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Introduction

Despite advances in cardiac therapy, heart failure (HF) 
remains a progressive, highly symptomatic and deadly dis-
ease affecting more than 18 per 1000 United States citi-
zens.1 Hospitalization for HF, apart from being an 
important marker for poor prognosis, raise the global cost 
of care for HF patients up to 108 million dollars per year.2 
Heart failure with reduced ejection fraction (HFrEF) rep-
resents approximately 50% of all patients with HF and 
about 5% of HFrEF patients progress to end-stage HF,3 
which is a stage of disease refractory to guideline-directed 
medical and device therapy.4 Specialized strategies for 
patients with refractory HFrEF include intravenous vaso-
dilator and inotropic therapy, ultrafiltration, mechanical 
circulatory support, surgery including cardiac transplanta-
tion, and palliative care.4

Mechanical circulatory support 
devices

Mechanical circulatory support (MCS) devices were  
initially designed to support patients in hemodynamic 
instability.5 Currently, they are used in patients 
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undergoing cardiac surgery, in cases of cardiogenic 
shock and also as durable long-term support devices 
either in patients awaiting cardiac transplantation (bridge 
to transplantation, BTT), or as permanent mechanical 
assistance (destination therapy, DT) in selected patients, 
who are not eligible for cardiac transplantation.6 The 
majority of long-term mechanical circulatory support 
devices implanted are left ventricular assist devices 
(LVADs). In less than 15% of patients, particularly those 
with biventricular failure, refractory ventricular arrhyth-
mias or congenital heart disease, biventricular support as 
a bridge to transplantation, either with biventricular 
assist devices or a total artificial heart, is preferrable.5–7 
LVADs have evolved since the publication of the 
REMATCH trial in 2001 by Rose et al.8 and are still rap-
idly evolving to the point that 1-year survival has 
increased from 52% to approximately 90% in the latest 
randomized controlled trials.9,10

LVADs are divided into first, second, and third genera-
tion devices, with sizable differences in the mechanism 
of operation between each generation.11 The first genera-
tion LVADs were pulsatile positive displacement pumps, 
which include the HeartMate I, the Thoratec Paracorporeal 
Ventricular Assist Device (PVAD) and the Novacor. 
These pulsatile devices provided excellent hemodynamic 
support and improved survival but came with several 
limitations, such as limited long-term device durability, 
the need for extensive surgical dissection to implant, the 
presence of a large external lead prone to infection, an 
audible pump, and the need for medium-large body habi-
tus.6 Therefore, LVAD designs quickly shifted to continu-
ous flow, leading to the second-generation devices (axial 
flow pumps such as HeartMate II, Jarvik2000) and third 
generation devices (centrifugal flow pumps such as 
HeartWare HVAD and HeartMate 3).12

Continuous-flow LVADs account for 100% of patients 
receiving DT since 2010 and more than 95% of patients 
receiving primary MCS implants.12 In contrast to the pul-
satile LVADs, the continuous-flow LVADs have only one 
moving part, the rotor, and hence are much more durable, 
they are smaller, quieter with smaller drivelines and lower 
rates of reoperation for device malfunction. Third genera-
tion VADs are centrifugal pumps designed for longer dura-
bility, with optimized blood flow through the device to 
minimize the risk of thrombus formation and hemolysis.6 
The HeartMate 3 in particular is a centrifugal-flow device 
with a magnetically levitating impeller that is programmed 
to create an artificial pump pulse via rapid changes in rotor 
speed. It should be noted that the pump pulse is asynchro-
nous with the native heartbeat. In the most recent rand-
omized unblinded trial conducted by Mehra et  al. 
(Multicenter Study of MagLev Technology in Patients 
Undergoing Mechanical Circulatory Support Therapy with 
HeartMate 3 [MOMENTUM 3]), this LVAD was associ-
ated with superior survival free of disabling stroke or 

reoperation to replace or remove a malfunctioning device 
compared to the axial flow HeartMate II device.10

