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ABSTRACT

Along with rapid advances in high-throughput-sequencing technology, the development and application of

molecular markers has been critical for the progress that has been made in crop breeding and genetic

research.Desirablemolecularmarkers shouldbeable to rapidly genotype tensof thousandsof breeding ac-

cessions with tens to hundreds of markers. In this study, we developed a multiplex molecular marker, the

haplotype-tag polymorphism (HTP), that integrates Maize6H-60K array data from 3,587 maize inbred lines

with 6,375 blocks from the recombination block map. After applying strict filtering criteria, we obtained

6,163 highly polymorphic HTPs, which were evenly distributed in the genome. Furthermore, we developed

a genome-wide HTP analysis toolkit, HTPtools, which we used to establish an HTP database (HTPdb)

covering the whole genomes of 3,587 maize inbred lines commonly used in breeding. A total of 172,921

non-redundant HTP allelic variations were obtained. Three major HTPtools modules combine seven algo-

rithms (e.g., chain Bayes probability and the heterotic-pattern prediction algorithm) and a new plotting en-

gine named ‘‘BCplot’’ that enables rapid visualization of the background information of multiple backcross

groups. HTPtools was designed for big-data analyses such as complex pedigree reconstruction andmaize

heterotic-pattern prediction. The HTP-based analytical strategy and the toolkit developed in this study are

applicable for high-throughput genotyping and for genetic mapping, germplasm resource analyses, and

genomics-informed breeding in maize.
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INTRODUCTION

Advances in genomics research have included the development

of various technologies that facilitate the efficient and accurate

translation of genetic variations into crop improvements. Molec-

ular breeding accelerates the selection process by changing the
Plant C
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genotypes and even the haplotypes of animals and plants. Ob-

taining a high-quality haplotype map of a species will promote
ommunications 3, 100331, July 11 2022 ª 2022 The Authors.
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the development of industries related to that species while also

enhancing themolecular breeding of animals and plants to accel-

erate the selection of new varieties and the prevention of human

diseases.

Developing cost-effective genotyping platforms for breeding is

still a major objective of breeders. To be useful for breeding, mo-

lecular markers should ideally be able to quickly genotype tens of

thousands of breeding accessions with tens to hundreds of

markers (Rasheed et al., 2017). Thus, a comprehensive

haplotype map may be useful. An effective strategy for

minimizing genotyping costs during breeding involves fully

exploiting pre-existing genomic data. Because of linkage

disequilibrium and the coinheritance of sequence variants within

a single haplotype, a subset of representative variants (i.e., tag

variants), including SNPs and insertions or deletions (InDels),

may be sufficient for identifying haplotypes. Therefore, a haplo-

type map can extrapolate the data from existing whole-genome

sequences or arrays and determine the genotypes of the individ-

uals in a breeding group. Thus, it uses pre-existing whole-

genome sequences or array data to minimize the amount of

new genotype data that researchers must generate (Jensen

et al., 2020; Torkamaneh et al., 2021).

In the present study, we developed a multiplex molecular

marker, the haplotype-tag polymorphism (HTP), that integrates

the Maize6H-60K array data from 3,587 maize inbred lines. On

the basis of a rigorous evaluation, we demonstrated that the

HTP is a high-resolution and highly efficient multiplex molecular

marker. In addition, HTPs are genome-wide haplotype tags use-

ful for efficiently assessing the whole-genome background of

tens of thousands of samples at the same time. HTPs can

simplify the characterization of whole genomes on the basis of

seamless blocks resulting from recombination (i.e., the haplo-

type tag of the whole genome). These cosegregating blocks

can be efficiently and accurately detected and analyzed.

Furthermore, we developed a custom Python script called

HTPtools as a genome-wide HTP analysis toolkit. We used

HTPtools to establish an HTPdb (i.e., a haplotype-tag allelic

variation and frequency database) covering the whole genomes

of 3,587 maize inbred lines commonly used for breeding

worldwide and generated 172,921 non-redundant HTP allelic

variations. We also developed ‘‘Data prediction,’’ ‘‘Group

analysis,’’ and ‘‘Data comparison’’ as HTPtools advanced appli-

cation modules, which integrate seven algorithms (such as

chain Bayes probability, the expectation maximization (EM) al-

gorithm, and the heterotic-pattern prediction algorithm) and a

new plotting engine named ‘‘BCplot’’ (Python Graphics) for

rapidly visualizing the background information of a backcross

group. We designed HTPtools to satisfy the increasing require-

ments for big-data analyses of germplasm resources and

genomics-informed breeding, including the reconstruction of

complex pedigrees, the prediction of maize heterotic patterns,

and the assessment of the genomic background of a backcross

group via the visualization of interactive data. Our results sug-

gest that the HTP and HTPtools developed in this study will

be useful for efficient and high-throughput genotyping, germ-

plasm resource analyses, and genomics-informed breeding of

maize. Because maize is a model genetic system, the HTP-

based analytical strategy described herein may be relevant for

investigating genetic variations and marker-assisted breeding
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in other crops. The robustness of HTPtools has been validated

