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Abstract

Summary: Runs of homozygosity (RoHs) are genomic stretches of a diploid genome that show

identical alleles on both chromosomes. Longer RoHs are unlikely to have arisen by chance but are

likely to denote autozygosity, whereby both copies of the genome descend from the same recent

ancestor. Early tools to detect RoH used genotype array data, but substantially more information is

available from sequencing data. Here, we present and evaluate BCFtools/RoH, an extension to the

BCFtools software package, that detects regions of autozygosity in sequencing data, in particular

exome data, using a hidden Markov model. By applying it to simulated data and real data from the

1000 Genomes Project we estimate its accuracy and show that it has higher sensitivity and specifi-

city than existing methods under a range of sequencing error rates and levels of autozygosity.

Availability and implementation: BCFtools/RoH and its associated binary/source files are freely

available from https://github.com/samtools/BCFtools.

Contact: vn2@sanger.ac.uk or pd3@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The prevalence of runs of homozygosity (RoHs) varies worldwide

depending on past demography and recent mating patterns.

Targeted studies in families from populations with high consanguin-

ity have been successful in identifying genes underlying simple auto-

somal recessive disorders using autozygosity mapping. While several

methods exist to detect these RoH (Browning and Browning, 2010;

Gusev et al., 2009; Purcell et al., 2007) they were primarily designed

for genotyping data and do not exploit all the information available

from population sequencing, which includes fuller information

about allele frequencies and recombination rates; moreover, they

were not designed to be computationally efficient to accommodate

the higher complexity of sequence data. More recently, Magi et al.

(2014) introduce a new method H3M2 developed for sequence data

but which requires BAM files, which are not always available. We

present a software package, BCFtools/RoH, to allow geneticists car-

rying out genome-wide sequencing studies to infer autozygous sec-

tions from sequence-derived variation data in a more accurate and

more efficient way.

2 Methods

2.1 Identifying autozygous sections of diploid

genomes using a hidden Markov model
BCFtools/RoH uses a hidden Markov model (HMM) to identify

ROHs. The HMM is applied to genetic variation data (in VCF for-

mat) for the population containing the sample, with positions in the

chain corresponding to segregating sites in the population, and using
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either genotype calls or genotype likelihoods. The two hidden states

represent extended homozygosity (H) and non-homozygosity (N)

within the sample. Genotypes are represented by RR for a homozy-

gous site matching the reference, RA for a heterozygous site and AA

for a homozygous alternate (non-reference) site. Thus, H tracts can

only include RR and AA sites, whereas N tracts can include sites of

any genotype.

Emission probabilities in N regions correspond to a Hardy–

Weinberg model, and thus for any site i are determined by the minor

allele frequency fi at that site (excluding non-biallelic sites) and like-

lihoods of observed alignment data for possible genotypes in the

sample (provided by the variant calling algorithm):

P DijXi ¼ Hð Þ ¼ 1–fið ÞP DijRRð Þ þ fiP DijAAð Þ

P DijXi ¼ Nð Þ ¼ 1–fið Þ2P DijRRð Þ þ 2fi 1–fið ÞP DijRAð Þ
þ fi

2P DijAAð Þ;

where Di represents the data (i.e. aligned reads) and Xi is the homo-

zygosity (hidden) state at site i. When utilizing genotype calls instead

of likelihoods, we allow the user to specify the confidence in the

calls on the Phred scale, and these are then converted and used as

genotype likelihoods with the specified level of error (confidence)

for each genotype. To account for gaps of missing data between sites

(due to the use of exome data, for example) the transition probabil-

ities in the HMM incorporate the likelihood of a recombination

event since the last site. We obtain qi, the recombination rate at site

i, by interpolating the fine scaled genetic map between positions

iþ1 and i (Kong et al., 2010) and allowing for only a single recom-

bination event between those positions. This is then multiplied by

the probabilities for transitions between states, pNH and pHN.