Continuous-flow LVAD implantation frequently leads 
to improvement in myocardial structure and function man-
ifesting as improved left ventricular (LV) ejection func-
tion, decreased end-systolic and end-diastolic LV volumes 
and LV mass as early as 30 days after implantation.13 
Interestingly, a small number of patients supported with 
LVADs exhibit significant improvement in their myocar-
dial function and prolonged unloading of the left ventricle 
may lead to a degree of functional improvement enough to 
allow explantation of the device.14–16 Despite improve-
ments in durability, quality of life and mortality, continu-
ous-flow LVADs are associated with high rates of 
gastrointestinal bleeding,17 which is likely related to the 
continuous flow, the absence of pulsatility and enhanced 
proteolysis of large von Willebrand factor polymers.18 
Furthermore, due to the non-pulsatile flow, continuous-
flow LVADs may be associated with poor microcirculation 
perfusion and reduced end-organ function.19

Continuous-flow LVADs are preload dependent and 
afterload sensitive20 (note the relationship between blood 
flow and head pressure in Figure 2(b)), which translates 
into a need for strict blood pressure control. The role of 
the renin-angiotensin-aldosterone system (RAAS) is 
important to all these key processes and aspects of care 
related to the use of continuous-flow LVADs, from LV 
unloading to myocardial recovery, from lack of pulsatil-
ity to higher risk of bleeding, and necessity for strict BP 
control. Nonetheless, there is a paucity of data in pre-
clinical and clinical level regarding the activation and 
inhibition of RAAS in the setting of LVADs. In this nar-
rative review, we sought to summarize current evidence 
on the interplay of RAAS and important aspects of man-
agement of LVAD patients (Figure 1).

Renin-angiotensin-aldosterone system 
in advanced HF

The renin-angiotensin aldosterone system (RAAS) plays 
a crucial role in the regulation of renal, cardiac, and vas-
cular physiology, and its activation is involved in many 
common pathologic conditions including heart failure.21 
The classic and simplified view of the RAAS pathway 
begins with renin, an enzyme excreted by renal afferent 
arterioles cleaving its substrate, the hepatic derived angio-
tensinogen, to produce an inactive peptide, angiotensin I, 
which is then converted to angiotensin II by endothelial 
angiotensin-converting enzyme (ACE).21,22 Increased 
beta-adrenergic activity, reduced delivery of chloride to 
macula densa and constriction of the afferent arteriole all 
stimulate renin release.23 In turn, ACE activation of angio-
tensin II occurs mainly in the lungs. Active Angiotensin II 
binds to two types receptors, angiotensin receptor type 1 
(AT1) and angiotensin receptor type 2 (AT2). Angiotensin 



Briasoulis et al.	 3

II mediates, mainly via AT1, vasoconstriction as well as 
aldosterone release from the adrenal gland, resulting in 
sodium retention and increased blood pressure.21,22,24 
Interestingly, there are also several localized RAAS path-
ways in various human tissues including the heart, that 
function independently of each other and of the systemic 
RAAS.21,22

In patients with HF the sympathetic nervous system 
(SNS), the RAAS, and antidiuretic hormone are upregu-
lated.21,22,24,25 That said, the generation of angiotensin II 
at the tissue level is as important as circulating angioten-
sin II.22 These local RAAS exert autocrine (cell-to-same 
cell) and paracrine (cell-to-different cell) effects.24 As a 

result, the RAAS is more complex than a simple pathway 
controlling blood volume and blood pressure.22 The local 
activation of AT1 mediates target-organ damage includ-
ing remodeling, endothelial dysfunction, and collagen 
deposition resulting in fibrosis.24 Moreover, angiotensin 
II is also synthesized locally, and local angiotensin II pro-
duction is increased proportionally to the severity of 
HF.25 In HF patients, local and systemic angiotensin II 
production leads to increased sodium reabsorption, sys-
temic and renal vasoconstriction, myocardial hypertro-
phy, apoptosis and alterations in the interstitium.24

Blocking the RAAS constitutes the basis of HF phar-
maceutical treatment in HF patients with reduced ejection 

Figure 1.  The role of renin-angiotensin-aldosterone system in advanced heart failure and support with left ventricular assist 
devices.