by research institutions, making it a useful tool for breeders.
RESULTS AND DISCUSSION

Development of a database consisting of genome-wide
HTPs

We previously converted SNPs generated by genotyping by

sequencing into effective recombination blocks (Li et al., 2015).

We then updated our Maize6H-60K array (Tian et al., 2021) with

66,905 loci (60,830 SNPs and 6,007 new InDels), including 68

loci (65 SNPs and 3 InDels) from the chloroplast genome,

based on the Affymetrix Axiom platform. Next, we updated the

recombination block map that we developed using the B73

AGP_v3 reference genome and integrated 6,375 blocks from

the recombination block map and 66,905 loci to generate a

preliminary version of the haplotype tag using the same

reference genome. During this process, cosegregating SNP

and InDel markers were combined in a recombination block to

be used as an effective haplotype tag (i.e., HTP). The high

quality of the SNPs and InDels from the Maize6H-60K array has

been confirmed. Thus, they were used as the core set to repre-

sent each haplotype block (i.e., to ‘‘tag’’ each block). Finally, we

obtained 6,163 HTPs (6,163 loci) (Supplemental Table 1), which

are multiple seamlessly connected blocks covering 98.85% of

the B73 reference genome. The HTP distribution density

indicated that despite a few large gaps, the tags were uniformly

distributed across the maize genome, with an average genetic

distance of about 0.23 cM between adjacent HTPs (Figure 1D).

Their genome-wide coverage was an important feature of the

HTPs that enabled the reconstruction of complex pedigrees,

the prediction of maize heterotic patterns, and the visualization

of background information of backcross groups.

We subsequently collected maize germplasm resources from

various regions (e.g., China and the US). We obtained a total of

3,587 accessions, including important elite inbred lines from

each region (e.g., B73, Mo17, HZS, Dan340, and Zheng58), and

genotyped them using the 6,163 HTPs. We then constructed an

HTPdb comprising 172,921 non-redundant HTP allelic variations

from the 3,587 accessions (Supplemental Table 2). Accordingly,

we comprehensively evaluated the database and divided the

3,587 accessions into 11 groups on the basis of the 6,163 HTPs

(Figure 1C). The number of pan-HTP (total HTP allelic variations)

increased as groups were added (i.e., 85,546 allelic variations in

one group to 172,911 allelic variations in 11 groups) (Figure 1E).

By contrast, the number of core HTPs (core HTP allelic

variations) decreased as groups were added (i.e., 85,546 allelic

variations in one group to 20,986 allelic variations in 11 groups).

Statistical analyses revealed that the 11 groups included 20,986

core allelic variations and 14,654 private allelic variations

(Supplemental Table 1). When the group number increased to

nine groups, the total number of non-redundant HTP allelic varia-

tions nearly plateaued, reflecting the representativeness of these

3,587 maize accessions (11 groups). We also determined that the

proportions of non-redundant HTP allelic variations increased

with every 10 inbred lines, with 100 random selections during

each sampling. Our results indicated that a plateau was ap-

proached when the sample size reached 1,450, and at least

95% of the total allelic variations were included (Figure 1F).
rs.



Figure 1. Evaluation of the HTPs.
(A) Circos graph presenting the distribution of all HTPs across the maize genome. I, physical position of each HTP on 10 chromosomes; II, number of

SNPs and InDels in each HTP; III, PIC value of each HTP; IV, red triangles indicate the 10 HTPs with the highest PIC values on each chromosome; V,

number of allelic variations for each HTP.

(B) The selection method is based on the fixed number of different loci (abscissa). The ordinate represents the R-VDP index. Forty SSR, SNP, InDel, and

HTP markers were selected as DNA fingerprints to determine the varieties of 2,800 samples. The identification results are displayed according to the

R-VDP.

(C) Heatmap presenting the HTP distribution density across the 10 maize chromosomes.

