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The outcome of Newtonian heating on the viscoelastic fluid plays a vital role in daily life applications such as
conjugate heat transfer around fins, heat exchanger, solar radiation, petroleum industry, etc. Also, rotation of
viscoelastic fluid has various importance in product-making industries and engineering. Viscoelastic dusty fluids
and Newtonian heating are applicable in nuclear reactors, gas cooling systems, control temperature of the system
and centrifugal separators, etc. Therefore, based on this motivation, the present study presents the Newtonian
heating effect on the dusty viscoelastic fluid. Additionally, a free convective heat transfer is taken for Couette flow
in a rotating frame along with a uniform applied magnetic field. The dust particles possess complex velocities due
to rotation and therefore it is the combination of the primary and secondary velocities. For the specified flow, the
entropy generation and Bejan number are also computed. Poincare-Light Hill technique has been used for the
solution of the system of partial differential equations. The velocity profile for dust particles and fluid are dis-
cussed in this article. The influence of different parameters on the Nusselt number, temperature profile, velocity of

fluid and dust particle is discussed thoroughly.

1. Introduction

The mechanical demeanor of various natural fluids is well sufficient
to illustrate in terms of Newtonian fluid theory. There are various
rheological sophisticated fluids like drilling mud, ketchup, shampoo,
paints, blood, and the solutions which are related to polymers are
partially illustrated by the theory of Newtonian fluids. Newtonian fluids
motion has been a significant subject in biomedical, chemical, and en-
gineering of environmental science [1]. In various feasible situations like
a contraction, chemical reactions, evaporation, and heat transfer are
consistently followed by the mass transfer procedure in Newtonian fluids.
The subject of mixed heat transfer and mass transfer is very accessible in
exceptional considerate of various statistics of mechanical transfer
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procedures because of the evidence. Additionally, in Newtonian fluids
the investigation of flows due to free convection with the repercussion of
heat transfer and mass transfer over a perpendicular plate have been
considered broadly in the literature because of its industrial and engi-
neering utilization in polymer manufacturing and food processing,
granular and fiber covering, and geothermal systems [2, 3, 4, 5, 6, 7].
On the other hand, various researchers are very keen to discuss the
multiphase flows of different fluids because of their considerable and
broad applications in the enhancement of transfer of heat in gas cooling
systems, in blood flows, in exhausting of rockets, and also in the atmo-
sphere where the flow of inert particles occur. The reality of multiphase
flows is detected in everyday life regularly, like flows of nature, industrial
and mechanical flows. Consequently, there is a privilege of options to
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Figure 1. Schematic illustration of the flow.
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Figure 2. Evolution of velocity (Fluid) against N.

inspect and find out important results for multi-phase flows in terms of
any type of fluid even suspended with distinct kinds of particles. A valid
amount of exploration can be found in accessible literature which is
associated with semi-infinite plans for distinct types of fluid flows
covered by various conditions, for example, Palani and Srikanth [8]
discussed the flow of a Newtonian fluid under the effect of a magnetic
field applied transversely and execute a magnetized mass transfer on a
vertical semi-infinite plate. Kumar [9] presented some important results
for skin fraction, pressure gradient, and velocities in different directions
analytically. He treated the flow of a couple of stress fluids passing
through a channel in the inclined form in which low Reynold's number
and long wavelength presumption restrained the nonlinear hydromag-
netic fluid flow. Similarly, in another paper, the flow of a steady viscous
fluid was investigated in a porous medium by Kumar [10]. The basic
theory of multiphase flow was introduced by Soo [11] for the first time in
1967, and he studies fluid dynamics in a multiphase system. Moreover,
different researchers investigate dusty flows in other consequences in the
literature. In this regard, Vimala [12] studies the motion of dusty fluid in