4	 Journal of the Renin-Angiotensin-Aldosterone System ﻿

fraction (HFrEF).4 Angiotensin converting enzyme inhibi-
tors (ACEi) and AT1 blockers have been proven to benefit 
HFrEF patients, significantly improving their morbidity 
and mortality rates.26 Antagonizing the action of aldoster-
one on the mineralocorticoid is also an important step in 
the optimal treatment of HFrEF.27 Aldosterone antagonists 
such as spironolactone28 and eplerenone29 have been 
proven to significantly improve outcomes in the disease. 
Last but not least, the addition of sacubitril, a neprylisin 
inhibitor, to valsartan, an AT1 blocker, has been estab-
lished since the PARADIGM-HF trial as the mainstay 
treatment for HF patients with advanced disease status.30

Left ventricular assist device 
physiology, pulsatility and renin-
angiotensin-aldosterone system

Under normal conditions, LV ventricular filling and con-
tractility is represented by the pressure-volume loop 
(PVL) which has a trapezoidal shape and a rounded top.31 
In the presence of an LVAD the PVL will change into a 
triangular shape which reflects the loss of normal isov-
olemic periods (Figure 2(a)).32 Systemic blood flow 
depends on the LVAD speed under static loading condi-
tions.33 Thus, increasing the speed will cause progressive 
leftward shift of the PVL increasing the systemic arterial 
pressures, and decreasing peak LV pressure generation, 
LV end diastolic pressure, left atrial pressure and pulmo-
nary capillary wedge pressure. In addition to being 

directly proportional to the rotor speed, flow is inversely 
proportional to the pressure differential between LV and 
aorta also known as the pressure across the inlet and out-
let called “pump Delta P”, “head pressure” or “H” (Figure 
2(b)). The blood flow through the device is described as 
Q and is directly proportional to the pump speed at a 
given head pressure. Continuous-flow LVADs are preload 
dependent and sensitive to the gradient across the inflow 
and outflow cannula.34 At a given pump speed the flow 
will decrease if head pressure increases. Left ventricle-
aorta intrinsic properties also play an additional role in 
flow determination.35 Regarding the cardiac hemody-
namics in general an LVAD implantation leads to a sig-
nificant increase in cardiac output which extenuates the 
workload of the right ventricle via lowering the pulmo-
nary arterial pressure.36 As a result, tricuspid regurgita-
tion subsides,37 while functional mitral regurgitation has 
been reported in a study conducted by Goodwin et al. to 
be alleviated regardless of its severity level.38

It is worth mentioning that there are important differ-
ences in the HQ curves between the currently available 
LVADs which are classified as axial devices, such as the 
HeartMate II (Abbott, Abbott Park, IL) and centrifugal 
devices, consisting of the HVAD (Medtronic, Minneapolis, 
Minnesota) and HeartMate 3 (Abbott, Abbott Park, IL). 
These differences reflect the differing engineered charac-
teristics and the response to speed changes. Axial LVADs 
have much steeper HQ curves, with an inverse linear rela-
tionship in flow with pump pressure differential.39 This 
translates in lower flow pulsatility than the centrifugal 

Figure 2.  The pressure-volume loop with and without a left ventricular assist device (a) and the relationship between blood flow 
and rotor speed or head pressure (b).
LV: left ventricle; ESPVR: end systolic pressure volume relationship; EDPVR: end diastolic pressure volume relationship; LVAD: left ventricle assist 
device; Head pressure: pressure differential between LV and aorta.
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devices and higher likelihood of high-pressure differential 
in the setting of low flows, which can cause suction events 
within the left ventricular cavity.40 On the other hand, cen-
trifugal devices operate over a wide range of flows with 
little change in pressure differential across the pump, 
translating into higher pulsatility and smaller change in 
pressure differentials. Within low flow conditions such as 
hypovolemia and right ventricular failure centrifugal 
devices will have less common suction events.41 For any of 
the current LVADs, the interaction between LVAD and 
each patient is unique due to factors inherent to the patient 
as body-size, gender, mean arterial pressure, volume sta-
tus, intrinsic myocardial contractility, RV function, vaso-
active and neuro-hormonal medications.35 In any case, the 
continuous flow exerts unique effects on the sympathetic 
and RAAS.