(D) Using 6,163 HTPs, 3,587 samples were genetically clustered into the following 11 groups: tropical (T), flint inbred lines (F), waxy (W), LvDa Red Cob

(LRC), HZS-improved line (HIL), Improved Reid (Impr. Reid), Reid, Lancaster (LAN), P, Iodent (IDT), and X.

(E) Numbers of pan (total HTP allelic variations) and core (core HTP allelic variations) HTPs as maize groups were added. The 3,587 maize inbred lines

were grouped into 11 groups according to the HTPs.

(F) Proportions of HTP allelic variations. Ten samples were randomly selected each time. The shaded area represents 100 repetitions for each sampling

time-point.
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An HTP-based analytical strategy can divide the whole genome

into blocks with haplotype tags during analyses of the genomic

background of germplasm resources. A single HTP or a few

HTPs may be selected as independent molecular markers for va-

riety identification, which may be relevant for protecting intellec-

tual property rights. A survey of all HTPs in the maize B73 refer-

ence genome revealed that our 6,163 nuclear HTPs were

evenly distributed in the whole genome and were highly polymor-

phic (Figure 1A). Each HTP contained several SNPs and InDels.

Among the 6,163 HTPs, 2,811 had more than 10 variations

(SNPs and InDels combined). In addition, our HTPs were highly

informative. More specifically, 5,549 of the markers had a

polymorphism information content (PIC) value exceeding 0.5,

and 576 had a PIC value greater than 0.9. Furthermore,

regarding their polymorphism, 811 HTPs had more than 50

allelic variations, and 12 HTPs had more than 100 allelic

variations (Supplemental Table 1). We also compared the

variety discrimination power of SNPs, simple sequence repeats

(SSRs) (Wang et al., 2014, 2017), InDels, and HTPs using

VDPtools (Figure 1B) (Yang et al., 2021). Our results indicated

that the HTPs were better for distinguishing between maize

varieties than the other three molecular markers, making them

potentially useful for protecting crop-related intellectual property

rights.

The summary statistics for the HTPs and HTPdb are available on-

line (https://htp.plantdna.site/database/nucleus-haplotype).
HTPtools and the online analysis platform

We developed an HTP analysis toolkit called HTPtools based on

the Python3 environment. More specifically, we used an interac-

tive command line tool built using the ‘‘Click’’ module. HTPtools

can run on Linux and Windows platforms where Python3 has

been installed, with good cross-platform features. The basic

function of HTPtools involves the conversion of Maize6H-60K

array data into HTP data (data format conversion or preprocess-

ing). Using HTPtools, we established an HTPdb covering 3,587

maize inbred lines commonly used for breeding worldwide. In

addition to its basic function, HTPtools has the following three

advanced application modules: Data comparison, Data

prediction, and Group analysis. The Data comparison module

integrates an efficient genome-wide haplotype-tag sequence

comparison algorithm and an HTP comparison algorithm (inbred

line and hybrid).

The core aspect of an HTP-based analytical strategy involves the

integration of available information on whole genomes of tens of

thousands of samples and the subsequent analysis using haplo-

type tags. Thus, we developed the Data prediction and Group

analysis advanced application modules that exploit the charac-

teristics of HTPs to generate whole-genome haplotype tags.

First, we developed an inbred-line pedigree analysis (ILPA) mod-

ule and integrated it into the Data prediction module, which can

be used to identify candidate inbred lines for ‘‘Inbred X’’ and for

reconstructing pedigree breeding histories, especially those of

incomplete pedigrees. We also developed a heterotic-pattern

analysis (HPA) module according to the HTPs and then integrated

it into the Data prediction module. The HPA module can be used

to infer heterotic patterns. Second, the Group analysis module

was designed to incorporate a genome-wide background
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assessment pipeline for maize groups and our newly developed

plotting engine, BCplot (Python Graphics), into HTPtools,

enabling the rapid visualization of background information for a

group with mass samples.

We also developed an algorithm for predicting HTP loci on the ba-

sis of the haplotype-tag dictionary (HTPdb) and integrated it into

the HTP predicting module, which was also integrated into the

Data prediction module. The main theory underlying this method

is chain Bayes probability. We used group data to construct a

haplotype-tag dictionary according to the EM algorithm. Fre-

quency information was included for each haplotype tag in the

dictionary. This dictionary can be used to predict the full haplo-

type tag of a specific sample with individual SNPs/InDels within

an HTP (each HTP contained several SNPs and InDels). Accord-

ingly, even with very few HTP loci, we can obtain the complete

haplotype-tag information using the generated haplotype-tag

dictionary. This method can substantially decrease the number

of HTP loci needed for a particular application.

