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Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease.
Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for
CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully
understood. The present study explored the therapeutic effect and the underlying
mechanism of ZWT on mitochondrial function in cationic bovine serum albumin
(C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse
podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea
nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were
evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy.
The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2
(SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The
mitochondrial functions of podocytes weremeasured by ATP concentration, mitochondrial
membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level
detection, the expressions of mitophagy-related proteins, including LC3, p62, heat
shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20
(TOMM20), were measured by Western blot, as the colocation of LC3 and
mitochondrial marker COX IV were evaluated by immunofluorescence. Our results
manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr
and BUN, inhibition of mesangial matrix proliferation, protection against foot processes
fusion, and basement membrane thickening. More importantly, ZWT protected against
mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in
CGN model rats, increased ATP content and MMP in podocytes, and decreased
excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing
the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced
the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/
mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-
like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN.
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Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy
via the PI3K/AKT/mTOR and AMPK pathways.

Keywords: chronic glomerulonephritis, Zhen-wu-tang, mitochondrial function, mitophagy, PI3K/Akt/mTOR
pathway, AMPK pathway

INTRODUCTION

In 2017, 1.2 million people died from chronic kidney disease
(CKD), and the global all-age mortality rate of CKD increased by
41.5% within the last 28 years (Global, 2020). Chronic
glomerulonephritis (CGN) leads to about 20% of CKD, with
clinical presentations of proteinuria, hematuria, edema, and
hypertension (Floege and Amann, 2016). As a progressive
disorder, CGN is the most frequent cause of end-stage renal
disease (ESRD) in some developing countries (Chadban and
Atkins, 2005). Conservative management by inhibitors of the
renin–angiotensin–aldosterone axis is the main approach for
proteinuria reduction, but whether angiotensin-converting
enzyme inhibitors or angiotensin receptor blockers should be
used alone is controversial (Voskamp et al., 2017). In addition to
supportive therapy, immunosuppressive agents are widely used in
the management of CGN patients. However, many
immunosuppressive agents have a narrow therapeutic window
and need close monitoring to balance the risk and benefits
(Jefferson, 2018). Emerging therapies undergoing clinical trials
are testing with dual angiotensin receptor/endothelin receptor
blockers, SGLT2 inhibition, and drugs targeting Nrf2
transcription factor (Ramos et al., 2020). To sum up, there is
no effective treatment that can prevent CGN patients from
developing ESRD (Zhang and Zuo, 2016). Therefore, it is of
great importance to clarify the pathogenesis of CGN, which will
help us improve the therapeutic effect of CGN and the prognosis
of patients.

Zhen-wu-tang (ZWT), recorded in the Treatise on Febrile
Diseases, is composed of five traditional Chinese medicines
including Aconitum carmichaelii Debeaux, Poria cocos (Schw.)
Wolf, Atractylodes macrocephala Koidz, Paeonia lactiflora Pall,
and Zingiber officinale Roscoe (Li et al., 2020a). Notably, ZWT
has been widely used in treating various kinds of CGN patients in
China. Besides, our previous studies exhibited nephroprotective
effects on cationic bovine serum albumin (C-BSA)-induced CGN
model by inhibiting inflammation (Wu et al., 2016; Liu et al.,
2019). However, the regulatory mechanisms of ZWT in CGN has
not been fully explained.

Mitochondrial damage and dysfunction participate in the
pathogenesis of kidney diseases, which not only damage the
renal cells but also affect the infiltrating inflammatory cells in
the kidneys (Galvan et al., 2017). Under the stimulation of
reactive oxygen species (ROS), proteinuria, and other
pathogenic factors, the mitochondria are prone to dysfunction,
which is manifested as abnormal morphology and structure,
decreased ATP synthesis, mitochondrial ROS (mtROS),
mitochondrial DNA damage, and mitochondrial dynamic
imbalance (Forbes and Thorburn, 2018). Mitophagy is a
selective form of autophagy that can specifically remove

damaged mitochondria. Recent studies have shown that
mitophagy plays an important role in the occurrence and
development of acute kidney injury (AKI) and CKD (Wang
et al., 2020).

Recently, growing evidence has demonstrated that the
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR) signaling pathway plays an
indispensable role in renal diseases to regulate autophagy (Tu
et al., 2019). PI3K is involved in the formation of eukaryotic cell
membranes, regulating cell signal transduction, energy
metabolism, and cell cycle and other intracellular processes.
AKT is the downstream regulatory target of PI3K, which takes
part in the regulation of cell cycle, autophagy, and apoptosis
processes (Yudushkin, 2019). Mammalian target of rapamycin
(mTOR), activated by AKT, is a key signal molecule that regulates
autophagy (Gong et al., 2020). Rapamycin, inhibitor of mTOR,
enhanced mitophagy and attenuated mitochondrial apoptosis
after spinal ischemia–reperfusion injury (Li et al., 2018).
However, the relationship between the PI3K/AKT/mTOR
pathway and mitophagy in CGN is unclear. Recent studies
found that the AMP-activated protein kinase (AMPK) agonist
alleviated renal tubulointerstitial fibrosis via activating mitophagy
in diabetic mice (Han et al., 2021). In this study, the potential
mechanism of ZWT on mitochondrial functions related to
mitophagy in CGN was investigated.