Sympathetic nerve activity plays an important role in 
the arterial blood pressure regulation via baro-receptors.42 
Arterial baroreceptors in the aortic arch and carotid sinus 
respond to fluctuation of the pulsatility and stimulate the 
afferent fibers from baroreceptors to the brainstem modu-
lating a negative feedback over the sympathetic nerve 
activity. A previous animal study on canines shown that at 
the same arterial mean pressure, pulsatile flow has greater 
carotid baroreceptor afferent response and suppression of 
SNS compared with continuous flow. Continuous flow 
does not stimulate arterial baroreceptors to a similar degree 
as pulsatile flow leading to desensitization of the recep-
tors. Measurement of muscle sympathetic nerve activity 
represents an integrated sympathetic outflow from carotid 
and cardiopulmonary baroreceptors. Ambulatory patients 
with continuous-flow devices have shown markedly ele-
vated levels of muscle sympathetic nerve activity com-
pared with patients with pulsatile devices and healthy 
controls.42 However, the degree of pulsatility does not 
always depend on the device in fact. LV intrinsic contrac-
tility can contribute to maintain a wide pulse pressure 
which might stimulate enough baroreceptors. Moreover, a 
study with ambulatory patients with HeartMate II devices, 
reduction of LVAD speed leads to augmentation of pulse 
pressure, carotid distension, baroreceptor stimulation and 
reduction in the sympathetic neural activity.43 Decreased 
pulse pressure may lead to minimal baroreceptor stimula-
tion and increased SNS activity which in turn activates the 
RAAS and predisposes to higher blood pressure, increased 
risk of stroke and chronic kidney disease and lower prob-
ability of myocardial recovery.42 For these patients the use 
of beta blockers has been associated with significantly 
lower brain natriuretic peptide levels and appears to be 
safe even in patients with right ventricular dysfunction.44

Endothelial function is affected by pulsatility, which 
maintains a balance between vascular smooth muscle cell 
proliferation and apoptosis.45 In a canine model of HF 
study with use of continuous-flow LVAD the blood pres-
sure and systemic vascular resistance decrease with higher 

pulse pressures along with increased plasma nitrite/nitrate 
concentration.46 A recent study suggested impaired 
endothelial function with continuous-flow devices, a phe-
nomenon which was clinically significant as it was associ-
ated with higher rates of cardiovascular events.47 Finally, 
non-pulsatile kidney perfusion can lead to activation of 
RAAS with elevated plasma renin and aldosterone  
activity.48 It has been reported by Welp et al. that renin and 
aldosterone activity were greater in patients with non-pul-
satile compared with pulsatile LVADs early after implanta-
tion whereas these hormones return close to normal range 
1 month after implantation of pulsatile LVADs.48

Renal cortical artery hypertrophy and inflammatory 
cell infiltration of the renal cortex have been reported in 
preclinical studies of continuous-flow LVADs.49 Severe 
periarteritis in kidneys and pulmonary arteries occurred 
after continuous-flow support in calves with LVAD and 
RVAD respectively.49,50 The significant hemodynamic dif-
ferences were lower pulsatility and pulse pressure with no 
difference in mean blood pressure.49 Also, the deformation 
of carotid baro-receptors tends to be reduced in patients 
with continuous-flow devices which lead to higher levels 
of angiotensin II activity.49

