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Abstract: With the mature technology of wireless communications, the function of estimating
the mobile station (MS) position has become essential. Suppressing the bias resulting from
non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial
bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics,
is widely applied to solve optimization problems in several fields. Based on three measurements of
time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the
MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by
minimizing the objective function value. The performance of the proposed positioning methods is
verified under various error distributions through computer simulations. Meanwhile, the localization
accuracy achieved by other existing methods is also investigated. According to the simulation results,
accurate estimation of the MS position is derived and therefore the efficiency of the localization
process is increased.

Keywords: time of arrival (TOA); non-line-of-sight (NLOS); artificial bee colony (ABC); mobile station (MS);
base station (BS)

1. Introduction

With the rapid development of communication technology, the ability of searching for a mobile
station (MS) location has become increasingly important in recent years. High-accuracy positioning can
provide many commercial services for the users of wireless devices. Location-based services (LBSs) are
used for car tracking, map navigation, and security applications. Among these, E-911, an emergency
provision system regulated by the U.S. Federal Communications Commission (FCC), is one of the most
well-known localization applications [1].

Generally, the propagation time can be measured by the MS and the base station (BS) in wireless
cellular systems. Kinds of measurements are taken by the signals that travel between the MS and the
BSs. According to different measurements, different known wireless location techniques are applied.
Some of the most common schemes are the signal strength [2], angle of arrival (AOA) [3], time of arrival
(TOA) [4], and time difference of arrival (TDOA) [5]. In order to provide better accuracy, hybrid TOA
and AOA methods were proposed [6]. In [7], the authors utilized the improved linear-line-of-position
to propose a TOA-based localization method for a 3-D environment. The accuracy of MS location
estimation is affected by many factors, such as multipath, hearability, and non-line-of-sight (NLOS)
propagation. One of the primary tasks for accurate location estimates in wireless communication
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location systems is NLOS propagation derived from the blocking of direct paths. NLOS often
happens in an urban environment and can be considered as a dominant issue for time-based location
estimation. The additional propagation time or distance may lead to significant degradations on
location performance. In an ideal case, if the line-of-sight (LOS) propagation exists, the MS location
can be derived successfully without error interference. However, an LOS propagation channel is hard
to come by in a real environment.

To meet the high location accuracy, many location estimation algorithms were proposed to
mitigate the NLOS error. To handle the problem of NLOS error, an omnidirectional mobile target-node
(TN) localization technique with TOA and AOA measurements found by the antenna arrays was
proposed, and the NLOS TN localization was theoretically derived based on the equations for NLOS
identification [8]. In [9], the authors present an algorithm to classify the former into LOS and NLOS
links by applying the propagation delay (PD) range estimations. A particle filter localization algorithm
was proposed regarding the model for accounting NLOS conditions, and this method is feasible to
simplify the working assumptions [10]. In [11], the authors proposed a non-iterative hybrid least
square estimator to appraise the mobile unit (MU) coordinates using the TDOA measurements and
direction of arrival estimates. For the reasons of NLOS interference reduction, the authors of this
paper proposed several geometrical location methods by applying TOA measurements and AOA
measurements simultaneously [12,13]. The authors put forward a method that combines the hybrid
TOA/AOA measurements and short-range TOA measurements to appraise the location [14]. A model
is proposed to simulate the situation that MS was in the NLOS transmission environment, whereas BSs
have some links with the MS in an LOS environment.