HTPtools is available online (https://github.com/plantdna/htp).

We developed a freely accessible online platform using Next.js

technology (https://htp.plantdna.site/). This platform enables re-

searchers and breeders to identify varieties and conduct genetic

analyses.
Inferring Inbred X using HTPtools

We developed a method that supports complex pedigree recon-

structions via the genome-wide HTPs and HTPtools along with

the maize HTPdb (from 3,578 accessions). Details regarding the

parents of several maize varieties generated via breeding have

been lost. In a previous study, the unknownparentwas designated

as Inbred X (Lai et al., 2010). In the current study, we used our

maize HTPdb and the Data prediction module of HTPtools to

identify candidate inbred lines for Inbred X. To verify the

reliability of our method, we inferred the identity of Inbred X in a

known pedigree. Jing2416 and Jing24 are elite inbred lines of

the Chinese HIL heterotic group, whose pedigree history is well

known. The parents of Jing2416 are Jing24 and ‘‘5237.’’ Jing24

was considered to be Inbred X in this pedigree.

After compiling the HTP data for Jing2416 and 5237, we used the

ILPA module to infer that Jing2416 inherited part of its genome

only from ‘Inbred X’ (2,936 HTPs, ‘Inbred X’ private HTPs) (orange

lines in Figure 2A, 2B and 2C). The remaining genomic regions

were filtered out in the next step (3,227 HTPs, Filtered HTPs)

which were likely inherited from two ways, one was ‘5237’ only,

another was ‘5237’ and ‘Inbred X’ shared. (gray lines in

Figure 2A and 2B) (Supplemental Table 3). The ILPA module

was then used to identify the outliers (details are in Methods) in

the data for single and continuous HTPs (R2 seamlessly

connected HTPs) in the genomic regions from Inbred

X private HTPs (Figure 2C) and to decrease the background

noise. We detected 34 long continuous fragments (LCFs) in

the Jing2416 genome that contained multiple seamlessly

connected HTPs, with an average length of approximately 13

Mb. An earlier investigation revealed that meiotic recombination

is predictable across diverse maize hybridizations (Rodgers-

Melnick et al., 2015). Therefore, LCFs were used to infer Inbred

X. We next sorted the LCFs on Jing2416 by length (number of
rs.
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Figure 2. Inferring Inbred X using HTPs during maize breeding.
Inferring the HTPs in Inbred X in the Jing2416 breeding pedigree.

(A) Jing24 was considered to be Inbred X during the breeding of Jing2416.

The gray lines represent the Jing2416 inherited part of its genomic regions

which were likely inherited from two ways, one was ‘5237’ only, another

was ‘5237’ and ‘Inbred X’ shared. The orange lines represent Jing2416

inherited part of its genome only from ‘Inbred X’.

(B) After completing the genome-wide HTP comparison, the proportions

of the Jing2416 genome inherited from ‘Filtered HTPs’ and ‘Inbred X pri-

vate HTPs’ were inferred.

(C) ‘‘Fragment Length’’ represents the number of HTPs in each fragment.
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continuous HTPs). Then, the longest LCF (HTP5611–HTP5713)

was used to identify the matched fragment in the database

(https://htp.plantdna.site/analysis/ilpa) using a developed LCF

matching algorithm. On the basis of breeding history, we

excluded varieties that were apparently bred later than

Jing2416, enabling us to infer that the unknown parent was

Jing24 (LCF matching degree: 0.9318). We then analyzed the

second (HTP3839–HTP3937) and third (HTP5498–HTP5594)

longest LCFs. The results showed that all three LCFs were

accurately inferred as being from Jing24 (mean LCF matching

degree: 0.917). One of the two parents of Jing2416 is known.

Our findings suggested that the unknown parent is Jing24.

Maize heterotic patterns revealed by HTPtools

Heterosis is a common phenomenon that has been exploited to

improve the production of many crops, including rice (Oryza sat-
Plant C
iva), cotton (Gossypium hirsutum), and maize (Zea mays), and hy-

brids are commercially available. Analyses of heterotic patterns

can assist government departments with the regulation of com-

mercial hybrids, but some of the archived information about

hybrid pedigrees is inaccurate and/or incomplete. The method

for predicting heterotic patterns we developed relies on big

data validation to obtain information on hybrid heterotic patterns

(i.e., information about the heterotic group of the hybrid parents).