Hypertension in LVAD patients

Poorly controlled blood pressure can have detrimental 
effects on outcomes of LVAD recipients. Firstly, continu-
ous-flow devices are afterload sensitive, meaning that 
increased blood pressure caused by systemic vascular 
resistance decreases LVAD flow, predisposing to pump 
thrombosis.51 Furthermore, uncontrolled blood pressure 
impairs LV unloading which in turn increases left atrial and 
pulmonary pressures and the latter translates into worsen-
ing symptoms of HF, hospitalizations and eventually right 
ventricular failure. Also, elevated filling pressures may 
cause subendocardial ischemia and ventricular arrhyth-
mias.51 Moreover, uncontrolled blood pressure can promote 
de novo aortic insufficiency as the increased afterload pre-
vents aortic valve opening and causes commissural fusion 
of the aortic leaflets.51 Finally, poorly controlled blood 
pressure increases substantially the risk of ischemic and 
hemorrhagic stroke,52 but also any risk of major bleeding 
especially in the setting of anticoagulation.

Although, the importance of blood pressure control is 
well recognized for patients with continuous-flow LVADs, 
the treatment targets are defined based on expert panel 
consensus rather that data from appropriately designed 
studies. Previous studies have proposed treatment targets 
of mean arterial pressure (MAP) of 70 to 80 mmHg,53 70 to 
90 mmHg,54 or according to the International Society for 
Heart and Lung Transplantation guidelines a target MAP 
<80 mmHg (Class IIb recommendation, level of evidence 
C).55 An analysis of 220 HeartMate II patients with serial 
outpatient blood pressure measurements, conducted by 
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Pinsino et al., suggested that high MAP >90 and systolic 
blood pressure >100 mmHg was associated with higher 
risk of stroke. MAP had higher predictive value for the 
composite endpoint of pump thrombosis and stroke than 
systolic blood pressure, and the combination of systolic 
blood pressure and low pulse pressure <22 mmHg were 
associate with the highest risk of stroke.56 Maltais et al. in 
the PREVENtion of HeartMate II Pump Thrombosis 
Through Clinical Management (PREVENT) trial protocol 
demonstrated a low rate of pump thrombosis with stand-
ardized implant and perioperative management including 
MAP <90 mmHg. However, BP levels were similar in 
patients with and without pump thrombosis in this analy-
sis.57 Data from the ENDURANCE Supplemental cohort 
analysis by Milano et  al. demonstrated that target MAP 
<85 mmHg or Doppler opening pressure ⩽90 mmHg with 
home BP measurements, successfully reduced stroke rates 
in patients implanted with an HVAD compared to the orig-
inal trial results that suggested higher risk of stroke with 
this device.58 This finding is attributed to better BP control. 
However, here was no difference in incident stroke 
between HVAD and HeartMate II study groups. A recent 
very interesting analysis of the INTERMACS registry, 
showed a bimodal association between blood pressure and 
survival, as survival was lower among patients with MAP 
<75 mmHg Dopplers ⩽80 mmHg, and systolic blood 
pressures <90 mmHg than those with normal or high 
blood pressures.59 Patients with MAPs >100 mmHg, 
Doppler ⩾105 mmHg, and systolic blood pressures 
⩾120 mmHg had higher adjusted risk of death than those 
with normal pressures.

However, accurate non-invasive measurement of blood 
pressure is challenging because of diminished pulsatile 
flow. Currently, the gold-standard for BP measurement in 
LVAD patients is an arterial line, which obviously is not 
feasible in the outpatient. Automated BP devices obtain a 
BP measurement successfully obtain a BP measurement 
approximately 50% of the time due to reduced pulse pres-
sure.60 Doppler ultrasound with sphygmomanometer is 
most frequently used and its measurements closely reflect 
arterial-line MAP but they also reflect systolic blood pres-
sure in cases of high pulse pressure.61 Overall, Doppler 
opening blood pressure has good correlation with MAP 
even with higher pulse pressures. The main issue with 
Doppler-derived BP measurements is that it is impractical 
for home blood pressure monitoring. An alternative 
method the Terumo Elemano BP Monitor is a slow cuff 
deflation device and provides a valid measurement device 
for blood pressure measurement in LVAD patients with 
arterial line MAP and systolic blood pressure.62,63 In the 
presence of palpable arterial pulse, automatic blood pres-
sure devices can be used, and several measurements should 
be obtained to confirm the accuracy of the measurements. 
Also, this measurement should be correlated with the 
Doppler method which is the approach of choice in the 