In recent years, a lot of algorithms have been widely employed to resolve various constrained
optimization problems. Optimization techniques can be categorized into two types, evolutionary
algorithms (EAs) and swarm intelligence-based algorithms. The genetic algorithm, designated as
following the evolution procedures in nature, is one of the most famous optimization methods among
EAs. The whale optimization algorithm was proposed in [15], and its application on mobile positioning
has been published. The authors in [16] used the distance measurements to derive the overlap of
all the base stations and find out the unknown mobile station in the overlap by WOA. The artificial
bee colony (ABC) algorithm adopts bee swarm activities and therefore it belongs to the category
of swarm intelligence algorithms. Honey bees have several behaviors, such as the waggle dance,
to search for better food sources in a natural environment. The ABC algorithm was proposed by
Karaboga first in 2005 [17]. This algorithm provides a widely used optimal technology for solving
multivariable function’s approach to various applications. For example, a better solution based on an
ABC alternative was provided for vehicle routing problems [18]. Setting the parameters of the digital
filter is important to the output signal, and the authors designed an infinite impulse response (IIR) to
adjust the parameters by the ABC algorithm until the error between the output of the filter and the
unknown system was minimized [19]. The literature [20] has attempted to enhance the performance
by changing the selection mode of the original structure. In this paper, a novel ABC-based positioning
algorithm is proposed to determine the MS location in wireless communication systems. The migration
operator of the biogeography-based optimization (BBO) approach with the ABC algorithm is proposed
to solve poly-phase code design [21].

In most areas, users may face the restriction of poor hearability, and MS may not detect more than
three BSs for location purposes in wireless communication systems. This paper applied an approach in
which the MS’s coordinate needs to be improved when three BSs are available. Three TOA circles can
be generated from the distance measurements. The distance’s relationship between the intersections of
three circles with the estimated location can be defined as an objective function. The approach was
accomplished by minimizing the nonlinear objective function under nonlinear geometrical constraints.
ABC was employed here to search for the optimal MS location in the range of feasible intersections.
The proposed algorithm can be applied not only to time-based technologies but also the circles
generated from signal strength measurement. In the simulation results, the Taylor series algorithm
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(TSA) [22], linear lines of position algorithm (LLOP) [23], and range-scaling algorithm (RSA) [24]
were used for wireless location estimation. The results of the proposed algorithm and other different
algorithms were compared to each other. Lastly, the performance of the proposed algorithm based
on ABC was compared to GA, including the positioning accuracy, efficiency, and convergence speed.
The simulation results show that the proposed location algorithm can mitigate the NLOS ranging
errors and improve the positioning performance.

This paper is organized as follows. In Section 2, we will introduce some related localization
methods, including TSA, LLOP, RSA, and GA. Section 3 describes the detailed procedure of the
ABC algorithm. Section 4 derives the MS location from the proposed algorithm based on ABC.
Then, Section 5 discusses the performance of the mentioned methods according to numerical simulations.
Eventually, the conclusion is presented in Section 6.

2. Related Works

2.1. Classical Localization Methods

In TSA, at least three BSs were detected for estimating the MS location because of the constraint of
hearbility. By linearizing the TOA equations based on the Taylor series algorithm, only the first two
terms were retained to obtain the matrix relations [22]. The LLOP algorithm resolved the MS location by
utilizing the linear equations derived from subtracting any two original range nonlinear equations [23].
In the literature [24], RSA, which was a very typical location technique and could estimate the true
range in NLOS environments, was proposed. Many developments of the positioning algorithms focus
on mitigating NLOS error, and RSA was a method with excellent performance. To decrease the NLOS
error, this positioning problem is designed as a constrained nonlinear optimization problem according
to the geometry relationship of the cell layout.

2.2. Probabilistic Localization Methods

As the procedure of obtaining the target positions in the NLOS condition can be well approximated
to solve a nonlinear system, several algorithms [25-28] have been developed to find the solutions with
high accuracy. The scheme in [25] classified the area covered by the BS signals into LOS and NLOS
zones by employing support vector classification and trigonometric approximation. In [26], the model
of target locations was expressed as a probability distribution function. By processing the previous
localization results with the algorithm known as two-step weighted least-squares, reduced NLOS
error was achieved. The authors of [27,28] advanced the conventional particle filter (PF) algorithms
to achieve enhanced computational efficiency and reduced complexity when solving the nonlinear
localization systems.

2.3. Localization Methods Based on Deep Learning

With the rapid development of deep learning, the performances of target positioning can be
further improved by employing iterating calculations to reduce the NLOS errors [29-32]. In [29],
hierarchical voting, known as the policy-based algorithm, was conducted before the measured signals
enter the conventional filters. The authors of [30] processed the database of AOA signals with deep
convolutional neural (DCN) networks. The performance of location prediction was improved by
optimizing the coefficient weights in DCN. The algorithm based on the deep neural network in [31]
was capable of reaching convergence fast under noisy and varying environments. A gradient-related
operation named proximal policy optimization (PPO) was executed on AOA measurement to correct
the NLOS variances in the positioning results [32].