This method can be used to cross-reference the archival data or

to validate data, which is important for future maize breeding and

related research.

In this study, we developed an HPA module on the basis of HTPs

and an heterotic-pattern prediction (HPP) module, which were

subsequently integrated into HTPtools. Available information on

the HTPs in the maize group can be used to complete virtual hy-

bridizations and obtain virtual heterotic patterns. Researchers

can select known maize groups with Maize6H-60K array data

or HTP data in HTPtools and determine the combination of heter-

otic patterns that must be constructed. Once the information is

collected, the HPP module with the heterotic-pattern prediction

algorithm can infer the hybrid heterotic patterns.

To further clarify the utility of the HPA and HPP modules in

HTPtools, we selected 674 elite inbred lines, including important

inbred lines used in China for breeding (e.g., Jing2416, Zheng58,

Chang7-2, and Jing92), and 100 Chinese state-approved maize

hybrids with known heterotic patterns (e.g., ZD958, ND108, and

XD20, which are widely cultivated in China, and their parents as

triplets) as representative samples (Figure 3). First, we

developed an HTPdb for the 674 inbred lines, which were

divided into six groups. Second, accessions sampled from the

six groups were hybridized within and between groups to

generate virtual hybrids using the HPA module. We generated

21 heterotic-pattern prediction models (from 21 crosses)

(details are in Methods). Information on the two groups that

included the parents of the virtual hybrid was recorded and

used for analyses in the HPP module. In this study, the private,

core, and dispensable HTP allelic variations of each group were

extracted using the HPP module and used for model

evaluation (Figure 3A and 3C) (Supplemental Table 4). HTP

allelic variations present in all 6 groups were defined as core

HTP allelic variations, those present in 2 to 5 groups were

defined as dispensable HTP allelic variations, and those

present in only one group were defined as private HTP allelic

variations. We then used the HPA function to randomly

construct 2,100 virtual hybrids (100 in each heterotic pattern)

(Supplemental Table 6) to evaluate the reliability of the HPP

module. The results indicated that the predictions made by the

algorithm were 100% accurate. Next, the heterotic patterns of

the 100 Chinese state-approved hybrids were inferred by the

HPP module with the heterotic-pattern prediction algorithm.

Our results indicated that the predicted parental mating patterns

of 98 hybrids were correct (98% correctly inferred) (Figure 3B;

Supplemental Table 4), implying that our method for inferring

heterotic patterns is reliable.

Global maize production mainly involves the cultivation of hybrid

lines (Masuka et al., 2017a, b). Therefore, heterosis serves as the

foundation of modern crop breeding (Birchler, 2016). The

analytical strategy based on HTPs and HTPtools described
ommunications 3, 100331, July 11 2022 ª 2022 The Authors. 5
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Figure 3. Crossing patterns during maize breeding exploiting heterosis revealed using HTPs.
(A)Private, core, and dispensable HTP allelic variations for eachmaize group. Individual dots (yellow) at the bottom of the graph represent the private HTP

allelic variations (non-redundant) in each group. Two connected dots indicate HTP allelic variations (non-redundant) shared by two groups. Similarly, six

connected dots indicate HTP allelic variations (non-redundant) shared by six groups.

(B) Gray curves within the circle represent the crossing patterns (e.g., HIL 3 Impr. Reid and P 3 LRC).

(C) Total number of HTP allelic variations, private HTP allelic variations, and HTP allelic variations shared by two groups (Shared (2p total)), as well as the

corresponding proportion in each group. The prediction score (6c average) represents the average score of the heterotic-pattern prediction model for the

six crossing patterns for each group (e.g., for HIL: HIL 3 HIL, HIL 3 P, HIL 3 LAN, HIL 3 Impr. Reid, HIL 3 LRC, and HIL 3 Reid). See Supplemental

Table 4 for the complete data.
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herein is potentially useful for predicting maize heterotic patterns.

In addition to being an important crop species, maize is also a

model genetic system. Thus, it is likely that the HTPs and

HTPtools developed in this study will facilitate the discovery of

new genetic variations and marker-assisted breeding in other

crops.
Background selection using HTPs during backcross
breeding

Regardless of whether they use traditional backcross-breeding

methods or biotechnology-based methods involving transgenic

plants and gene editing, breeders must determine the similarity

in the genetic backgrounds of the progeny group material and

the recipient (i.e., the genetic background recovery rates). Accu-

rate genetic background analyses should enable the visualization

of the overall background recovery in the recombination ex-

change blocks throughout the whole genome in all group sam-

ples. The HTP markers proposed in this study are distributed

throughout the genome. Moreover, they can reflect the dynamic

changes in the recombination process and can be used to visu-

alize the recovery of the genetic background, which is ideal for

molecular-marker-assisted breeding.