absence or palpable pulse. This approach has not been 
validated yet in the HeartMate 3 devices which generate an 
artificial pulse. These devices decrease the rotor speed 
every 2 s by 2000 rpm for 0.15 s, then increases by 4000 rpm 
for 0.20 s before returning to the preset speed.64 Therefore, 
in HeartMate 3 recipient the pulsatility is not only deter-
mined by the native heart residual contractility but also by 
the artificial device-generated pulsatility which is not syn-
chronous with the cardiac cycle.64 The measurement of 
blood pressure in these patients can be more challenging as 
it will require monitoring over serial cardiac cycles to 
determine MAP and systolic blood pressure.

Regarding blood pressure management in patients who 
are not reaching the targets, the optimal first-line drugs and 
combinations have not been determined. Antihypertensive 
requirements tend to increase in the long-term after device 
implantation and by 2 years, LVAD recipients require on 
average approximately two antihypertensives according to 
an INTERMACS analysis.65 Beta blockers were the most 
frequently used AHs, followed by ACE inhibitors and 
aldosterone antagonists. Approximately, 50% of patients 
were on ACE inhibitors or ARBs. RAAS antagonists may 
exert effects beyond blood pressure lowering in this set-
ting, promoting reverse LV remodeling and preventing 
progression of underlying renal disease. Further applica-
tions of these medications include prevention of gastroin-
testinal bleeding and utilization as part of myocardial 
recovery protocols and these will be discussed below.

The combination of angiotensin receptor neprilysin 
inhibitor maybe a superior antihypertensive medication 
compared with equivalent doses of ACE or ARBs and the 
adoption of these medications in the LVAD population 
should be studied further.66,67 Neprilysin levels tend to 
decrease after LVAD implantation and their levels postop-
eratively have been associated with adverse events.68

Gastrointestinal bleeding in LVAD 
patients and the role of RAAS 
inhibition

It is noteworthy that a common complication of patients 
with LVAD support is gastrointestinal bleeding (GIB). 
GIB occurs after LVAD implantation and is a common 
adverse event. Proposed mechanisms of gastrointestinal 
bleeding (GIB) during LVAD support include acquired 
von Willebrand disease, impaired platelet aggregation and 
enhanced angiogenesis causing arterial-venous-malforma-
tion (AVM).69 Increased sympathetic tone can lead to 
smooth muscle relaxation and development of angiodys-
plasias. Also, low pulse pressure during continuous-flow 
support leads to intestinal hypoperfusion, vascular dilation 
and stimulation of angiogenesis.70

The RAAS may significantly contribute to this process 
via Angiotensin II. Angiotensin II receptor activation 
results theoretically in abnormal angiogenesis through two 
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pathways: the augmentation of TGF-β71 which upregulates 
vascular endothelial growth factor (VEGF) and angiopoi-
etin-2.72 Increased levels of transforming growth factor-β 
(TGF-B) after LVAD implantation leads to increase vascu-
lar endothelial growth factor (VEGF) expression which 
might play an important role in the pathogenesis of angi-
odysplasias as well.70 Indeed, antagonists of angiotensin II 
pathway have been shown to reduce signaling through the 
TGF-β pathway and the expression of VEGF, angiopoie-
tin-2, hence inhibiting angiogenesis. Houston et al.73 per-
formed a retrospective analysis of patients with HeartMate 
II and HeartWare with over 100 days with LVAD support 
and examine the role of ACEi or angiotensin receptor 
blockers (ARBs) therapy in prevention of GIB caused by 
AVM. Patients receiving ACEi or ARB therapy during 
VAD support had significantly lower rates of GIB and 
AVM related bleeding in the unadjusted analysis, but the 
association became non-significant after adjustment of 
clinical variables. Converse et al. found significantly lower 
GIB and AVM related bleeding patients who received 
ACEi or ARBs within 30 days after LVAD implantation. 
The effect was dose dependent as doses of lisinopril >5 mg 
were related with a 74% reduction in risk of GIB. Unlike, 
ACE inhibitors or ARBs, beta-blockers have not been 
associated with reduced rates of GIB in this setting.74