a channel. Similarly, Saffman [13] is presented an article in which they
illustrate the balance of gas in the laminar flows. Michael and Miller [14]
deliver the solutions for two problems in which they discussed the mo-
tion of dusty fluid formed due to the motion of the plate which is infinite.
They used the basic formulation derived by Saffman [13] and consider
that the gas accommodates dust particles' uniform dissemination.
Furthermore, the study of the flows of dusty fluid in cylindrical co-
ordinates and over the flat plate are presented by Healy [15]. Being
scientifically tempting and claiming, non-Newtonian fluids have been
considered broadly by researchers in different types of non-rotating
frames. Abhimanyu et al. [16] investigated microflows of a viscoelastic
fluid experiencing transients in rotational electro-hydrodynamics under
electrical double layer phenomena. Kaushik et al. [17] studied the
double-layer phenomenon for non-Newtonian rotational fluid. Further-
more, the fluid phenomena in a rotating microchannel studied by
Kaushik et al. [18] for electroosmotic flow, Balasubramanian et al. [19]
for viscoelastic fluid and Kumar Mondal and Wongwises [20] for MHD
micropump of nanofluids.
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Figure 3. Evolution of velocity (Dust particles) against N.
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Figure 4. Evolution of velocity (Fluid) against Re.

Similarly, some helpful attempts have also been modeled on the flows
of non-Newtonian fluids in rotating frames [21, 22, 23]. Dinesh et al. [24]
report, recently the influence of Forchheimer, MHD and Radiation Ab-
sorption for Unsteady Dusty Viscoelastic Fluid Couette Flow in an
Irregular Channel. Computational results are carried out and effect of
various parameters are discussed for all profiles. The convective flow
with mass and heat transfer with the consequence of a chemical reaction
and magnetic field has captivated the researchers with extensive
importance because the main reason behind such processes exists in
various wings of science and technologies. In a Couette flow model, mass
transfer procedures accommodate a fluid that flows according to the
laminar regime, which has a variety of applications in chemical engi-
neering processes. Some of the essential applications consist of coating
processes, liquid-solid eradication, and a biochemical system like mass
transfer actions in oxygenators, dialyzers, and similarly in other mem-
brane processes. The MHD free convection Couette flow was investigated
by Reddy et al. [25]. While Sinha [26] investigate three dimensional

Couette flow in the presence of chemical reaction and thermo-diffusion.
Later, Ali et al. [27] investigate a generalized Couette flow with heat and
mass transfer.

The physical significance of Newtonian heating is discussed broadly
in the literature. According to Newton's law of cooling, the rate of heat
loss of a body varies directly to the distinction of temperature between
the surrounding and the body. Newtonian heating performs a very
decisive role in heat exchanger designing, associate heat transfer about
fins, radiation of solar, heating and cooling processes of buildings, and in
petroleum industries. The matter of the convection of heat in the cylin-
ders invites a lot of researchers globally due to the enormous number of
applications in wires coating and polymer fiber spinning. Merkin [28]
discussed four distinct types of heat transfer to the liquid from the sur-
face. Keep in mind Mabood et al. [29] study the behavior of the flow of a
second-grade fluid with Newtonian heating in a vertical cylinder. He also
described these results numerically in the inclined magnetic field with
mixed convection. Murthy et al. [30] illustrate some important results
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Figure 5. Evolution of velocity (Dust particles) against Re.

related to the flow of Casson fluid with Newtonian heating and slip
condition on a stretchable linear cylinder. From these results, it is
observed that higher values of Newtonian heating boost up the capacity
of heat transfer and temperature of the fluid. Qaiser et al. [31] reported
the Newtonian heating effect for Walters-B nanofluid through numerical
assessment. Later Kamran and Wiwatanapataphee [32] report the influ-
ence of Newtonian heating for micropolar fluid along with chemical re-
action. While Ahmad and Nadeem [33] highlighted the applications of
CNT-based micropolar hybrid nanofluid flow with the effect of Newto-
nian heating.

As for as dusty viscoelastic fluid is concerned, it is one of the multi-
phase flows. The particular importance in various engineering disciplines
are heat transfer and flow attitude of viscoelastic fluid among parallel
plates. In the aspects of these uses, the study of the perspective of
boundary layers has been channeled to viscoelastic fluid. Beard and
Walters [34] has shown the boundary layer analysis for a viscoelastic
fluid in an idealised state. The transfer of heat of a viscoelastic fluid in the
convection flow of Walter's problem was studied by Rajagopal and Na
[35]. Many researchers investigate various issues about Couette flow

with heat mass transfers. Some of these problems are discussed in the
channel and some over the plate, as mentioned in our above references
found in the literature. But to the best of the author's knowledge, the
outcome of Newtonian heating on the Couette flow of dusty viscoelastic
fluid along with the heat transfer in a rotating frame has not been re-
ported yet. Therefore, this study aims to compose a mathematical model
to investigate the different behavior of the influences of heat absorption,
viscous dissipation and entropy generation of Couette flow of dusty
viscoelastic fluid in a rotating frame.