To verify the reliability of an HTP-based analytical strategy, we

used HTPs to conduct backcross breeding tests (details in

Methods). Using the HTP comparison algorithm and BCplot,

HTPtools generated a genetic background recovery map for all
6 Plant Communications 3, 100331, July 11 2022 ª 2022 The Autho
samples (Figure 4A; (Supplemental Data 1; Supplemental

Table 7). The Group analysis module can help breeders

accurately screen out individual samples with a high background

recovery rate, thereby shortening the generation time.

The Group analysis module can also generate graphs presenting

additional data for the backcross groups, including the propor-

tion of samples with different genetic background recovery rates

(Figure 4B). The background recovery rates of the samples in the

BC1 generation exhibited a normal distribution trend. The back-

ground recovery rates of these samples were mostly concen-

trated between 0.4 and 0.6 (about 82% of all samples), whereas

the background recovery rates of the BC2 and BC3 samples were

higher and more concentrated. More specifically, the back-

ground recovery rates of the BC2 and BC3 samples were mainly

0.8–0.9 (about 71.8% of all samples) and 0.9–1.0 (about 57.3%

of all samples), respectively.

The plotting engine BCplot can graphically present the proportion

of group samples in different background recovery-rate intervals.

This information is important for establishing themaize backcross

group size and may be used to prevent breeders from blindly

increasing or decreasing the group size. The distribution of

the samples that exchanged genetic material from each

chromosome (Figure 4C) and the frequency of the exchange of

the whole-genome HTPs on 10 chromosomes (Figure 4D) were

determined. As the number of generations increased, the

average number of recombinations and exchanges of whole
rs.



Figure 4. Background selection using HTP markers during backcross breeding.
(A) Genetic background recovery map of individual backcross groups. Red represents the same genotype (HTP) as the recipient, gray represents the

same genotype as the donor, and yellow represents a heterozygous genotype. The sample with the highest recovery rate in different recovery intervals is

presented (BC1: 0.2–0.25, 0.25–0.3, 0.3–0.35, 0.35–0.4, 0.4–0.45, 0.45–0.5, 0.5–0.55, 0.55–0.6; BC2: 0.7–0.75, 0.75–0.8, 0.8–0.85, 0.85–0.9; BC3: 0.7–

0.75, 0.75–0.8, 0.85–0.9, 0.9–0.95, 0.95–1.0). See Supplemental Table 5 for the complete data. The black arrow indicates the recommended candidates.

(B) Proportion of samples with different genetic background recovery rates.

(C) Distribution of the samples that exchanged genetic material from each chromosome. The red line represents the average value.

(D) Frequency of the exchange of the whole-genome HTPs on 10 chromosomes. Black bars indicate the centromere regions.
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chromosomes of the samples decreased, as did the volatility.

Outliers were undetectable in all generations. The average

number of exchanges for all chromosomes, except for

chromosome 1 in the BC3 generation, was 0 (Figure 4C).
Plant C
Figure 4D presents the proportions of HTPs on each

chromosome that were exchanged in three generations for all

samples. There were almost no exchanges involving HTPs in

the centromere regions of the 10 chromosomes. The frequency
ommunications 3, 100331, July 11 2022 ª 2022 The Authors. 7
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of exchanges was low for the HTPs within a certain distance from

the centromere (on both sides), in contrast to the relatively high

frequency of exchanges for HTPs near the telomeres. As the

number of generations increased, the number of loci altered by

recombinations decreased.

Finally, this module can sort the recovery rates and directly

recommend candidates. Using the HTPs and the Group

analysis module, the background recovery rate of each sample

in the backcross groups was calculated and displayed. More-

over, the exchange frequency in each chromosomal block was

intuitively determined, which is useful information for breeding.

HTPtools can decrease the background selection time during

backcross breeding, especially for large groups comprising thou-

sands of samples. We developed HTPtools to provide breeders

with an efficient and convenient solution to problems associated

with data handling. Furthermore, HTPtools can display the back-

ground of all samples very intuitively and recommend the best

candidate.

