits of high field imaging include access to

FIGURE 1 | (A) Localization methods. Neurochemical data are acquired from

specified volumes during a single MRS scan. A single spectrum is recorded in

single voxel spectroscopy (SVS), such as from the left precentral gyrus in the

example at top. With magnetic resonance spectroscopic imaging (MRSI)

multiple spectra are acquired, such as from a 2 dimensional plane centered

over the central sulcus in the example at bottom. (B) A representative

spectrum from the motor cortex of a healthy individual compared to one from

a patient with ALS. N-acetylaspartate is reduced in ALS, reflecting reduced

neuronal integrity. Cho, choline; Cr, creatine; Glu, glutamate; mIns,

myo-inositol; NAA, N-acetylaspartate.

more metabolites, shorter acquisition times, and higher spatial
resolution. The former comes from increased SNR and increased
chemical shift dispersion. The benefit is particularly relevant
to detecting metabolites that have very low concentration or a
complex resonance peak structure such as glutamate and GABA.

Unlike whole-brain structural imaging the location from
where a spectrum is acquired usually must be pre-defined.
Traditional localization schemes to define where spectra are
acquired, include single voxel spectroscopy (SVS) and multivoxel
spectroscopic imaging (MRSI) (Figure 1). In the former, a single
spectrum is acquired from a discrete volume of interest (VOI),
such as the motor cortex, internal capsule, etc. With MRSI,
individual spectra are acquired from multiple regions within a
2-dimensional slab or a 3-dimensional volume. These volumes
are positioned at the time of scanning, and the acquired spectra
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within the volume are selected after processing. Critical steps
during data acquisition, but beyond the scope of this review, are
water and lipid suppression, and shimming to minimize local
field inhomogeneity.

Data Post-processing and Quantification
Post-processing of data includes a number of steps (e.g., residual
water suppression, Fourier transformation, phase correction),
with ultimately the production of spectral peaks. These are
baseline corrected and fitted. The area under a fitted peak
correlates with the number of protons contributing to the signal
and thus metabolite density. Processing and quantification is
available on MRI consoles, or with stand-alone software such as
LCModel (2).

It is paramount to be aware that a metabolite resonance
reflects its contributing protons throughout the voxel being
sampled, including all cell and tissue types (neurons, glia,
gray matter, white matter) and compartments (intracellular,
extracellular). The derivation of absolute concentrations (i.e.,
mmol/L) requires additional MR experiments and processes to
correct, for example, partial volume effects, coil loading, field
inhomogeneity, and relaxation effects with a potential concern
to data reliability. Resonance signals are thus often reported as a
ratio to a reference metabolite, such as Cr or Cho (NAA/Cr); this
inherently performs the aforementioned correction, however it
requires the assumption that the reference metabolite is stable in
the disease under question. Normalization with a water signal is
used by some as an alternative and obviates the issue of whether
Cr or Cho are unchanged, though comes with its own issues.

Recent Advances
High and Ultrahigh Field Imaging, and “New

Metabolites”
Within the last decade, research and clinical MR systems have
transitioned from a low field of 1.5 T to a high field of 3 T. Studies
at the latter are becoming common place, with studies at the
ultrahigh field of 7 T emerging.

The benefits of high field imaging include access to
more metabolites, shorter acquisition times, and higher spatial
resolution. The former comes from increased SNR and
increased chemical shift dispersion; this is particularly relevant
to metabolites that have very low concentration or complex
resonance peak structure such as glutamate, GABA, and
mIns. Higher field systems are accompanied by a number of
challenges that require attention for successful spectroscopy
experiments: greater main (B0) and applied RF (B1) field
inhomogeneity and chemical shift mis-registration, altered T1
and T2 relaxation times, greater safety concerns, and higher
purchase and operating costs (3).