MATERIALS AND METHODS

Herbal Material and Zhen-wu-tang
Preparation
The herbal material of Aconitum carmichaelii Debeaux (Fuzi),
Poria cocos (Schw.) Wolf (Fu ling), Atractylodes macrocephala
Koidz (Bai zhu), Paeonia lactiflora Pall (Bai shao), and Zingiber
officinale Roscoe (Sheng jiang) was purchased from Guangzhou
Caizhilin Pharmaceutical Co., Ltd. (Guangzhou, China), which
constitutes ZWT in the ratio of 3:3:3:2:3. According to clinical
usage, the daily intragastric doses were 4.2 kg/kg, 8.4 g/kg,
16.8 g/kg for low, middle, and high doses of ZWT (ZWT-L,
ZWT-M, ZWT-H), respectively. The water extract of ZWT was
prepared as described previously (Liu et al., 2019). Briefly, the
materials were soaked with 10 times distilled water for 30 min and
then boiled for 2 h. Subsequently, the medicinal residue was
boiled again eight times with distilled water for 1.5 h. Finally,
the filtrates above were concentrated to 1.68 g/ml based on raw
materials.

UPLC-Q-TOF-MS Analysis of Zhen-wu-tang
The extract of ZWT was used for UPLC-Q-TOF-MS analysis
according to our previous study (Liang et al., 2019). The
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chromatographic separation was achieved by Shimadzu UPLC-
30AD (Shimadzu Corporation, Kyoto, Japan) equipped with a
Phenomenex Genmini 3u-C18-110 column (150 × 2 mm, 3 μm).
The mobile phases included 0.025% formic acid in water (A) and
acetonitrile (B) at an ambient temperature of 35°C. The linear gradient
elution is as follows: 0–10min, 5% B; 10–12min, 8% B; 12–15min,
20%B; 15–30min, 35%B; 30–35min, 45%B; 35–45min, 95%B. The
flow rate was set at 0.3 ml/min. The sample injection volume was 5 μl.
Mass spectrometry was measured by the ABsciex Triple TOF 5600
mass spectrometer (ABsciex, Framingham, MA, USA), and the data
were analyzed using Peakview software (Version 2.0, ABsciex). The
mass parameters were as follows: ion source in electrospray mode:
negative; electrospray ionization: 55 psi; IonSpray Voltage Floating:
5,500 V; declustering potential: 100 V; collision energy: 45 eV.

Animals
Male Sprague–Dawley rats weighting 180–220 g were provided
and housed in the Experimental Animal Center of Guangzhou
University of Traditional Chinese Medicine. During the
experiment, all rats were maintained at 25 ± 2°C and 55–65%
humidity in special pathogen-free level. The animals had free
access to food and fresh water. All animal experiment procedures
were conducted in accordance with the guidelines of the Animal
Ethics Committee of Guangzhou University of Chinese Medicine.
All efforts were made to minimize the suffering of the animals.

Experimental Protocols
The CGN rat model was established with C-BSA as we described
before (Lu et al., 2020). Briefly, rats were subcutaneously injected
with 1-ml emulsion including 1mg of C-BSA and 0.5ml of Freund’s
incomplete adjuvant (Thermo Fisher Scientific, Boston, MA, USA) on
the first day. From the 7th day to the 28th day, the model rats were
injected intravenously in tail veinwith 2.5mgofC-BSA every other day.
Afterward, 40 CGNmodel rats were picked and randomly divided into
five groups including themodel group, ZWT-L group, ZWT-M group,
ZWT-Hgroup, and prednisone group,with eight rats in each group.As
clinical medicine for CGN therapy, prednisone was carried as the
positive control. Except for the rats in the control andmodel group, the
rats were orally administrated with different doses of ZWT or 2mg/kg
of prednisone acetate (Guangdong Huanan Pharmaceutical,
Dongguan, China), respectively, for 4 weeks. The rats in the control
and model groups were given 10ml/kg of saline at the same time.

Biochemical Analysis of Blood
When the interventions ended, blood of all rats obtained from the
abdominal aorta were centrifuged at 3,500 rpm at room temperature
for 15min. Nest, serum creatinine (Scr), and blood urea nitrogen
(BUN) were measured according to the instruction of the
manufacturer (Jiancheng Bioengineering Institute, Nanjing, China).

Periodic Acid-Schiff Staining
Kidney tissues of each group were fixed in 4% paraformaldehyde
for 48 h, embedded in paraffin, and then were cut into 5-μm-thick
sections. Afterward, sections were deparaffinized by xylene,
hydrated by gradient ethanol, and then stained with periodic
acid-Schiff (PAS). The sections were observed under a light
microscopy (BX53, Olympus, Tokyo, Japan).

