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Deep learning‑based real‑time 
detection of neurons in brain slices 
for in vitro physiology
Mighten C. Yip1,4*, Mercedes M. Gonzalez1,4, Christopher R. Valenta2, 
Matthew J. M. Rowan3 & Craig R. Forest1 

A common electrophysiology technique used in neuroscience is patch clamp: a method in which a 
glass pipette electrode facilitates single cell electrical recordings from neurons. Typically, patch clamp 
is done manually in which an electrophysiologist views a brain slice under a microscope, visually 
selects a neuron to patch, and moves the pipette into close proximity to the cell to break through 
and seal its membrane. While recent advances in the field of patch clamping have enabled partial 
automation, the task of detecting a healthy neuronal soma in acute brain tissue slices is still a critical 
step that is commonly done manually, often presenting challenges for novices in electrophysiology. 
To overcome this obstacle and progress towards full automation of patch clamp, we combined the 
differential interference microscopy optical technique with an object detection-based convolutional 
neural network (CNN) to detect healthy neurons in acute slice. Utilizing the YOLOv3 convolutional 
neural network architecture, we achieved a 98% reduction in training times to 18 min, compared 
to previously published attempts. We also compared networks trained on unaltered and enhanced 
images, achieving up to 77% and 72% mean average precision, respectively. This novel, deep learning-
based method accomplishes automated neuronal detection in brain slice at 18 frames per second 
with a small data set of 1138 annotated neurons, rapid training time, and high precision. Lastly, 
we verified the health of the identified neurons with a patch clamp experiment where the average 
access resistance was 29.25 M � (n = 9). The addition of this technology during live-cell imaging for 
patch clamp experiments can not only improve manual patch clamping by reducing the neuroscience 
expertise required to select healthy cells, but also help achieve full automation of patch clamping by 
nominating cells without human assistance.

Whole-cell patch clamp electrophysiology, a gold standard technique in neuroscience, is a high-fidelity method 
used to monitor the biophysical mechanisms of neural activity at the single neuron level. Whole-cell patch clamp 
experiments allow the user to report current and voltage fluctuations at a spatiotemporal resolution beyond the 
capability of other techniques1. However, the technique is considered highly laborious and low throughput since 
it involves utilizing a glass micropipette to probe a cell individually—the trade-off for exceptional signal qual-
ity—preventing its widespread use for high-throughput screening. Typically, in vitro patch clamp experiments 
are done manually in which the user views an acute brain slice under a microscope, visually selects a neuron to 
patch, moves the pipette close to the cell, creates a high resistance (“giga-ohm”) seal between the pipette and cell, 
and breaks into the membrane to create a whole-cell configuration. These experiments allow scientists to monitor 
complex biophysical phenomena such as voltage and current fluctuations of single neurons.

One of the most crucial initial steps in the patch clamping process is identifying a healthy cell. The edges of 
a healthy neuron under DIC are often unclear and vary widely in shape and size. Moreover, the milieu of brain 
tissue not only consists of neurons, but also cerebrospinal fluid, blood vessels, and glia, among other extracel-
lular content which induce significant light scattering under differential interference contrast (DIC), an optical 
technique widely used for observing unstained biological samples. While fluorescence microscopy may be used 
for identifying somas in acute slice patch clamp experiments, it is not always practical since it requires the use 
of dyes or genetically engineered production of fluorophores2. Rather, it is often desirable to image label-free, 
yet optically transparent samples which require the use of DIC.
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Previous work has demonstrated success in automating cell detection in cultured cells3,4, via methods such as 
image segmentation and image enhancement techniques. Vicar et al. tested a handful of tools designed to detect 
cultured cells and compared them using the F1 score, a metric commonly used to measure object identification 
accuracy. The average F1 score reported for the methods which used DIC and additional preprocessing was 
0.76. The average F1 score for the same methods on raw images was 0.50, indicating preprocessing may improve 
performance of object detection methods.

However, common image enhancement techniques, in concert with edge detection algorithms, are not robust 
enough for application in acute slice because the nature of the images under DIC yields more scattering than 
cultured cells. In addition, there are several cell segmentation and tracking methods that are not directly appli-
cable to cell detection under DIC in tissue5. To overcome this obstacle, this work adapts a deep neural network 
to identify neurons in acute slice—particularly neurons in the layer 5 cortex of the mouse brain. While there 
has been a myriad of convolutional neural networks (CNNs) used for identifying cells, most applications are 
used on images post-experiment either for cell detection on slides, cell cultures, or for cell segmentation of 3-D 
connectomics6–10.