3D MRSI and Automated Quantification
Single voxel spectroscopy and MRSI constrain the acquisition of
data from small and discrete regions (volume of interest). These
spatial restrictions are necessary, in part, for optimization of field
homogeneity. Thus, MRS scans demand an additional level of
knowledge, expertise, and experience from the MR technologist
required for accurate positioning of the VOI. Larger sampling

of the brain can be done with multislice MRSI (4–6), or 3D
MRSI (7), however these further increase acquisition times.
Echo-planar spectroscopic imaging (EPSI) has been an exciting
development as it permits high resolution volumetric (whole
brain) spectroscopic imaging in a single acquisition within a
clinically acceptable timeframe (8). It has been applied in ALS to
study the neurochemistry of the CST in its 3-dimensional extent
(9, 10), and of multiple spatially discrete areas (11, 12).

RESULTS

At the time of writing, a general survey reveals there have
been just over 60 papers published describing human proton
MRS experiments in ALS, with inclusion of ∼1,400 patients
with ALS or related motor neuron disease (primary lateral
sclerosis, progressive muscular atrophy). The majority of papers
have interrogated neurochemistry of the motor system, namely
the primary motor cortex and corticospinal tract. Published
works also report findings in “extra-motor” regions including the
prefrontal cortex, subcortical gray, brainstem, and spinal cord.
Longitudinal MRS studies are few, as they are with other imaging
modalities. With few exceptions, studies published since 2011
have been done at high field (3 T) or ultrahigh field (7 T).

Participants in studies have consisted of patients meeting El
Escorial Criteria for ALS with combined upper and lower motor
neuron signs. The number of MND participants in each study
range from 7 to 169, with many studies having 10–30. Some
have included subjects with no UMN signs (PMA) (6, 11, 13–
16) generally showing the expected correlation of more normal
NAA in such subjects. All studies have been conducted at a single
center, except for a prospective multicenter study conducted
at 4 sites in the Canadian ALS Neuroimaging Consortium
[ClinicalTrials.gov # NCT02405182 and in press (Neurology:
Clinical Practice)].

Cross-Sectional
Motor Cortex
The regional focus of most studies has been on the motor cortex
or CST. NAA ratios to Cr, Cho, or Cr+Cho are reduced in the
precentral gyrus (4–6, 12, 13, 15, 17–39). A decline in absolute
quantities of NAA (14, 16, 21, 22, 31, 40–43) corroborate these
observations of reduced ratios of NAA. A gradient effect can be
observed when spectra are acquired from the motor cortex and
regions immediately surrounding it, such that less prominent
reductions are present in the postcentral gyrus and premotor
areas compared to the precentral gyrus (13, 25).

Corticospinal Tract
The corticospinal tract has been interrogated using various
methods. One group found reduced NAA/Cr+Cho) in the
centrum semioval (CSO) and internal capsule combined, but not
individually in these two regions (4). In part contrary to this, a
study using a coronalMRSImethod in the plane of the CST found
reduced NAA/Cr in the precentral gyrus and corona radiata, but
normal levels in the internal capsule and cerebral peduncle (44).
Another found reduced NAA/Cr in both the motor cortex and
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IC (32). NAA of the entire CST was found to be reduced using a
whole-brain 3D spectroscopic acquisition protocol (9, 10).

Extra-Motor Regions
The presence of frontotemporal lobar degeneration (FTLD) is
supported by reduced NAA indices in various frontal regions
including the dorsolateral (11, 23) and mesial prefrontal (19, 45)
cortices. Mesial prefrontal cortex neurochemistry is abnormal
in patients who for the most part are not cognitively impaired,
suggesting MRS may be more sensitive to detecting FTLD than
clinical measures (45). “Extra-motor” degeneration was similarly
demonstrated in the mid-cingulate gyrus (34), thalamus (34, 46),
and basal ganglia (46). As expected, NAA is normal in the parietal
and occipital lobes (5, 11, 23, 25, 26, 33, 40) and cerebellum (14).

Brainstem
Reductions in NAA indices are described by most (21, 43, 47, 48)
but not all studies (33) that have examined the brainstem.

Spinal Cord
MRS of the upper cervical spinal cord revealed substantially
reduced NAA ratios 25–40% in patients with ALS (49, 50).
Notably, a single voxel was used enclosing the breadth of the
cord. Thus, the spectrum included contributions from both
white matter tracts and the anterior horn and other cells in the
gray matter. One group extended their methods to investigate
neurochemical changes in asymptomatic SOD1+ individuals
(51). They found comparably reduced NAA/Cr and NAA/mIns
in asymptomatic (39.7% and 18.0%) and patients with ALS
(41.2% and 24.0%) compared to healthy controls, inferring the
presence of neurochemical changes early in the disease and even
before symptoms or signs are present.