Transmission Electron Microscopy
Fresh kidney tissues in 1 mm3 were fixed in 2.5% glutaraldehyde
for 24 h and 1% leleonic acid for 2 h. Next, the samples were
dehydrated with a series of ethanol and acetone, immersed with
acetone and propylene oxide. Each sample was embedded and then
sliced with ultramicrotome. Subsequently, the sections were dyed with
uranium acetate and lead citrate, and the ultrastructure of the
podocytes and the number of mitochondrial autophagosomes in
the CGN model rats were observed under a Hitachi transmission
electron microscope (TEM) (HT770, Tokyo, Japan). The foot process
width and glomerular basement membrane thickness were calculated
by using the ImageJ 1.48 software.

Real-Time PCR Analysis
The total RNA was isolated from renal cortex homogenate using
RNAiso Plus (Takara, Beijing, China) under the instructions of
the manufacturer, and then, cDNA was synthesized by Prime Script
RT Reagent Kit with gDNA Eraser (Takara, Beijing, China).
Quantitative analysis of mitochondrial catalase (CAT), superoxide
dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3) mRNAs were
measured using the CFX96 Bio-Rad real-time PCR instrument
(Berkeley, CA, United States) with TB Green Premix Ex Taq Kit
(Takara, Beijing, China). The mRNA expression levels were
normalized to GAPDH through the 2−ΔΔCt method. All the
primers were designed and synthesized by Sangon Biotech
(Shanghai) Co., Ltd. The primer sequences used were as follows:
CAT, 5′-CTGACTGACGCGATTGCCTA-3′ and 3′-GTGGTCAGG
ACATCGGGTTT-5′; SOD2, 5′-CACCGAGGAGAAGTACCACG-
3′ and 3′-TGGGTTCTCCACCACCCTTA-5′; PRDX3, 5′-AGTGTG
GAAGAACCACTCCG-3′ and 5′-TGGCTTGATCGTAGGGGA
CT-3′; GAPDH, 5′-ACAGCAACAGGGTGGTGGAC-3′ and 3′-
TTTGAGGGTGCAGCGAACTT-5′.

Cell Culture and Treatment
Immortalized mouse podocytes were cultured for 7 days in RPMI
1640 medium containing 10% FBS, 100 U/ml penicillin, 100 mg/
ml streptomycin, and 10 U/ml interferon-γ (IFN-γ, PeproTech,
Rocky Hill, NJ, United States) at 33°C and 5% CO2. Proliferated
podocytes were transferred to 37°C in IFN-γ-free medium for
14 days. The subsequent experiment was conducted with well-
differentiated podocytes. ZWT-containing serum and normal
serum from healthy male SD rats were prepared as in a
previous study (Li et al., 2020b). The podocytes were treated
with 40 ng/ml of tumor necrosis factor-α (TNF-α) for 24 h in the
absence or presence of ZWT-containing serum as follows:
(Global, 2020) Control group (10% normal serum), (Floege
and Amann, 2016) TNF-α group (40 ng/ml TNF-α + 10%
normal serum), (Chadban and Atkins, 2005) 2.5% ZWT group
(40 ng/ml TNF-α + 2.5% ZWT-containing serum + 7.5% normal
serum), (Voskamp et al., 2017) 5% ZWT group (40 ng/ml TNF-α
+ 5% ZWT-containing serum + 5% normal serum), (Jefferson,
2018) 10% ZWT group (40 ng/ml TNF-α + 10% ZWT-containing
serum). For some experiments, 20 μm PI3K inhibitor LY294002
(ApexBio Technology, Boston,MA, United States) or 10 μmPI3K
agonist insulin-like growth factor-1 (IGF-1, PeproTech, Rocky
Hill, NJ, United States) was treated together with 10% ZWT-
containing serum.
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Measurement of ATP Content
Intracellular ATP content was detected using an ATP assay kit
(Beyotime, Biotechnology, Shanghai, China). First, podocytes
treated above were lysed, and the supernatant was obtained
after being centrifuged at 12,000 × g, 4°C for 5 min. The ATP
standard substance was diluted into 0.01, 0.03, 0.1, 0.3, 1, 3, and
10 μM. Next, 100 μl of ATP working solution was added into a 96-
well plate, and then 20 μl of podocyte lysis or standard substance was
added, respectively. After incubation in the dark for 5min, the
luminescence intensity of each sample was measured by a Tecan
M1000 Pro plate reader (Männedorf, Switerland). The ATP levels
were calculated and expressed as μM in reference to the corresponding
standard curves.