Myocardial recovery

LVAD unloading of the LV can promote recovery of myo-
cardial function. Occasionally, myocardial recovery can be 
sufficient to allow device removal without cardiac trans-
plantation and allow the patient to have good functional 
capacity and quality of life. This strategy is known as 
“bridge to recovery” and combines mechanical unloading 
with LVAD support and specific pharmacologic interven-
tions to maximize the likelihood of myocardial recovery 
and improve the durability of recovery after LVAD explan-
tation. In an analysis of 14,138 INTERMACS patients, 
with total rate of recovery 1.3%, independent predictors of 
this phenomenon included: age <50 years, non-ischemic 
cardiomyopathy, and time from cardiac diagnosis <2 years, 
absence of ICD, creatinine ⩽1.2 mg/dl, and LVEDD 
<6.5 cm and these parameters were incorporated in a 
weighted score (I-CARS) with overall good performance 
to predict recovery.7 The pharmacologic interventions in 
studies of myocardial recovery included ACE inhibitors 
and ARBs, beta blockers, and aldosterone antagonists, 
which were given at very high doses, doses that these 
patients would not have tolerated before pump insertion 
because of hypotension and/or renal dysfunction, in order 
to achieve reverse remodeling.75 Moreover, in a noninva-
sive study, conducted by Yousefzai et al., ACE inhibitors 
and ARBs were the only regimens that significantly 
reduced the risk of mortality in LVAD patients almost by 
half (47%).76 The study population consisted of 307 LVAD 

patients from two large centers in the United States and 
the follow-up period lasted 24 months. The validity of the 
assumed beneficial effect of blocking the RAAS with 
ARBs and ACE inhibitors is enhanced by the 24-month 
reported survival rate of the study of 73%, which is in 
agreement with the survival rate of the INTERMACS 
report.76,77

The role of RAAS modulation in achieving myocardial 
recovery may be substantial. ACEi have been found to 
decrease AngII levels and cross-linked collagen in myo-
cardial tissue.78,79 Thus, even the “holy grail” of LVAD-
mediated myocardial recovery80 may depend on intimate 
knowledge of the RAAS.

Conclusion

End-stage heart failure is a condition in which the up-regu-
lation of the systemic and local RAAS leads to end organ 
damage and the reversibility is beyond medication use 
only. LVADs can downregulate RAAS activation by 
unloading the left ventricle and increasing the cardiac out-
put which translate into a better end organ perfusion 
improving survival. However, in the setting of continuous-
flow devices the absence of pulsatility may trigger the 
RAAS activation depending on LV intrinsic contractility, 
axial or centrifugal pump device and LVAD speed. Blood 
pressure control on LVAD recipient is a key to avoid com-
plications as gastrointestinal bleeding, pump thrombosis 
and stroke. Furthermore, we have emerging data on the role 
of RAAS antagonist as prevention of AVM-related GIBs. 
Finally, the concept of myocardial recovery is being tested 
in clinical trials and in this setting LVAD support combined 
with intense RAAS inhibition can promote recovery and 
ensure maintenance of LV function after explantation. 
Future studies should focus on the role of angiotensin 
receptor neprilysin inhibitors in patients with LVADs and 
examine in greater details the target blood pressure for 
these patients.
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