Since this is such a critical task, often requiring significant experience to identify healthy cells, automation 
of the cell identification and selection process is a difficult, necessary step towards completing full automation 
of patch clamp as well as in assisting novices how to identify cells. Research groups enabling the automation of 
patch clamp have alluded to the potential benefits of automating this task, though the problem is not yet fully 
resolved11–13. Koos et al. have recently shown a CNN that identifies somas under DIC, though their network 
required substantial time and over 31,000 annotated neurons for training14. In this study, we aimed to achieve 
similar accuracy on a smaller, faster CNN that can quickly nominate cells for patch clamp experiments. Our deep 
learning-based method, quantified by F1 scores and mean average precision (mAP), is comparable to published 
work on cultured cell identification and other deep learning based solutions for cell detection. Thus, we show 
that transfer learning using the YOLOv3-CNN architecture can require minimal training resources and enable 
fast, accurate neuronal detection for images gathered on live, acute brain slices.

Methods
For the purposes of automated neuronal detection in acute brain slices, we utilize the default architecture of the 
YOLOv3 neural network, most notable for its speed and accuracy of detection15,16. In order to increase speed in 
object detection, YOLO reframes object detection as a single regression problem, mapping straight from image 
pixels to bounding box coordinates and class probabilities. In addition, YOLO looks globally on the entire 
image when making predictions. The primary motivation for selecting an architecture optimized for speed 
and accuracy is to apply the network to a video or real-time imaging. Thus, our methods include using transfer 
learning with the YOLOv3 architecture to provide a default model to fine-tune. A representative workflow is 
represented in Fig. 1.

Implementation.  Acquisition of acute brain slice images.  All acute brain slice samples and images were 
captured utilizing the hardware and software configuration according to Kolb et al.11. The system was based 
on a conventional electrophysiology setup (SliceScope Pro 3000, Scientifica Ltd), and the samples were imaged 
using a 40× objective (LUMPFLFL40XW/IR, NA 0.8, Olympus) on a motorized focus drive, illuminated under 
DIC with an infrared light-emitting diode (Scientfica), and captured with a Rolera Bolt camera (QImaging). All 
animal procedures were in accordance with the US National Institutes of Health Guide for the Care and Use of 

Figure 1.   After initial (a) training and validation using annotated input images, testing (b) shows a successful 
detection of neurons in unannotated, unaltered images.
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Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at the Georgia 
Institute of Technology.

Annotation procedure.  Annotations were made manually using LabelImg, an open source graphical image 
annotation tool written in Python17. Annotations were saved as XML files in PASCAL VOC format, the format 
as used by ImageNet18. Healthy neurons were annotated and labeled by drawing a bounding box around them. 
The rectangular boxes varied in size and were allowed to intersect with each other.

The training, validation, and test data sets consisted of 1280 × 1024, 8-bit raw images of acute slices under 
DIC. Within the training and validation data sets, 369 original, raw images were used with a total of 1138 anno-
tated neurons. For the trained CNN test data set, a smaller set of 37 images was used containing 107 annotated 
neurons. Since we are using transfer learning on a pre-trained model, a smaller data set for training and valida-
tion is appropriate to obtain sufficient accuracy. All data sets will be made publicly available at autopatcher.org.

Convolutional neural network: YOLOv3.  As mentioned previously, healthy cells from raw images of acute slice 
under DIC are difficult even for humans to identify. As an immediate effort to improve our ability to detect cells, 
using Python, we applied traditional image enhancement techniques to increase contrast and sharpen edges 
to the human eye. However, the advantages of preprocessing training data in machine learning have not been 
confirmed, motivating this work to also compare two training models to reveal whether or not image enhance-
ment (using custom Python scripts and the OpenCV library) improved the performance of the neural network. 
Histogram equalization, an image processing technique commonly used for improving contrast, both enhances 
contrast and preserves detail in the images. We compared a network trained on raw, unaltered images to a net-
work trained on histogram equalized images. Histogram equalization was the only image enhancement tech-
nique used to create training and validation data sets, so hereafter we will refer to those data sets as “enhanced” 
for conciseness. Data sets without image enhancement will be referred to as “unaltered.”