Mitochondrial Membrane Potential
Mitochondrial membrane potential (MMP) was assessed using a
JC-1 staining kit (Yeasen Biotechnology, Shanghai, China) in
accordance with the instructions of the manufacturer. Briefly,
podocytes were washed with phosphate buffer saline (PBS) three
times and incubated with JC-1 dyeing solution for 20 min at 37°C
in the dark. Subsequently, the cells were rinsed with PBS thrice
and then observed by a confocal laser microscope (LSM 800,
ZEISS, Germany) at ×400 magnification. The green fluorescence
(Ex/Em � 514/529 nm) was used for monomer detection and the
red fluorescence (Ex/Em � 585/590 nm) for aggregates. Five
randomly chosen fields were photographed and calculated
with the ratio of aggregates/monomers for fluorescence
intensity analysis by using ImageJ 1.48 software.

Mitochondrial ROS Detection
The mitoSOX red fluorophore dye (Invitrogen, Carlsbad, CA,
United States) was used for the determination of mtROS
accumulation. Upon treatment with TNF-α or ZWT-
containing serum, podocytes were ringed with Hank’s
balanced salt solution (HBSS) thrice and then incubated with
2.5 μM mitoSOX working solution at 37°C for 10 min with light
protection. After being washed with HBSS three times, podocytes
were observed by a confocal laser microscope (LSM 800, ZEISS,
Germany) at ×400 magnification. Five randomly chosen fields
were photographed, and the fluorescence intensity of mitoSOX
was analyzed by using the ImageJ 1.48 software.

Immunofluorescence Analysis
Renal frozen sections, 4-μm thick, and cultured podocytes were
fixed with paraformaldehyde at 4°C for 10min, and then washed with
PBS three times. Then samples were permeabilized with 0.5% Triton
X-100 for 10min, and blocked with normal goat serum at 37°C for
30min. Next, all samples were incubated with LC3B (Abcam,
Cambridge, United Kingdom) together with COX IV (Abcam) at
4°C overnight. After being washed with PBS, the sections or cells were
incubated with goat-anti rabbit AF555 and goat-anti mouse AF488
antibodies purchased from Cell Signaling Technology (Beverly, MA,
United States) for 30min at 37°C in the dark. Samples were added
withDAPI (5 μg/ml) for 5min at room temperature. The sections and
cells were washed with PBS three times and then observed under a
confocal laser microscope (LSM 800, ZEISS, Germany) at ×400
magnification. Five randomly chosen fields were photographed and

calculated with the area ratio of colocalized LC3 to COX IV in
glomerulus analyzed by using the ImageJ 1.48 software.

Western Blot Analysis
The protein extracts of renal cortex and podocytes were prepared
in RIPA lysis buffer containing phosphatase inhibitors and
protease (CoWin Biosciences, Beijing, China). Equal amounts
of 30 μg of proteins were separated on 10% or 15% sodium
dodecyl sulfate-polyacrylamide (SDS-PAGE) and transferred to
polyvinylidene difluoride membranes (Millipore, Bedford, MA,
United States). After that, the membranes were blocked with 5%
bovine serum albumin (BSA) for 2 h at room temperature.
Subsequently, membranes were incubated with corresponding
primary antibodies at 4°C overnight as follows: LC3B (ab192890),
p62 (ab56416) obtained from Abcam (Cambridge,
United Kingdom), HSP60 (#12165S), TOMM20 (#42406S),
PI3K (#4257S), p-AKT (#4060S), AKT (#4691S), p-AMPKα
(#2535S), AMPKα (#2532), p-mTOR (#2971S) and mTOR
(#2983S) purchased from Cell Signaling Technology (Beverly,
MA, United States), GAPDH (D2817) from Santa Cruz (CA,
United States). After being washed thrice with Tris-buffered
saline Tween-20 (TBST), the membranes were incubated with
secondary antibody conjugated with horseradish peroxidase
purchased from Jackson Immuno Research (West Grove, PA,
United States) at room temperature for 1 h. Finally, these
membranes were washed again with TBST and detected using
an enhanced chemiluminescence kit (Thermo Fisher Scientific,
Boston, MA, United States). Quantification of the protein bands
were analyzed using Image J 1.48 software.

Statistical Analysis
All data were analyzed using SPSS 20.0 (SPSS, Inc., Chicago, IL,
United States) and expressed as mean ± standard deviation (SD).
The differences between groups were analyzed by one-way
ANOVA. When p < 0.05, the differences were defined as
statistically significant.

RESULTS

Determination of the Main Chemical
Constituents in Zhen-wu-tang
For quality assessment, the main chemical components of ZWT
were identified with UPLC-Q-TOF-MS. As shown in Figure 1,
six marker ingredients were separated within 45 min. The
retention times of benzoylmesaconine, benzoylaconine,
benzoylhypacoitine, gingerol-6, atractylenolide III, and
atractylenolide II were detected at 15.912, 16.258, 16.552,
32.776, 33.851, and 37.966 min, respectively.