P Xiþ1 ¼ NjXi ¼ Nð Þ ¼ 1–qipNH

P Xiþ1 ¼ HjXi ¼ Nð Þ ¼ qipNH

P Xiþ1 ¼ NjXi ¼ Hð Þ ¼ qipHN

P Xiþ1 ¼ HjXi ¼ Hð Þ ¼ 1–qipHN

The parameters pNH and pHN are learnt from the data using a

Viterbi training scheme (Durbin et al., 1998). For the initial prob-

ability of being in the H state at the start of each chromosome, we

used the inbreeding coefficient estimated for each individual, calcu-

lated using a method of moments estimator. The resulting state as-

signments given by the Viterbi sequence with the optimized

parameters comprise our inferred RoH and non-RoH tracts.

3 Results

3.1 Validation of the method on simulated data
In order to test our model against a dataset for which the autozygous

states are known, we simulated sequence variation data from exome

capture regions using a Markov process for which we varied the ex-

pected number and segment length of autozygous sections in 10 linear

steps ranging from 50 (half sibling mating) to 2 Mb (MRCA�20 gen-

erations ago), giving overall autozygosity between 12 and 1%. As

SNP calls may have errors, and in order to test our model’s robustness

to this, in some simulations we randomly added 10 and 5% more het-

erozygous positions to the sequence generated by the standard simula-

tion to reflect false positive error rates seen in both low and high

coverage real sequence data. Similarly, we uniformly changed 5 and

10% of heterozygous positions to homozygous in the sequence in

other simulations. Allele frequency and variant position information

from 99 CEU samples from the 1000 Genomes Project (Abecasis

et al., 2012) as well as information on the human recombination rate

from linkage studies (Kong et al., 2010) were used to produce a test

dataset that included 1 130 894 SNPs. In total, 110 simulated datasets

with different parameters were generated. The simulated datasets

were then run through our inference process. When compared against

true autozygous sites (see Supplementary methods), the mean false

positive rate (FPR) and false negative rate (FNR) across all simula-

tions were 0.04 and 0.83%, respectively, with maximum values of

0.18 and 3.03% (Fig. 1A, Supplementary Fig. S1). Further, the output

of our model was compared with the true regions and shows a close

match (Fig. 1C). We also examined the effects of downsampling the

data in terms of samples and sites and showed that sites discovered to

be autozygous did not change from the true regions by more than

20% (Supplementary Figs S2 and S3).

3.2 Comparison of the method to existing approaches

that detect RoHs from VCF files
In order to compare our approach to existing methods, we ran two

complementary approaches on our simulated data that have either

been used in previous RoH studies or were the focus of a recent pub-

lication on detection of autozygosity (Howrigan et al., 2011), using

the default settings. For the range of autozygosity and SNP calling

error in our simulations above, we calculated the FPR and FNR (see

Section 2) and found that our approach showed the lowest error

rates (Fig. 1A). Beagle performs similarly to our method given no

introduction of SNP ascertainment error but is not robust to the

addition of random heterozygote genotypes. Plink, due to its win-

dowing approach, consistently overestimates the size of a region and

has an FPR of >10% on all simulations. We note that H3M2 also

was reported to give similar performance, based on simulated exome

BAM files.

Fig. 1. Comparison of error rates of BCFtools/RoH and other existing methods

as well as performance on real data. (A) Performance on simulated data. FPR

and FNRs in data simulated with varying levels of autozygosity and SNP call-

ing error, analyzed using three different detection methods. (B) Performance

on real data. We compare the inbreeding coefficient F, estimated either by

our method as the percentage of the genome that is autozygous, or as the de-

viation from HWE estimated across all sites, for 31 CEU individuals. (C)

Example autozygous segments in simulated data (green) and detected by our

method (red). For each chromosome, the y-axis shows the normalized dens-

ity of heterozygous sites in bins of 0.1 Mb. The x-axis shows the position of

the chromosome (in units of 1e8 bp). The overlapping red and green sections

show that the regions identified as autozygous using our HMM approach ac-

curately reflect the true length and location of autozygous sections in the

simulated data
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3.3 Application of the method to real data from

the 1000 Genomes Project
We applied our method to 2504 individuals from Phase 3 of the

1000 Genomes Project, both running on the full genome VCFs and

on the exomes. The fraction of the genome found to be autozygous

varies by individual and population (Supplementary Fig. S4). The

exome results provide estimates that are within 5% of the whole

genome estimate (Supplementary Fig. S5). Our estimates are also

close to independent estimates of the total percentage of autozygos-

ity measured by the inbreeding coefficient, in 31 individuals for

which it was at least 1% (Fig. 1B).
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