For both the unaltered image and the enhanced image data sets, they were randomly divided into a training 
and validation set at a 10:1 ratio. The input image resolution was set to 416 × 416 pixels. While downsampling 
the images to 416 × 416 introduces some unintended artifacts of reduced resolution, there is a desired trade-
off between computational time and accuracy. Secondly, the dimensions of the input image are resized while 
maintaining the image aspect ratio. For example, the longer dimension, 1280, is scaled to 416 and the secondary 
dimension, 1024, is scaled to 332.8 pixels. The remaining pixel area is black pixels. The YOLOv3 network archi-
tecture consists of a backbone network called Darknet-53, an up-sampling network, and the detection layers 
called YOLO layers15,16.

As stated previously, transfer learning fine-tunes a pre-trained neural network model. Since the model does 
not need to be trained from scratch, transfer learning is often a suitable choice when training with limited train-
ing and validation data sets. Moreover, transfer learning has the potential to improve network performance and 
training time19. The initial model of our CNN was pre-trained on the Imagenet data set16. The final 3 layers were 
initially trained with our custom acute brain slice data set for 10 epochs before all layers were unfrozen and the 
entire network was trained on the data set for 40 more epochs for a total of 50 epochs. If loss reached a steady 
state value, the training would stop early.

In addition, YOLOv3 object detection utilizes non-max suppression (NMS) which was also utilized here to 
classify the determined predictions. The intersection over union for NMS was set to 0.45 as based on machine 
learning standards.

Training computations were conducted on a desktop PC with a 3.7 GHz Intel Core i7-8700K, 32GB RAM 
memory and an NVIDIA GeForce GTX 1080. For trained model evaluations, the software was run on a notebook 
PC with a 2.8 GHz Intel Core i7-7700HQ and 16GB RAM memory.

Evaluation metrics of YOLOv3 performance.  Generally, trained networks can be assessed quantita-
tively through the metrics of precision (P) and recall (R),

where Tp is the number of true positive classifications, Fn is the number of false negatives, and Fp is the number of 
false positives. Precision represents how likely a prediction will be accurate. On the other hand, recall represents 
how accurate the model is based on correct classifications and classifications it failed to identify. Therefore, for 
an ideal model, it is desired to have both precision and recall equal to 1, or 100%.

In this study, PASCAL VOC-style Average Precision (AP) at a single intersection over union (IOU) threshold 
of 0.45 was calculated to evaluate the models trained by the loss function of YOLOv320. Although the general 
definition of AP is the area under the precision-recall curve,

the interpolated precision-recall, “P(R)”, curve is piece-wise constant. Therefore, with the number of recall values, 
we define AP as described in Cartucho et al.21.

Since AP is the integration of precision with respect to recall, and the ideal precision and recall values are 
both 1, the ideal AP is also 1, or 100%. Mean average precision (mAP) is especially helpful for multi-class studies, 
since it is the average AP of each class the network can identify. While there is only one class (‘neuron’) in this 
study, we will use the common notation of mAP hereafter.

(1)P =
Tp

Tp + Fp
, R =

Tp

Tp + Fn
,

(2)AP =

∫ 1

0
P(R)dR,
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Another common metric used for quantifying the performance of neural networks is the F1 score10,

which is particularly useful when determining the optimal balance between precision and recall. Since the ideal 
network would yield precision and recall equal to 1, the F1 score would then also be 1.

The last metric used describes the accuracy of the model using true positives (TP), false positives (FP), and 
the ground truth (GT) annotations where,

such that the ideal model would be 100% accurate should all its guesses match the ground truth annotations 
without false positives.

Real‑time detection and patch clamp validation.  Brain slice preparation.  All animal procedures 
were in accordance with the US National Institutes of Health Guide for the Care and Use of Laboratory Animals 
and were approved by the Institutional Animal Care and Use Committee at the Georgia Institute of Technol-
ogy. For the brain slice experiments, male mice (C57BL/6, P31–P46, Charles River) were anesthetized with 
isofluorane, and the brain was quickly removed. Coronal sections (300 m thick) were then sliced on a vibratome 
(Leica Biosystems VT1200S) while the brain was submerged in ice-cold sucrose solution containing (in mM) 
40 NaCl, 4 KCl, 1.25 NaH2PO4 ·H2O , 7 MgCl2 , 25 NaHCO3 , 10 D-Gluocse, 0.5 CaCl2 · 2H2 O, 150 Sucrose 
(pH 7.3–7.4, 300–310 mOsm). The slices were incubated at 37◦C for 1 h in neuronal artificial cerebro-spinal 
fluid (ACSF) consisting of (in mM) 124 NaCl, 2.5 KCl, 1.25 NaH2PO4 ·H2 O, 1.3 MgCl2 , 26 NaHCO3 , 10 D-
Gluocse, 2 CaCl2 · 2H2 O, 1 L-Ascorbate · H 2 O (pH 7.3–7.4, 290–300 mOsm). Prior to recording, the slices were 
maintained at room temperature for at least 15min (22–25 ◦C) . The sucrose solution and neuronal ACSF were 
bubbled with 95% O2/5% CO2. Recordings were performed in mouse primary visual area.