Zhen-wu-tang Protected Kidney Injury in
Chronic Glomerulonephritis Model Rats
Serum creatinine (Scr) and blood urea nitrogen (BUN) are
important indictors of renal function. As expected, in
comparison with the model group, the levels of Scr and BUN
were significantly decreased after ZWT treatment (Figures

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7776704

Liu et al. Zhen-Wu-Tang Induced Mitophagy in CGN

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2A,B). Next, the renal morphology was examined by PAS
staining and Transmission electron microscopy (TEM). Our
results showed that ZWT suppressed abnormal increase in
mesangial matrix in glomeruli (Figure 2C), as well as
ameliorated the foot process fusion and glomerular basement
membrane (BGM) thickening (Figures 2D–F). Together, these
results indicated that ZWT protected kidney injury in CGN
model rats.

Zhen-wu-tang Ameliorated Mitochondrial
Dysfunction in Chronic Glomerulonephritis
Model Rats
Mitochondrial dysfunction is involved in the pathogenesis of
kidney diseases (Tang et al., 2021). As antioxidant defense is one
of the main function of mitochondria, the mRNA levels of
mitochondrial antioxidant enzymes, including catalase (CAT),
superoxide dismutase 2 (SOD2) and peroxiredoxin 3 (PRDX3),
were measured. Real-time PCR results showed that ZWT
remarkably increased the mRNA expressions of antioxidant
enzymes compared with the CGN model group, which
manifested that ZWT ameliorated mitochondrial dysfunction
in CGN rats (Figure 3).

Zhen-wu-tang Induced Mitophagy in
Chronic Glomerulonephritis Model Rats
Mitophagy is an important quality control mechanism for cell
homeostasis by eliminating damaged mitochondria. To
evaluate the regulatory effects of ZWT on mitophagy in
CGN model rats, the expressions of autophagy-related
proteins LC3 and p62, and mitochondrial proteins TOMM20
and HSP60, were detected. As shown in Figures 4A,B, the

expression levels of LC3 II/I were increased, as p62, HSP60, and
TOMM20 were decreased under ZWT administration. In
addition, ZWT significantly induced the colocalization of
LC3 and mitochondrial marker COX IV in the glomeruli
(Figures 4C,D). Moreover, mitochondrial autophagosomes
captured by TEM indicated that ZWT increased the number
of autophagosomes and mitochondrial autophagosomes in
kidney tissue (Figure 4E). Taken together, ZWT induced
mitophagy in the CGN model rat kidneys.

Zhen-wu-tang Alleviated Mitochondrial
Dysfunction in Podocytes
To assess the effect of ZWT on mitochondrial function in vitro,
mouse podocytes were simulated with TNF-α and treated with
different proportions of ZWT-containing serum. Mitochondrial
membrane potential (MMP) was detected by JC-1 probe. The
findings showed that the ratio of aggregates/monomers increased
under ZWT treatment, suggesting that the MMP was returned to
normal (Figures 5A, C). MitoSOX is a specific fluorescent probe
for mitochondrial ROS (mtROS) assessment. ZWT treatment
dramatically suppressed mtROS accumulation in podocytes
(Figures 5B, D). Besides, as shown in Figure 5E, intracellular
ATP concentration was decreased in response to TNF-α, while it
was reversed by treating with ZWT. Overall, ZWT effectively
alleviated mitochondrial dysfunction in damaged podocytes
induced by TNF-α.

Zhen-wu-tang Promoted Mitophagy in
Podocytes
Inconsistent with the study in vivo, the expressions and colocation
of mitophagy-related proteins were determined in damaged

FIGURE 1 | Chromatogram of Zhen-wu-tang (ZWT) by UPLC-Q-TOF-MS. The chemical structures of six marker ingredients are shown.
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FIGURE 2 | ZWT protected renal function and structural changes in chronic glomerulonephritis (CGN) model rats. (A,B) The levels of blood urea nitrogen (BUN) and
serum creatinine (Scr). (C) Representative images of PAS-stained renal sections (×400 magnification; scale bar � 20 μm). (D) Representative images of renal tissue
ultrastructure by transmission electron microscopy (×5,000 magnification; scale bar � 5 μm). Red arrows indicate foot process. Green arrows indicate glomerular
basement membrane (GBM). (E,F) Quantitative analysis of foot process width and GBM thickness. Data are represented as mean ± SD (n � 8). ##p < 0.01 versus
normal group, *p < 0.05 and **p < 0.01 versus model group. ZWT ameliorated mitochondrial dysfunction in CGN model rats.

FIGURE 3 | ZWT ameliorated mitochondrial dysfunction in CGN model rats (A–C). The mRNA expressions of mitochondrial antioxidant enzymes mitochondrial
catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3) in CGN model rats by RT-PCR. Data are represented as mean ± SD (n � 8). #p < 0.05,
##p < 0.01 versus normal group, *p < 0.05 and **p < 0.01 versus model group. ZWT induced mitophagy in CGN model rats.
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podocytes as well. As shown in Figures 6A,B, the decreased
expressions of LC3 II/I and increased levels of p62 in TNF-
α-induced podocytes were reversed by ZWT. Besides, the

expressions of HSP60 and TOMM20 were decreased under the
treatment of ZWT-containing serum. In addition, ZWT markedly
increase the colocalization of LC3 and COX IV in podocytes