2. Mathematical modeling

In this article, the incompressible, unidirectional, and one-
dimensional unsteady viscoelastic fluid along with ingrained dust parti-
cles in spherical shape are considered in a rotating frame. It is thought
that the direction of the fluid motion is along x— axis over an infinite
plate which is spread out in the direction of x and z, therefore, aty > 0,
the fluid is covered the plane xz. The considered fluid is conducting
electrically and a uniform magnetic field B is enforced in the direction of
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Figure 6. Evolution of velocity (Fluid) against Gr.
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Figure 7. Evolution of velocity (Dust particles) against Gr.

flow transversely. The fallout of thermal radiation with heat transfer is
also considered in this problem. The system is treated in solid body
rotation with a uniform angular velocity €. The lower plate is heated as
Newtonian heating (% = - hST(y,t)) , while the upper plate having
embedded temperature. the lover plate is at rest, while the upper plate
starts oscillation at t = 0F, with uoImei®t. which is the cause of motion in
the fluid, see Figure 1. The secondary velocity is represented by w(y,t).

The momentum equation for the viscoelastic fluid for the rotating
flow is modeled as Eq. (1):

——

V.F =0

dF (= =\ = (= o -
pE—i—z(.QxF)—i—Qx(er) =divT +pbs+s

A =L+ m

A, =%+LAl +A, LT

T= —IP-‘rAlﬂ +A2(11 +A%a2

Reference to the pre-published work the basic governing equations
for non-Newtonian viscoelastic dusty fluid in a rotating frame in Egs. (2),
(3), (4), (5), (6), and (7) are [36, 37, 38]:
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Figure 8. Evolution of velocity (Fluid) against a.
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ows(y, t) acceleration, thermal conductivity, coefficient of thermal expansion, the
=20w- t) + K t)— t 5 ? ’ ’
o 10,8 + Ko (Wi, £) =w2(0,1)). ® specific heat capacity of the fluid and coefficient of mean radiation
respectively. The initial (primary) and final (secondary) velocities of dust
oT(y,t) k ()ZT(y, t) 0q:(y,t) ) particles and fluid correspond to Egs. (2), (3), (4), and (5). Similarly,
ot _p_cp ay? B gy complex velocities have been achieved for both velocities from Egs. (2),
(3), (4), and (5) as Egs. (8), (9), (10), and (11).
where. — %’ =403(T — Ts)

The physical boundary and initial conditions are p:

w(y,0) =u(y,0)=0; t<O0,

w(0,t) =u(0,t) =0; y =0, } )
. , t>0

w(d,t) =0, u(d,t) = ulme";y = d,

Where w and u represent secondary and primary velocities of fluid and
similarly w; and wy shows the primary and secondary velocities of dust
particles respectively. The symbols v, T, p,a1,Ko, 6, No, Bo, g, k, p,Cp and
ap are kinematic viscosity, fluid temperature, fluid density, material
parameter, coefficient of stocks resistance, electrical conductivity, num-
ber of density of the dust particles, applied magnetic field, gravitational

@ g) a2?<y,t>+w<w(y,t>—?cy,r))

aF—(};’t):Zi.Qﬁ(y,t)—i- (u+

o pot)  oy? p ®
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m"wa—({’t 26QW(y, t) + Ko (?(y, t) - Wiy, t)), ©)
oM.tk FTR.0) ogy.0) a0
ape oy v

— =2
i 7] =4
oe771=6
e 77=8

0.5

Velocity Profile ( Fluid )

0 ..‘,

0.5 1

Figure 10. Evolution of velocity (Fluid) against 7.
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Figure 11. Evolution of velocity (Dust particles) against 7.