Patch‑clamp recording.  Borosilicate pipettes were pulled on the day of the experiment using a horizontal puller 
(P-97, Sutter Instruments) to a resistance of 4–5 M � . The intracellular solution was composed of (in mM) 135 
K-Gluconate, 10 HEPES, 4 KCl, 1 EGTA, 0.3 Na-GTP, 4 Mg-ATP, 10 Na2-phosphocreatine (pH 7.2–7.3, 290–
300 mOsm). Recordings were performed at room temperature with constant superfusion of oxygenated neu-
ronal ACSF. During the patch clamp experiment, the YOLOv3 neuron detection algorithm, using the unaltered 
trained network, was run on the desktop PC with the NVIDIA GeForce GTX 1080 GPU on a custom python 
script to interact with the Rolera Bolt camera. Pipette pressure during patch clamp steps was digitally controlled 
and pipettes were cleaned according to Kolb et al.11,22.

Results
YOLOv3 neuron detection.  As previously described, we compared the performance of a network trained 
on only unaltered images to a network trained on enhanced images. A representative example image of an unal-
tered image and an enhanced image is shown in Fig. 2a.

When evaluating the performance of these networks, two metrics can be adjusted to increase or decrease the 
accuracy of the network’s predictions: (1) the confidence threshold, a measure of the probability that a prediction 
contains an object and (2) the aforementioned IOU. In order to optimize confidence threshold, we evaluated 
the networks with the F1 scores, using a constant IOU according to machine learning standards (0.45) and a 
range of confidence thresholds from 0.1 to 0.9. The relationship between F1 score and confidence threshold for 
the unaltered network tested on unaltered images can be found in Fig. 2b. Since there is a peak in F1 score over 
the range of confidence thresholds, the optimal confidence threshold of 0.3 was used for all further analyses.

In order to test the unaltered and enhanced trained YOLOv3 networks, we evaluated and compared their 
performance using precision recall and mAP. Precision recall is a useful measure of prediction success. In infor-
mation reasoning, precision measures the accuracy or percentage of correct predictions, while recall measures 
how good it is at finding all the correct objects. Figure 2c shows the precision-recall curves for both networks, 
tested on both enhanced and unaltered inputs. The mAP is the area under this curve, summarized in Table 1 
and displayed in Fig. 2d.

The unaltered trained network was trained on images without preprocessing. The mean average precision of 
this network tested on an unaltered test image data set was 77.00%, while the same network tested on a enhanced 
data set was 54.62%. Conversely, the enhanced trained network was trained on images enhanced with histogram 
equalization23. The mean average precision of this network was 59.10% with unaltered test images and 71.93% 
on enhanced images.

The F1 scores of both networks are summarized in Table 2 and displayed in Fig. 2e. The F1 scores of the 
unaltered network tested on unaltered and enhanced images were 0.8 and 0.67, respectively. The F1 scores for 
the enhanced network were 0.61 and 0.76, respectively.

Inference results.  The training loss and validation loss for both networks shown in Fig. 3a highlight the neural 
network quickly fitting to the training set and converging towards a steady-state of trained weights.

While the results of the models over enhanced images provide relevant information over the precision of the 
networks, generally, preprocessing each frame during a real-time live-imaging experiment would cause latency 
issues so further accuracy and confidence score distributions are studied using only the unaltered test images 

(3)F1 = 2
PR

P + R
,

(4)Accuracy =
TP

GT + FP
,
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data set. As seen in Fig. 3b, the mean accuracy of the unaltered net was 0.703±0.296 while the enhanced net was 
0.378±0.306, student’s t-test p < 0.001 . Figure 3c shows the confidence scores distribution for unaltered and 
enhanced networks tested on the unaltered data set test images. The notches represent the confidence interval 
around the median, 0.599 and 0.711, respectively. The ends of the boxes are at the first and third quartiles while 
the whiskers represent the minimum and maximum confidence scores.