FIGURE 4 | ZWT induced mitophagy in CGN model rats. (A, B) The protein blots and quantitative analysis of LC3 II/I, p62, heat shock protein 60 (HSP60), and
translocase of outer mitochondrial membrane 20 (TOMM20). The obtained values of HSP60, TOMM20, and p62 were normalized to GAPDH; LC3 II values were
normalized to LC3 I. (C, D) The representative images and quantitative analysis of LC3 and COX IV colocalization (×400 magnification; scale bar � 20 μm). (E)
Representative images of mitochondrial autophagosomes by Transmission electron microscopy (×5,000 magnification; scale bar � 5 μm). Red arrows indicated
mitochondrial autophagosome. Green arrows indicate autophagosome. Data are represented as mean ± SD (n � 3). ##p < 0.01 versus normal group, *p < 0.05 and **p <
0.01 versus model group. ZWT alleviated mitochondrial dysfunction in podocytes.
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(Figures 6C,D). These results suggested that ZWT promoted
mitophagy in damaged podocytes.

Zhen-wu-tang Regulated PI3K/AKT/mTOR
and AMPK Pathways in Chronic
Glomerulonephritis
It is well known that the phosphatidylinositol 3-kinase (PI3K)/
AKT/mTOR pathway has inhibitory roles on the autophagic

pathway. Recently, some studies suggested that the PI3K/AKT/
mTOR pathway is also involved in mitophagy (Maiti et al., 2019).
Furthermore, the activation of AMPK pathway promoted
mitophagy by enhancing mitochondrial fission and
autophagosomal engulfment (Seabright et al., 2020). Therefore, in
this study, we explored whether ZWT could regulate the PI3K/AKT/
mTOR and AMPK pathways in CGN. As shown in Figures 7A,B,
the expressions of PI3K, p-AKT, and p-mTOR were increased in
CGN model rats compared with the control group. ZWT and

FIGURE 5 | ZWT alleviatedmitochondrial dysfunction in podocyte. (A)Representative images ofmitochondrial membrane potential in podocytes (×400, scale bar �
20 μm). (B) Representative images of mitoSOX in podocytes (×400, scale bar � 20 μm). (C) The ratio of aggregates/monomers of JC-1 probe. (D, E) The fluorescence
intensity of mitoSOX, ATP levels in podocytes. Data are expressed asmean ± SD, n � 3. #p < 0.05, ##p < 0.01 versus control group, *p < 0.05 and **p < 0.01 versus TNF-
α group. ZWT promoted mitophagy in podocytes.
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prednisone significantly inhibited the activation of the PI3K/AKT/
mTOR pathway. On the other hand, ZWT-H dose and prednisone
reversed the decreased expression of p-AMPK in CGN rats. In
podocytes, Western blot results showed that TNF-α upregulated the
proteins in the PI3K/AKT/mTOR pathway and inhibited the AMPK
pathway. Luckily, the ZWT-containing serum inhibited the
expressions of PI3K, p-AKT, and p-mTOR, but upregulated the
expression of p-AMPK (Figures 7C,D). These results demonstrated
that ZWT induced mitophagy in CGN probably by inhibiting PI3K/
AKT/mTOR and upregulating the AMPK pathway in some level.

The Intervention of PI3K Inhibitor and
Agonist Against Zhen-wu-tang
PI3K inhibitor LY294002 and agonist insulin-like growth factor-1
(IGF-1) were used alone or with ZWT to intervene in podocytes
in this study. As shown in Figure 8, LY294002mostly reduced the
protein expressions of PI3K, p-AKT, and p-mTOR compared
with the TNF-α group, and ZWT combined with LY294002
significantly enhanced the inhibitory effect of ZWT on PI3K
expression. Conversely, IGF-1 upregulated the PI3K/AKT/
mTOR pathway in podocytes. More importantly, ZWT
combined with IGF-1 could obviously downregulate the
activation of the PI3K/AKT/mTOR pathway compared with

ZWT. These results further confirmed the inhibitory effect of
ZWT on the PI3K/AKT/mTOR pathway, which maybe an
essential regulatory mechanism of ZWT on CGN therapy.

DISCUSSION

In the current study, we investigated the protective effects and
regulatory mechanisms of ZWT in CGN. We found that ZWT
protected kidney injury in CGN model rats. Furthermore, ZWT
ameliorated mitochondrial dysfunction in renal tissue of CGN
model rats and damaged podocytes induced by TNF-α. The
mechanisms of ZWT above is related to inducing mitophagy
through the PI3K/AKT/mTOR and AMPK pathways.