Where g, = 0, g = &+ &, 1?()/, t) =iw(y,t) + u(y,t) and W(y,t) =
iwa(y,t) + w1 (y,t) are the complex velocities of dust particles and fluid
with transformed boundary and initial conditions:

F(y,0)0=0, T(y,0)=T, t<O0,
F(y,0) =0, "TTW’: R0 y=0,t>0, an
?(d, t) = folmexp(ia)t), Tdt)=T, y=d,t>0,

Where.
hs is a heat transfer coefficient and unit is %
By considering the solution of Eq. (9), we can assume in Eq. (12)

W(y,t)=e"wo(y), (12)

Therefore, the velocity of dust particles which is in complex form can
be expressed by means of the complex velocity of the fluid as follows in
Eq. (13):

_ KOE(.Yv t)
W00 =i — 20+ Ky a3)

By using the value of W in Eq. (8), we have Eq. (14):

OF(y,t) .. - . a 9\ 0°F(y,t)

T—ZLQF(}’J)—(U-‘F?E) T+

KoNo Ko e o OBF(y.b) ~
(e 1R - P g 1),

(14)

Eq. (15) denotes the dimensionless variables.

Velocity profile( Fluid )

Figure 12. Evolution of velocity (Fluid) against K».
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Figure 13. Evolution of velocity (Dust particles) against K.
~ here
— F = T-T, . 7 w
F =—, y*= * — F = © = 1
?07 Yy yh$7 t 0 th57 0 Too , T [ﬂ)hsz} ( 5)
Re — F() (llFohs K()NO K, — KgN()
By using the above mentioned dimensionless variables in Egs. (10), ohy o T pohZ’ > pohZ(mio — 2iQ + K,)'
(11), and (14) we have Egs. (16), (17), (18), and (19): ~ )
oBj 8P T pcpFo Q ., 4o
o (y.0) FRY.0 | Py M e e e " e
,t .o ,t ,t = s VLo S s s
— 2inF = —K,)F
Re ot ] (.}'7 t) ay? +a 0tay2 + (KZ Kl) (.Y: t) (16) (19)
~MF(y,t) + Gro(y,t),
Where a,Re,M,Pe,K;,Ko,N?,7 and Gr represent the second-grade
M(y,6) oy, t) parameter, dimensionless Reynolds number, magnetic parameter, Pec-
Pe at’ = 0y2’ + N26(y, t); a7 let number, Dusty parameters (K;, K»), radiation parameter, rotational
parameter, and Grashof number, respectively. Drop * sign for simplicity.
For the energy equation, consider the following periodic solutions:
= d0(y, t)
F(07t) = Oy = _(1 + 9(_}" t)) . 5
Yy 18) 0y, t) =00(y) + €01 (y)e + O(&?). (20)

ﬁ(l,t) = Imexp(int), 6(1,t)=0

By ignoring the higher order of ¢ and using the above solution
mentioned in Eq. (20), we get.

Velocity profile( Fluid)

Figure 14. Evolution of velocity (Fluid) against M.
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Sin(N — N; By using Egs. (23) and (24) results in Eq. (16) and split the non-
0(y) (N —Ny) 01(y) = 0. @1 y using Egs. (23) and (24) q. (16) p

:Sin(N) +N.cos(N);

Putting the values of 6,(y) and 6, (y) from Eq. (21) in Eq. (20), we get
Eq. (22):

Sin(N — Ny)

By considering the periodic solution and pairing the energy equation
in momentum equation we obtained the below form:

F(y,t) =F1(y) + F5(y)e” + O(?). (23)

(24)

harmonic and harmonic parts, we get Egs. (25) and (26):

~ . | ASin(N—Ny) cosh(y/mz) .
" @)_{N .cos(N)+Sin(N) " HSinh(\/ﬁg)smh(\/’Tz)')—HCOSh(\/”Tz)’)}7
= 7Sinh(\/rle)
(25)
F _ (_ASin(N — Ny) cosh(y/m3) .
F (y’ t) B (Sin(N) +Neos(V) T H Sinh (/my) Sinh(y/m, y) -
Sinh(\/rle) ot
—-H cosh(\/rsz)) +W€ }

where
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3. Nusselt number

The heat transfer rate is termed as the Nusselt number. Nusselt
number in dimensionless form is given by

00 N cos(N)

Nu= - ay -0 = Sin(N) + N.cos(N)’ (27)
3.1. Limiting case

By considering the following equation (28)
E(Ov t) = Ov 9(),’ t) =0 } (28)
F(1,t) = Imexp(iwt), 6(1,t)=1

We get the following temperature and velocity Egs. (29) and (30).