METHODS

Maize materials, DNA extraction, and genotyping

We collected 3,587 maize inbred lines from the Maize Research Center,

Beijing Academy of Agriculture and Forestry Sciences (BAAFS) for this

study. All accessions were grown in the experimental field of the

BAAFS. Genomic DNA was extracted from the fresh leaves of individual

plants by the cetyltrimethyl ammonium bromide (CTAB) method (Wang

et al., 2011a). The quality and quantity of the extracted genomic DNA

were evaluated using a NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific, Wilmington, DE, USA) and by 0.8% agarose gel

electrophoresis, respectively, to ensure that the DNA was appropriate

for genotyping in the Maize6H-60K array.

All maize inbred lines were genotyped on the Affymetrix GeneTitan plat-

form according to the procedure recommended by Affymetrix (Axiom

2.0 Assay for 384HT Array Format AutomatedWorkflowUser Guide rev.5).

Development of HTPdb

First, all samples were genotyped using the Maize6H-60K array (Tian

et al., 2021) on the Affymetrix GeneTitan platform. We removed acces-

sions with a missing data rate greater than 10% after genotyping using

the Maize6H-60K array. Finally, the data from 3,587 accessions were

divided according to the chromosomes and 6,375 blocks from the recom-

bination block map. To obtain a set of high-quality HTPs, we filtered the

SNPs that satisfied one of the following criteria: cumulative heterozygosity

and missing data rate >0.7 or minor allele frequency (MAF) = 0. Next, we

constructed a haplotype phased blockmap using the EM algorithm (3,587

accessions were used to complete the imputation of the HTPs) and

generated an HTPdb.

HTPtools

HTP predicting algorithm development

We considered that each HTP has n loci (each locus in the HTP is an SNP

or InDel) and m HTP haplotype tag sequences (HTP allelic variation se-

quences). Now, we have an incomplete haplotype tag sequence (IHTS).

If there is one locus in the IHTS that is the same as the locus with the

same location of one haplotype-tag sequence from the haplotype-tag dic-

tionary (HTS-HTD), then the following Bayes formula applies:

PðHjEÞ = PðEjHÞ PðHÞ=PðEÞ;

where P(H) is the probability that the IHTS is in the HTS-HTD, P(E) is the

probability that one locus in the IHTS is the same as the locus in
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the HTS-HTD, and P(E|H) is the probability that when the IHTS is in the

HTS-HTD, the locus in the IHTS is the same as the locus in the HTS-

HTD. If only one locus in the IHTS is the same as the locus in the HTS-

HTD, this is designated as E1, whereas if two loci in the IHTS are the

same as loci in the HTS-HTD, this is designated as E2, and so on. Thus,

we need to calculate P(H|E1, E2, E3, . , En), which we abbreviate as

P(H|E1:n). On the basis of the chain rule of probability,

P

�
X
n

k = 1
Ek

�
=

Yn
k = 1

P

�
Ekj X

k�1

j = 1
Ej

�
;

we can obtain the chain of Bayes:

PðHjE1:nÞ =
PðEnjHÞ
PðEnÞ PðHjE1:n� 1Þ:

Now, we can calculate the result with the recursive method, which

means that we can calculate P(H|E1) first, then use the result to calcu-

late P(H|E2), etc. But, in each calculation iteration, there is difficulty in

calculating P(Ei), so we use another format of the Bayes calculation

formula:

PðHjEÞ = PðEjHÞPðH�Þ = ðPðEjHÞPðH�Þ + PðEj:HÞð1 � PðH�ÞÞ;

where the mathematical logic symbol : means ‘‘not.’’

In this formula format, we do not need to calculate P(E), and P(H*) is the

result of the previous calculation.

After we calculate each P(H|E) in the m HTP haplotype-tag sequences,

we then pick the sequence with the maximum value as the predicted

result.

Inferring Inbred X using HTPs

Using the inferred Jing2416 pedigree as an example, we compared the

HTPs in the whole genome to identify HTPs in the Jing2416 genome

that were not from 5237. We speculated that these different HTPs may

have been inherited only from Inbred X. These different HTPs were ex-

tracted and sorted according to fragment length, from single HTPs (whose

fragment length was 1) through continuous HTPs (i.e., R2 seamlessly

connected HTPs, whose fragment length was equal to the number of

HTPs). If the length of the fragment exceeded the upper limit (Q3 + 1.5 in-

terquartile range [IQR]), it was designated as an outlier. For determining

the outliers, Q3 represents the third quartile of the total number of single

and continuous HTPs, and IQR represents the difference between the

third quartile and the first quartile (i.e., IQR = Q3 � Q1), which is indicated

by the width of the box. Outliers were 1.53 the width of the box. We

selected the fragments belonging to the outlier, and the ILPA module

was used to reduce the background noise. The LCFs of Inbred X were

then generated from the ILPA module. Finally, we uploaded the

LCF data (in CSV format) to the HTP analysis platform (https://htp.

plantdna.site/analysis/ilpa), which was used to search for the best match

in the database.