Mitochondria are classically described as energy-producing
organelles through generation of adenosine triphosphate (ATP).
Mitochondria also plays a critical role in oxidative
phosphorylation, fatty acid oxidation, and amino acid
catabolism (Chan, 2006). Mitochondrial disorder results from
amutant in the mitochondrial DNA or nuclear genes that impede
mitochondrial function. Upon stress, impaired mitochondrial
dynamics and incomplete mitochondrial membrane lead to the
loss of membrane potential, mitochondrial permeability
transition, reactive oxygen species (ROS) production, release of

FIGURE 6 | ZWT promoted mitophagy in podocytes. (A, B) The protein blots and quantitative analysis of LC3 II/I, p62, HSP60, and TOMM20. The obtained values
of HSP60, TOMM20, and p62were normalized to GAPDH; LC3 II values were normalized to LC3 I. (C, D) The representative images and quantitative analysis of LC3 and
COX IV colocalization (×400, scale bar � 20 μm). Data are represented as mean ± SD (n � 3). #p < 0.05, ##p < 0.01 versus control group, *p < 0.05 and **p < 0.01 versus
TNF-α group.
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apoptogenic factors, and energetic failure to induce cell injury and
death (Nunnari and Suomalainen, 2012). Human kidneys
demand lots of energy for filtration of blood, regulation of
blood pressure, reabsorption of nutrients, maintenance of fluid
homeostasis and electrolytes. Not only that: renal function
depends on interplay between multiple cell types including
endothelial cells, podocytes, mesangial cells, and
tubulointerstitial cells, which relies on regular mitochondrial
function (Maezawa et al., 2015). Therefore, maintaining
normal status of the mitochondria is central for kidney
function. Imbalance in mitochondrial homeostasis has been
implicated in the development and progression of CGN.
Mitochondrial protection is an effective therapeutic strategy
for various kinds of kidney diseases (Tang and Dong, 2016).
Podocytes are terminally differentiated epithelial cells, which
require a high energy demand to remodel foot processes in

the glomerulus by maintaining cytoskeletal and extracellular
matrix proteins. Podocyte injury or loss is the main reason of
albuminuria and leads to progression of glomerular diseases
(Gujarati et al., 2020). In the present study, ZWT protected
against podocyte function by inhibiting the fusions of foot
processes and incrassation of the basement membrane.
Moreover, TNF-α damaged cultured mouse podocytes with
decreased levels of ATP content and MMP, which were
ameliorated by ZWT. These results suggested that ZWT
suppressed mitochondrial dysfunction to protect podocyte
injury in CGN.

Even though clinic application and our previous studies have
proved the pharmacodynamics of ZWT on kidney diseases, there
is a lack of information about the pharmacokinetics of ZWT.
Some research demonstrated that the exact or the active
components of ZWT improved mitochondrial function.

FIGURE 7 | ZWT regulated the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR and AMPK pathways in CGN. (A,B) The protein blots and quantitative analysis of
PI3K, p-AKT, p-AMPK, and p-mTOR in renal tissue. (C,D) The protein blots and quantitative analysis of PI3K, p-AKT, p-AMPK, and p-mTOR in podocytes. The obtained
values of PI3K were normalized to GAPDH, p-AKT values were normalized to AKT, p-AMPK values were normalized to AMPK, and p-mTOR values were normalized to
mTOR. Data are represented as mean ± SD (n � 3). #p < 0.05, ##p < 0.01 versus normal or control group, *p < 0.05 and **p < 0.01 versus the model group or TNF-α
group. The intervention of PI3K inhibitor and agonist against ZWT.
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Compounds mesaconitine, benzoylaconitine, and
benzoylhypacoitine might be the principal active components
of Fuzi for the main activities of energy metabolism of the
mitochondria (Zheng et al., 2014). The major component of
Atractylodes macrocephala Koidz, atractylenolide III ameliorated
cerebral ischemic injury by inhibiting mitochondrial fission
dependent on the JAK2/STAT3/Drp1 pathway (Zhou et al.,
2019). Paeoniflorin, from Paeonia lactiflora Pall, protected SH-
SY5Y cell injury by preventing mitochondrial dysfunction (Wang
et al., 2014). The extract of Zingiber officinale Roscoe and its
major active component 6-gingerol promoted mitochondrial
biogenesis via the AMPK/PGC1-α signaling pathway (Deng
et al., 2019). However, it is unclear what the active
components of ZWT are for mitochondrial function regulation
in CGN.

Oxidative stress is known as the main pathological cause of
glomerulonephritis. The intracellular ROS mainly generated,
while mitochondria are producing ATP via oxidative
phosphorylation. Excess ROS triggers changes in
mitochondrial structure including the opening of
mitochondrial permeability transition pore, which result in
mitochondrial dysfunction, organelle swelling, and eventual
cell death (Zorov et al., 2014). As a result, damaged
mitochondria, as the main source of ROS, produces more
ROS, which causes a vicious cycle to aggravate kidney damage.
Some researches proved that some mitochondria-targeted
antioxidants, such as MitoQ, CoQ10, Mito-CP, and SkQ1,
were beneficial in acute kidney diseases (Kezic et al., 2016).
The concentrations of hydrogen peroxide and superoxide in
the mitochondrial matrix are assessed mainly by rates of
production, the activities of mitochondrial antioxidant
enzymes, superoxide dismutase-2 (SOD2) and peroxiredoxin-3
(PRDX3), and catalase (CAT) (Brand, 2020). Therefore, the
mRNA levels of SOD2, CAT, and PRDX3 in renal tissue of
CGN rats were measured in this study. Results showed that the
decrease in CAT, SOD2, and PRDX3 were significantly improved

under ZWT administration. Moreover, ZWT-containing serum
inhibited the accumulation of mtROS in damaged podocytes.