Other Metabolites
Reflective of astrogliosis, mIns is increased in the motor cortex
(29, 40, 43, 48, 52, 53). TheNAA/mIns ratiomay be amore robust
marker of degeneration as it reflects the combined pathology
of decreased neuronal integrity and gliosis with the individual
metabolite levels becoming abnormal in opposite directions in
the motor cortex (16, 29, 48) and mesial prefrontal cortex (45).

Given one of the putative pathophysiological mechanisms
is excitotoxicity, one may have expected Glu to be increased.
However, results have been conflicting for the motor cortex
where it (or Glx) were normal (16, 21, 43, 52), increased (32),
or decreased (40). Studies at 7 T where its quantification may
be more precise were conflicting with levels in the motor cortex
normal (48) or increased (53). Glx was increased in the medulla
(54) along with a negative correlation with the ALSFRS bulbar
subscore. Later studies of the pons revealed normal pontine
Glu or Glx (43, 48). MRS measurements of the inhibitory
neurotransmitter GABA in the motor cortex have been reported
to be reduced using the MEGA-PRESS technique at 3T (43, 55),
but normal using a STEAM sequence at 7T (53). As discussed
above MRS measurements will largely reflect the intracellular
metabolic rather than synaptic neurotransmitter pool; as such,
reductions may simply be the result of neuronal loss.

Initial findings of decreased glutathione in the primary motor
cortex (35) which would have been supportive of a role for

oxidative stress in the pathogenesis of ALS were not replicated
by subsequent studies at 3 T or 7 T (48, 53).

Diagnostic Accuracy
A number of studies have assessed the discriminatory power
of NAA and its ratios in the motor cortex to separate ALS
patients from healthy controls. Sensitivity ranges from 53 to
100%, specificity ranges from 37 to 100%, with the average
amongst the studies ∼80% for both. MRS improves the accuracy
when combinedDTI assessment of the corticospinal tract (56, 57)
or of signal change on structural imaging (36, 56).

Longitudinal
A number of studies suggest a decline in NAA indices over
varying intervals; interpretation of these reports is difficult due
to small numbers of patients (5, 19, 22, 52, 58, 59).

In a more rigorous design, longitudinal change in absolute
NAA and its ratio to Cr and Cho were measured every 3 months
out to 1 year. Changes were seen in the motor cortex and outside
the motor cortex over 3 and 9 months, respectively depending on
the El Escorial designation, but overall did not follow a consistent
pattern (27). In a treatment trial of growth hormone, the placebo
arm of 20 patients did not have any change in motor cortex
NAA/(Cho+Cr) at 0, 6, or 12 months (60).

In a larger study of 43 patients, 30 had at least one follow
up scan on a 3 month interval, demonstrating a non-significant
(p= 0.06) decline in motor cortex NAA/Cr (6).

Recently, longitudinal neurochemical observations weremade
at 7 T at 6 and 12 months. Motor cortex NAA/mIns declined and
pontine Glx increased. In a sub group analysis, this pattern of
neurochemical change was not present in those whose upper limb
and bulbar function did not deteriorate over time (61).

Correlations
The presence of correlations with an imaging finding provides
a degree of biological validity to the imaging metric. Not
surprisingly, NAA indices are more reduced in patients with a
greater severity of UMN findings on neurological examination
(13–15, 20, 28, 31, 40, 52), however this is not always the
case (48). As a measure of UMN function, finger tapping has
the advantage of being objective and providing a continuous
measure. Correlations with tapping have been reported in a
number (4, 6, 16, 18, 39), but not all, (44) studies. A few
studies have also noted a correlation with the El Escorial criteria
(15, 27, 48). Reports are conflicting with respect to associations
with disease duration, progression rate, or disability as quantified
by ALSFRS-R. With respect to the latter this is not surprising
given that disability is largely driven bymuscular weakness which
in turn is dependent considerably on LMN status.