Figure 2.   (a) Representative example of unaltered (top) and enhanced (bottom) images of acute slice under 
DIC. (b) Representative plot of F1 score vs confidence threshold, demonstrating peak in F1 score at a confidence 
threshold of 0.3. (c) left Relationship between precision and recall for the enhanced network tested on enhanced 
and unaltered data set test images. right Relationship between precision and recall for the unaltered network 
tested on enhanced and unaltered data set test images. (d) Summary of mean average precision of both networks 
for both enhanced and unaltered inputs. (e) Summary of F1 score of unaltered and enhanced networks for both 
enhanced and unaltered inputs. Scale bar = 10µm.

Table 1.   Mean average precision of unaltered and enhanced trained networks tested on unaltered and 
enhanced input images.

Unaltered input (%) Enhanced input (%)

Unaltered trained network 77.00 54.62

Enhanced trained network 59.10 71.93

Table 2.   F1 score of unaltered and enhanced trained networks tested on unaltered and enhanced input 
images.

Unaltered input Enhanced input

Unaltered trained network 0.80 0.67

Enhanced trained network 0.61 0.76
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Examples of each network identifying neurons in a test image can be found in Fig. 3d,e. On the left half side 
of each subfigure display, each model’s reasoning for a neuron is overlaid with red prediction bound boxes on a 
representative test image. On the right half side of each subfigure, the prediction of the CNN is graded against the 
expert-annotated test image. A green box represents a correct prediction (true positive). A blue box represents 
the original annotated bounding box. A red box represents a model prediction that is a false positive. And lastly, 
a pink box denotes an annotated neuron that was missed by the model (false negative).

Although our average reported inference time for an image was 580± 147 ms, this can be attributed to testing 
the trained models on the CPU of the notebook PC described in the “Methods” section. Average inference time 
testing the trained models on the GPU described in the “Methods” section was 56.7± 1.43 ms. This provides an 
18 frame per second real-time detection rate (Supplementary Video 1). Furthermore, the training time for each 
of the models was 18 minutes.

Patch clamp experiments.  To validate the health of the identified cells, we performed a set of patch clamp 
experiments on neurons identified by one of the trained neural networks. We chose to use the unaltered trained 
network since it demonstrated the greatest mAP and F1 scores. A representative image of a neuron identified by 
the network in patch clamp whole-cell configuration is shown in Fig. 4a. The distribution of access resistances 
from these experiments (n = 9) is displayed as a box plot in Fig. 4b. The average access resistance was 29.25 M � . 
The ends of the boxes are the first and third quartiles (18.7 M � and 28.27 M � , respectively) while the whisk-
ers are located at 12.97 M � and 37.86 M � . Further, 8 of 9 patched cells were within the accepted range among 
patch clamp experts (< 40M�)11. Representative current clamp and voltage clamp traces are shown in Fig. 4c,d, 
respectively.

Discussion and conclusion
The use of patch clamping in mammalian brain slices is well documented1,24, yet the majority of the technique 
is still done manually. While research groups have made improvements to automate many of the painstaking 
steps involved with patch clamping in vitro11,12,22,25, the initial act of selecting a healthy neuron to patch still has 
yet to be resolved.

In this study, we developed a method for detecting neurons in acute, rodent brain slice for anticipatory use 
towards assisting patch clamp experiments. We then validated the method’s ability to identify healthy cells by 
patch clamping neurons identified by the best performing network (unaltered trained network). The application 
of this neural network in the context of patch clamp has great potential to help fully close the loop towards com-
plete automation of the patch clamp technique on acute brain slices and reduce the need for immense training 

Figure 3.   (a) Convergence on training and validation loss with respect to number of epochs. Black lines 
represent the unaltered trained model losses, and gray represents the enhanced trained model losses. Solid 
lines represent training loss, and dashed lines represent validation loss. (b) The bar chart shows mean ± SD 
comparison of the average accuracy between the unaltered net and enhanced net on the unaltered data set 
test images. A student’s t-test ( α = 0.05) acknowledges that the difference between the means is statistically 
significant; t(36)=5.12, p < 0.001 . (c) Box plot comparison of the confidence scores distribution for unaltered 
and enhanced networks tested on the unaltered data set test images. The notches represent the confidence 
interval around the median using a Gaussian-based asymptotic approximation. The ends of the boxes are at 
the first and third quartiles while the whiskers represent the minimum and maximum confidence scores. (d,e) 
Example of both networks identifying neurons in a test image. left initial prediction (red) of neurons. right 
bounding boxes for annotation (blue), correct prediction (true positive—green), incorrect prediction (false 
positive—red), and undetected neurons (false negative—pink). Scale bar: 10µm.
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and skills required for manual identification of healthy cells. The YOLO network architecture’s speed and accuracy 
are conducive for nominating healthy neurons in acute brain slice in real-time with a display and detection rate 
of 18 frames per second. Thus, this neuron detection method is a tool not only valuable for initially identify-
ing neurons for patching, but it could also provide tracking of the cell location as the slice is moved during an 
experiment to aid in throughput and quality of the recording. In addition, this work could have several secondary 
benefits that address the requirements for highly reproducible data26. By removing the user from the cell selec-
tion process, it inherently reduces experimenter bias, reduces type I & II error and increases experimental rigor.