Mitophagy is a selective form of autophagy that eliminates
redundant or damaged mitochondria (Wang and Klionsky,
2011). During mitophagy, mitophagy receptors bind certain
ubiquitinated mitochondrial outer membrane proteins, such as
translocase of the outer mitochondrial membrane 20
(TOMM20), leading to the proteasomal degradation of these
mitochondrial proteins independent of microtubule-associated
protein 1 light chain 3 beta (MAP1LC3B/LC3B) (Stolz et al.,
2014). SQSTM1/p62 (p62), as mitochondrial outer membrane
receptors, binds to LC3 to mediate mitophagy (Lazarou et al.,
2015). It is reported that aberrant p62 affects the balance of
mitophagy and further disturbs mitochondrial quality control
(Liu et al., 2017). Under stressful conditions, mitophagy is
induced as an adaptive or defense mechanism for maintaining
mitochondrial function and thereby cell survival. So far, defective
mitophagy has been implicated in the pathogenesis of a variety of
human illnesses including neurodegenerative diseases, metabolic
diseases, and cardiovascular diseases (Killackey et al., 2020). As
mentioned above, mitochondrial injury contributes critically to
abnormal kidney repair. Thus, timely removal of injured
mitochondria may facilitate kidney damage. Our present study
showed that ZWT induced mitophagy and macro-autophagy in
CGN model rats by increasing the expression of LC3 together
with mitochondrial complex IV protein (COX IV) in the
glomerulus, as well as decreasing the expressions of p62,
TOMM20, and heat shock protein 60 (HSP60). Meanwhile,
ZWT increased the number of autophagosome and
mitochondrial autophagosome in the renal cortex. Similarly,
ZWT-containing serum improved mitophagy in podocytes
simulated with TNF-α as well. These results suggested that
ZWT ameliorated mitochondrial function in the kidneys
possibly through inducing mitophagy.

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR) signaling pathway plays an

FIGURE 8 | The intervention of PI3K inhibitor and agonist against ZWT. (A,B) The protein blots and quantitative analysis of PI3K, p-AKT, and p-mTOR. The
obtained values of PI3K were normalized to GAPDH; p-AKT values were normalized to AKT. p-mTOR values were normalized to mTOR. Data are represented as mean ±
SD (n � 3). #p < 0.05, ##p < 0.01 versus control group, *p < 0.05 and **p < 0.01 versus the TNF-α group.
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important role in the regulation of cell survival, growth, and
proliferation. mTORC1 is considered a negative regulator of
autophagy because suppression of mTORC1 activates
autophagy (Kaushal et al., 2019). Downregulation of the PI3K/
AKT/mTOR pathway protects against lipopolysaccharide-
induced acute kidney injury by enhancing autophagy (Zhao
et al., 2020). Recent studies manifested that mTOR inhibitor
rapamycin improved mitochondrial dysfunction via lupus-prone
mice (Oaks et al., 2016) and inhibits apoptosis by activating
mitophagy in spinal ischemia–reperfusion injury (Li et al., 2018).
Thioredoxin-interacting protein (TXNIP)-dependent activation
of mTOR signaling pathway contributes to dysfunctional
mitophagy in the diabetic kidneys (Huang et al., 2016).
Consequently, the PI3K/AKT/mTOR signaling pathway may
play a central role in regulating mitophagy in CGN. In the
present study, we investigated the regulating effects of ZWT in
the PI3K/AKT/mTOR pathway. Luckily, ZWT suppressed the
increased protein expressions of PI3K, p-AKT, and p-mTOR in
the CGN model rats and damaged podocytes. In addition, the
regulatory effects of ZWT on the PI3K/AKT/mTOR pathway
were disturbed by PI3K inhibitor LY294002 and agonist insulin-
like growth factor 1 (IGF-1).

The AMP-activated protein kinase (AMPK) is a master
regulator of metabolism, which is regulated by a wide array of
metabolic stresses. Recent studies revealed that AMPK are
involved in various aspects of mitochondrial homeostasis, such
as mitophagy (Herzig and Shaw, 2018). In the present study, we
also found that ZWT activated the AMPK pathway in CGN
model rats and damaged podocytes in some degree, which
indicated that ZWT not only regulated the PI3K/AKT/mTOR
pathway but also adjusted the AMPK pathway in CGN.

In conclusion, our present study provided evidence that ZWT
protects against kidney injury and podocyte injury in CGN model

rats by amelioratingmitochondrial function. Furthermore, the above
protective mechanisms of ZWT are irrelevant to the induction
mitophagy via the PI3K/AKT/mTOR and AMPK pathways.
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