The evaluation of neurochemical associations with cognitive
or behavioral impairment is limited in ALS. As would be expected
dorsolateral prefrontal cortex NAA/Cr correlates with cognitive
measures of executive function, including verbal fluency (11) and
theWisconsin Card Sorting Test (23). However, mesial prefrontal
cortex NAA/mIns did not correlate with the Addenbrook
Cognitive Examination or verbal fluency (45); this may have
been due to the localization of the voxel (mesial rather than
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dorsolateral) or that the ACE may not be an optimal cognitive
screening measure in ALS (62).

The marked clinical heterogeneity of patients with ALS makes
prognostication a difficult task, yet this would be extremely
helpful in clinic for counseling patients and to assist as
an enrichment strategy in clinical trials. MRS was the first
neuroimaging modality to reveal an association of cerebral
degeneration with survival. Reducedmotor cortex NAA/Cho was
the strongest predictor of shorter survival, followed by older age
and shorter symptom duration (30).

MONITORING TREATMENT

There have been several studies evaluating treatment effects
usingMRS. The commencement of riluzole, an antiglutamatergic
agent, is accompanied by an increase in NAA/Cr in the motor
cortex observed at 1 day (63) and 3 weeks (58) after its
initiation. Increases in NAA/Cr suggest the existence of a
population of metabolically dysfunctional neurons amenable to
treatment. This supposition is supported by the observation
of maintained NAA/Cr levels in ALS patients in contrast to a
decline in NAA/Cr in healthy controls who received creatine
supplementation (24). Changes in NAA/Cr were not observed
with gabapentin (25), intrathecal BDNF (26), or minocycline
(64). Preliminary observations have also been made on the Glx
signal with creatine supplementation (24, 65). In contrast to the
studies discussed thus far, there have been reports from studies
that have performed sub-analyses on patients comparing those
who are taking riluzole to those who are riluzole-naïve (43, 48);
these have had varying results.

CONCLUSIONS AND FUTURE
DIRECTIONS

What has MRS delivered in the field of ALS thus far, and what
is needed?

Cross sectional changes reflecting cerebral neuronal
impairment (abnormal NAA indices) are consistently present,
and with reasonable accuracy in discriminating patients
from controls in group analysis. However, with regards to
diagnostic utility, a biomarker of cerebral degeneration will be
most helpful in the clinic for patients presenting with LMN
signs but insufficient UMN signs; MRS data (as for much of
the neuroimaging field) is lacking for such patients. In the

more immediate future, MRS should be able to play a part in
addressing phenotypic heterogeneity, as associations have been
demonstrated with various behavioral measures. Future studies
addressing diagnostic potential and heterogeneity would benefit
from larger sample sizes, deep phenotyping, inclusion of disease
mimics, incorporation of other imaging modalities (e.g., DTI),
and incorporation of biofluids for correlative and validation
analyses. Of note, there is very little known of the association
of cerebral neurochemicals with cognitive impairment
in ALS.

There is sensitivity to measuring longitudinal change in
metabolites that appears best observed with time intervals of
at least 3 months. However, there is considerable variability,
which currently prohibits its use as a biomarker of disease
progression. The experience of MRS to date of assessing
response to therapy has been largely proof of principle.
Progress in this area has been hampered in part by the
lack of robust disease modifying therapies upon which to
frame spectroscopy experiments. Inclusion of MRS in phase II
clinical trials may provide opportunities validating metabolites
as measures of disease progression, target engagement, or
therapeutic response.

The feasibility for MRS to be applied for clinical and routinely

for research applications, especially for multicenter efforts and to

allow inter-study comparison of results, will require refinement,
optimization, and standardization of acquisition and processing

protocols, in parallel with greater user expertise. Reference to
general (66) and ALS-specific guidelines (67) are starting points
for such an endeavor. The advent of whole brainMRSI combined
with automated quantification is a significant advancement that
could facilitate the modality’s uptake to more research labs and
eventually clinics.

Advances in technology (higher fields, new sequences) are
already permitting the quantification of previously undetectable
disease-relevant metabolites and of anatomical regions
previously inaccessible (spinal cord). This will continue to
provide opportunities for exploring biological insights in vivo
and for evaluating novel disease markers that may meet the
desperate need of a biomarker in ALS.
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