The author of this paper proposed a genetic algorithm (GA)-based method to estimate the MS
location [33]. GA was utilized to determine the MS location in this positioning optimization problem.
First, the coordinates were transformed to the binary chromosome by an encoding scheme. A solution
to a problem was represented as a chromosome in the population. Then, the fitness of each chromosome
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was calculated in the reproduction scheme. We chose the chromosomes with a better value of the
objective function, to generate the next generation. Crossover and mutation schemes could promote the
performance of an individual’s multiplicity by modifying the chromosome sequence. The chromosomes
approached the optimal location gradually during the iterations. The estimated MS location was
obtained from decoding the best chromosome until the convergence conditions meet.

2.4. Three-Dimensional (3-D) Target Localization Methods

The authors of [34] assisted an accurate indoor localization method based on the time- and
angle-domains data of multipath transmissions with an existing 3-D map of the indoor conditions.
The paper [35] employed the modified least-squares model to advance the accuracy of measuring the
target coordinates on the Z-axis in 3-D environments. Furthermore, the selection of an optimal set of
base stations according to their space distributions was considered as well. To construct a model of
depicting the NLOS transmissions, the method of [36] was proposed to identify the obstructions in
3-D surroundings.

3. Artificial Bee Colony Algorithm

In this section, the detailed introduction of the ABC algorithm will be described. Bees distribute
the foraging information to members in other colonies, and such behaviors can be observed according
to the behavior of the real bees [37]. In the optimization problem, the value of the food source always
corresponds to the objective function value. That is to say, the value of the food source increases and
decreases with the objective function value and the best food source can be derived from the hive
in the end of the algorithm. Different kinds of bees search for the best food source by using several
mechanisms. The parameter of colony size would be set before implementing the ABC algorithm.
Colony size is the amount of all bees. The amount of all bees is divided into two halves, one half is
applied by employed bees, and another half is used by onlookers. There are three groups of bees in
the ABC algorithm: employed bees, onlookers, and scouts. The employed bees are responsible for
searching for the initial food sources and sharing their information with other bees. The onlookers
decide the searching range based on the information sent from the employed bees. Scouts search the
whole environment randomly. The ABC algorithm consists of these main components and makes use
of these components to find the best solution.

3.1. Initialize Solutions

At the beginning of the ABC algorithm, the colony size would be defined. The initial solutions are
randomly generated in the searching range. The number of food sources is equal to the half-colony
size. The random solutions are defined as:

Xi,j = Xmin,j + mnd(O, 1)(xmax,j - xmin,j)/ (1)

wherei = 1,2,...,Np, Ny and j are food sources and the dimension, respectively. The number of
dimensions represents the number of optimization parameters. Each initial solution is equal to a
position of the food source. The food sources will attract bees to make honey. Then, each objective
function value at the food source should be calculated and memorized.

3.2. Employed Bee Phase

At the beginning of the employed bee phase, each employed bee is associated with a food source.
Therefore, the amount of food sources is equal to the number of employed bees. They send the data of
the distances and directions of food sources to others in the nest. The employed bee produces a new
modification from initial food sources, and employs greedy selection between the old one and the new
one. There are five steps to model the employed bee phases:

(i)  Letx; be the neighbor food source, for k = rand (1, Np).
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(i) Find a new food source near the current food source; the new food source can be derived from:
vij = Xij + @ij(Xij = Xkj), @)

where Pij = rand (-1,1),i=1,2,...,Np, and j is the dimension.

(iii) Calculate the objective function value of v;;.

(iv) Compare the objective function values of x;; and v;;.

(v) Bees substitute a new memory of the food source v;;, which has a better objective function value,
into the old one of v;;. On the other hand, v;; is reserved if it has a worse value.