10

oy, t) = Ssl::fgvy)) (29)
= _ ,(Sin(Ny) Sinh(y/myy)\ | Sinh(y/my) .,
F (y ’ t) *A( Sin(N) _ Sinh(y/m,) ) T esinh(yim)© } (30)

Which is similar to the results obtained by [34].
4. Skin friction

Drag force is the force that reduces the motion of the fluid. Skin
friction is one of the drag force which occurs between the surface and
fluid. In this particular problem at y = 0 the skin fraction is formed by the
fraction between the fluids across the surface of the lower plate. In the
case of viscoelastic non-Newtonian fluid, the equation for the skin fric-
tion is:

T= (ﬂ +(11%) ?EF (31)
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Table 1. Physical parameters effects on skin friction.

Gr K, M N a n Cf
6 1 1 0.7 0.5 2 1.065
12 1.153
18 1.240
24 1.327
2 0.851
3 1.002
4 1.193
2 0.835
3 0.723
4 0.630
1.2 1.024
1.4 1.130
1.6 1.341
1.8 1.931
0.5 0.003
1.0 0.053
1.5 0.164
2.0 0.172
0.945
0.627
0.242
0.003

® o N

Using Eq. (15) in Eq. (31), we obtained the below equation for skin
fraction in dimensionless form:
OF &°F
=Re— — 32
7=Re oy +a oty (32)
Putting Eq. (26) in Eq. (32), we obtained the following expression for
skin friction as in Eq. (33):

cosh (\/mz)
sinh,/m;, )

\/,Tlelw[ (33)

T:REH(*N+\/TTT2 +sinh(\/m_1)
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Figure 20. Effect of K, on entropy generation.

5. Irreversibility analysis or entropy

Limiting losses or losing useable power in thermodynamical systems
is a significant and tough topic for engineers and scientists. In this pro-
cess, entropy creation is important; in our case, it is given in Eq. (34):

Ns— (%) LA +%(‘)”§Yy’ t))z 34)

Where Br and Q is the Brinkman number and dimensionless tem-
perature difference denoted by,

_ H o Ow — O
k(Ow — 0y)’ O

B,

Moreover, the Bejan number B, is known as in Eq. (35).

2
B.= (%> (35)

2 2
<aeg/,t)) + %(u(y, t))z + %(aug,.t)>

0.151

0.1 —

Velocity profile( Fluid)

Present Paper y
e Narahari and Pendyala [39]

0.05

v

Figure 19. Comparison of the present solution with Narahari and Pendyala [39].
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The Bejan number is well-known for giving a heat transmission
concept that is influenced by a fluid fraction and magnetic field
management.

6. Discussion and graphical results

To examine the different behaviors of both the velocities, we need to
inspect and understand the above-plotted graphs. These graphs give us
the other physical conduct of different parameters like parameter of ra-
diation N, Grashof number Gr, Second grade parameter «, rotation
parameter 5, Magnetic parameter M, Dusty parameters K, and Reynolds
number Re on both velocities. While Mass of the dust particle m on dust
particle velocity. All the figures are plotted withN = 0.7, Gr = 2.5,a =
0.1,7 =05,M =5,K> =K; =0.5Re =3,t =1,w =5and Pe =1 fixed
values. Figures 2 and 3 corresponds to the behavior of radiations
parameter N on the velocity profiles of fluid and dust particles respec-
tively. According to these graphs by increasing the radiation parameter
the dust particles and fluid velocity are also increases. It is obvious that by
increasing the radiation the temperature of the fluid increases which
brings increase in kinetic energy and this why the dust particles and fluid
velocity increases. The influence of Reynolds number Re on the velocity of
dust particles and fluid and dust particles are shown in Figures 4 and 5
respectively. In these graphs, it is cleared that the Reynolds number is the
decreasing function of the fluid velocity and as well as of the dust particles
velocity. Reynolds number is used to control the boundary layer, there-
fore, the Reynolds number retard both the velocities of dust particles and
fluid. Moreover, the velocity of fluid retards for larger values of Reynolds
numbers while the velocity of dust particles retards for smaller values.
Figures 6 and 7 are plotted to investigate the behavior of Grashof Number
Gr against the fluid and dust particles velocities correspondingly. These
graphs show the direct variation between Grashof number and the ve-
locity of fluid and dust particles. According to the physics of the Grashof
number, increasing the Grashof number, the bouncy forces increases. Due
to an rise in bouncy forces, the viscosity of fluid decreases, and therefore,
the velocity of fluid and dust particles are increasing. Figures 8 and 9 are
plotted to study the effect of the parameter of second-grade a for both
fluid and dust particles respectively. It is cleared from these plotted graphs
that increase occurs in both the dust particles and fluid velocities by
increasing in second-grade parameter a. The behavior of rotational pa-
rameters on velocities of fluid and dust particles are plotted in Figures 10
and 11 respectively. These graphs show that fluid and dust particles ve-
locities decrease because of the increase in rotational parameters 7. The
reason behind the retardation in the velocity of fluid and dust particle due
to the increase in rotation parameter occurs because it is cleared from the