Maize heterotic patterns revealed by HTPtools

We generated 21 heterotic-pattern prediction models (from 21 crosses)

using the HPA module. Then, the private, core, and dispensable HTP

allelic variations of each group were extracted using the HPP module

(Figure 3A and 3C; Supplemental Table 4). In addition, the proportions

of private and shared (by two groups) HTP allelic variations for each

virtual hybrid sample in the corresponding heterotic pattern were

determined. We then formulated the evaluation parameter (threshold) of

each model (i.e., prediction score) on the basis of the weight of the

private HTP allelic variations and the HTP allelic variations shared by

two groups for all virtual hybrids from each cross. For the prediction

score, we first calculated the proportion (G) of the private HTP allelic

variations and the HTP allelic variations shared by two groups

(corresponding to each heterotic pattern) in the genome of all virtual
rs.

https://htp.plantdna.site/analysis/ilpa
https://htp.plantdna.site/analysis/ilpa
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hybrids in each heterotic pattern. The prediction score (P) formula was

expanded as follows:

P = G+ 33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðGi � GÞ2
s

The predictions were unacceptable if the minimum threshold (R0.05) was

not satisfied (there was no upper limit). Therefore, the representativeness

of each group sample was important (Supplemental Table 4). The 21

models that satisfied the minimum threshold were analyzed using the

heterotic-pattern prediction algorithm to infer the hybrid heterotic

patterns.

Background selection using HTPs during backcross breeding

We selected 400 individual samples in the BC1 generation. After a fore-

ground-selection step (target gene detection), the 264 remaining individ-

ual samples were analyzed using HTPtools. Finally, one BC1 sample

was selected to produce the BC2 generation. A total of 400 individual sam-

ples in the BC2 generation were selected, but only 12 individual samples

remained after the foreground-selection step. Following the same analysis

using HTPtools, one sample was finally selected to produce the BC3 gen-

eration. After 400 individual samples in the BC3 generation were selected

and screened, the remaining 181 individual samples were evaluated using

HTPtools. Finally, one plant with a recovery rate of 99.4%was selected for

self-purification. The final sample with the target gene was obtained

following a field verification step.

We collected individual samples from each generation of the backcross

group after the foreground-selection step (target gene detection) and

usedHTPtools for genotyping. TheHTPtools basic function and theGroup

analysis advanced application module were used for the data format con-

version or preprocessing, noise reduction, and fitting, which was

completed on the basis of polynomial curve fitting and partial least

squares. This module can efficiently analyze the whole-genome haplo-

type-tag data from thousands of samples at the same time, thereby saving

time and resources. Subsequently, the whole-genome HTPs of each sam-

ple were superimposed on the backgrounds of the donor and recipient.

Evaluation of the HTPs

The R-VDP values were calculated using VDPtools (v.1.1.1.0) (Yang et al.,

2021). A total of 2,800 accessions were analyzed using 40 SSRs (NY/T

1432-2014 Technical Regulations for Identification of Maize Varieties in

China), 40 SNPs, 40 InDels, and 40 HTPs. The SSR analysis was

performed as previously described (Wang et al., 2011b). Markers that

were evenly distributed on the 10 chromosomes with a high PIC value

were selected.

Online analysis platform

The HTP online platform was built using the Next.js framework, with the

front end comprising Ant Design components powered by Rect.js. The

Next.js framework is a versatile router that connects web pages to the

APIs. The built-in Webpack package made it convenient to build and

deploy the released version. The Prettier tool standardized the code

format. The Eslint tool was used to eliminate obvious bugs from the

code. Babel maintained the compatibility between the normal JS and ES6.

Data availability

Wedeveloped a freely accessible online platform using Next.js technology

(https://htp.plantdna.site/). The summary statistics of the HTPs and

HTPdb are available online (https://htp.plantdna.site/database/nucleus-

haplotype). HTPtools is available online (https://github.com/plantdna/

htp).
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