Both networks performed best when tested with input images that were similar to their respective training 
data sets. Interestingly, while preprocessing may have improved the contrast of cell boundaries to the human 
eye, it did not improve the network performance most likely because the enhanced contrast has introduced arti-
facts that interfere with the boundaries of the cells. The statistically significant difference in the mean accuracy 
between the unaltered and enhanced networks support this finding by a student’s t-test ( α = 0.05), p < 0.001 . Most 
likely, the non-linear contrast enhancement degraded the image and reduced detectable linear features that may 
improve a model’s precision and accuracy. Furthermore, while the median for the enhanced net is higher than 
the unaltered net in the distribution of confidence scores, the lower mean accuracy score for the enhanced net 
shows it may be misleading to determine a neural network’s efficiency and precision based on its confidence score.

This study also had some limitations. Since only one class of neurons were chosen, and image acquisition was 
time-consuming, there was a limited number of images—thus, neurons—for training the neural network for 
neuron detection. However, further collaboration with patch clamp research groups can help increase the speed 
and quality of image acquisition. While Koos et al. have conducted a similar deep learning-based method for 
neuron detection in slice14, our method achieves similar precision while being more efficient and user-friendly. 
Using YOLOv3, our F1 score of 80% is comparable to the F1 score of 83.5% by Koos et al. In addition, our CNN 
has a reduced neural net training time of 0.3 h while Koos et al. took 159 h—a 98% reduction. Thus, the deep 
learning method presented here demonstrates the promise of implementing CNNs even further in the field of 
electrophysiology. Our study introduces the feasibility of performing classification tasks on acute brain slices by 
using a sparsely annotated data set (our sparsely annotated data set of 1138 neurons compared to 6344 annotated 
neurons by Koos et al.) Furthermore, we have demonstrated the advantage of transfer learning in improving 
network performance, especially when limited data is available, and confirmed that current image enhancement 
techniques do not necessarily help neural network performance.

The image enhancement techniques used in this method are not comprehensive, and other image enhance-
ment techniques can also be explored particularly for low-contrast, gray-scale images27 and use of Kalman 

Figure 4.   (a) Image of a network-identified neuron in patch clamp whole-cell configuration. The blue bounding 
boxes indicate identified neurons. The numbers ranging from 0 to 1 indicate the network’s confidence that 
the box contains a neuron. The pipette recording electrode is visible on the lower left quadrant resting on 
the leftmost of the three identified neurons. (b) Distribution of access resistance indicate that 8 out of 9 cells 
(89%) yielded high quality whole cell recordings. The white line indicates the median (21.7), the box width 
indicates the interquartile range (9.6), and the whiskers indicate the range of the data, excluding outliers. (c) 
Representative current clamp trace and (d) voltage clamp trace from a neural network-identified neuron in 
whole-cell configuration. Scale bar: 10µm.
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filtering28. In addition, future work can include customizing the YOLO architecture to optimize network train-
ing for our data sets, training on a greater number of annotated images, and upgrading the object detection 
architecture to YOLOv4 for improved precision. Pruning the YOLO architecture can also improve neuron detec-
tion speed29. Moreover, this technique could be used to detect and analyze subcellular features such as spines, 
dendrites, or axons.

Current software will be publicly available on Github (https​://githu​b.com/might​enyip​/neuro​nDete​ction​). 
Future work will focus on applying existing models to detecting neurons in real-time prior to patch clamp experi-
ments. In addition, data augmentation methods and the detection model will be optimized to further improve 
the detection accuracy. Moreover, additional classes can be annotated to expand neuronal detection to other 
types of neurons. Thus, paving the future for an object detection-based neural network capable of reasoning the 
entire environment of an acute brain slice.

Received: 23 October 2020; Accepted: 26 February 2021
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