Heliyon 8 (2022) e10538

relation y = 2d? /v. Furthermore, by increasing rotational parameter, the
Coriolis forces are growing, which are actually the inertial forces. It is the
fact that the viscosity will be decreasing due to an increase in the rota-
tional parameter, as a result, inertial forces become more muscular and
therefore, the decline can be observed in dust particles and fluid veloc-
ities. The relation between dusty parameters and the velocities of dust
particles and fluid are portrayed in Figures 12 and 13 respectively. These
graphs show the increment in the dust particles and fluid velocities by
increasing the number of dust particles. According to Stokes drag formula,
decrease occurs in the viscus forces of the dusty viscoelastic fluid due to
increase in dust particles. Therefore, the plotted graphs show increase in
both velocities. The relation between magnetic factor and fluid and dust
particles velocities can be observed in Figures 14 and 15, respectively. It is
revealed from these graphs that the magnetic parameter is the decreasing
function of the velocities of dust particles and fluid.

Physically, greater magnetic parameter values enhance the drag
forces called the Lorentz forces, which retards the flow. It is true that the
fractional force is motivated to increase by increasing the magnetic
parameter values, which contributes to confront the fluid flow and thus
reduces its velocity. Figure 16 interrogates the behavioral change in the
dust particles velocity profile by changing the dust particles mass, which
controls the dust particles velocity. The relation of radiation parameters
temperature and N are also discussed in this article. Figure 17 corre-
sponds to show the behavior of radiation parameter N with temperature.
This figure shows that there is a direct variation between radiation and
temperature. It is the fact that by increasing the radiation parameter N,
the kinetic energy is increasing and therefore increase occurs in the
temperature of the fluid. Due to the same physics, the radiation param-
eter N retards the Nusselt number and this behavior is reported and
highlighted in Figure 18. Table 1 shows that the skin friction of the fluid
can be controlled by increasing 7 and decreasing the value of Gr, K2, N
and a. Figure 19 is plotted for the verification of the present solution, by
puttinga =5 =M =Ky = K3 = Re = Pe = 0, and @ = 0 the present
solution is coincided with the solution obtained by Narahari and Pen-
dyala [39]. Which is verified our solution. The impact of dusty parame-
ters K, against entropy generation and Bejan number is highlighted in
Figure 20 and Figure 21 respectively. It is clear that the increasing of dust
particle enhance the entropy generation while retard the Bejan number.

7. Conclusion

In this article, the numerical and theoretical behaviors of various
physical constraints on the unsteady Newtonian heating Couette flow of
dusty viscoelastic fluid along with heat transfer is investigated in a
rotational frame. It is considered that the flow is unidirectional, incom-
pressible, one-dimensional and conducting electrically. The dust particles
are also conducting electrically and equally scattered in the second-grade
fluid. The summary of this article is given in the following key points.

e The Newtonian heating phenomena affect the heating on the plate,
which is clear from Figure 17.

o The rate of heat transfer in fluid should be controlled by increasing
the radiation parameter.

e The fluid and dust particles velocities gain by increasing N, Gr, « and
K, while by increasing Re, n and M both velocities are decline.

e The mass of particles retard the velocity of dust particles.

e The entropy generation can be enhance by increasing dust particle
parameter.
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