After each employed bee completes its task of searching, a waggle dance is performed to show
the onlookers the positions of the food sources.

3.3. Onlookers’ Phase

During the onlookers’ phase, they are standing by until employed bees finish the food-searching
procedures. They receive information of the food sources from employed bees. However, different
from the employed bees, onlookers select the food sources to develop according to the nectar amount.
On the other hand, the food source with a better objective function value has a higher probability to
select for searching near it. Then, the following procedures are similar to worker bees. Each onlooker
provides a new food source near the previous one and applies the greedy selection between them.
The detailed steps are described as follows:

(i)  First, define the fit; function fori =1,2,...,Ny:

1

it = —————. 3
T = T ) ®

(ii) From (i), one can derive the probability value:

o fiti

probability; —F.

‘21 fit; (4)
i=

Xij =Xmin,j + rand(0,1) (Xmax, j = Xmin, ]-)

(iii) The onlooker chooses the food source to search depending on the probability. Let vy; be the
neighbor food source, for k = rand (1, Np).
(iv) Express the relation between the selected and a new food source by the following equation:

vij = xij + ¢ij(vij — vkj), ©)

where Pij = rand (-1,1),i =1,2,..., N, and j is the dimension.

(v) Calculate the objective function value of v;j/.

(vi) Compare it to the objective function value of v;; with v;j/.

(vii) Substitute a new memory of the food sources v;;, which has a better objective function value,
into the old one of x;;. On the other hand, v;; is reserved if it has a worse value.

After this selection, each onlooker bee searches for a new position based on the probability value.
The onlookers guarantee to provide better food sources than the previous food sources provided
by employed bees.
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3.4. Scouts Phase

In ABC, scouts are in charge of searching the whole range surrounding the nest if the abandoned
food source exists. In the scouts” phase, a parameter called limit would be defined. The value of
limit, which is used to determine the abandoned case, presents the upper bound of the searching
number without any improvement. The memory in the ABC algorithm records the number of times
that the food source does not improve. When the frequency exceeds limit, the food source should be
abandoned and transformed to a scout. A scout randomly searches for a new food source in the whole
solution space. The food source supported by the scout replaces the abandoned food source.

(i) Determine whether the searching number without improvement exceeds the limit value.
(ii) If the abandon case exists, the food sources are changed to the scouts.
(iii) Send scouts to randomly find new food sources in the whole searching range by:

Si,j = Smin,j T rand (0, 1) (xmax,j - xmin,j)/ (6)

wherei=1,2,...,Np and j is the dimension.
(iv) The food sources derived from scouts are substituted for abandoned food sources directly.

In each cycle, the ABC algorithm creates a new population in the searching range. Then, the employed
bee phase, onlookers’ phase, and scouts’ phase are implemented serially. For the final cycle, the ABC
algorithm memorizes the best solution and determines whether the formulated requirements are
satisfied. If the convergence condition is satisfied, the loop will be terminated and the best food source
will be outputted as the optimal solution. Otherwise, the bees go back to the employed bee phase.
The cycles are iterated continuously until the condition is satisfied. Generally, the best solution can be
derived from the optimal procedure of the ABC algorithm during the iterations.

4. The Proposed ABC-Based Location Estimation

Researchers have proposed various positioning methods to estimate the MS location more
accurately, such as TSA, LLOP, and RSA. We also have provided the MS location estimation based
on GA before [33]. The GA-based location method has a better performance than the RSA and other
existing methods in our previous research. However, the general disadvantages of GA are the trapping
in the local optimum and the lack of a mechanism to memorize the best individuals during the
iterations [38]. Additionally, a poor local search ability, risk of a suboptimal solution, and delayed
convergence are worrying problems also.

To overcome the main disadvantages above, instead of GA, the ABC algorithm is implemented on
function minimization in this paper. The employed selection operation is one important difference
between the GA and ABC algorithm. The selection operation of GA depends on the fitness performance.
In the ABC algorithm, new solutions are produced with equal chance. The iteration of the ABC
algorithm is according to the self-adjusting operation and memory mechanism. Compared to GA,
the ABC algorithm can get out of a local minimum and attain the global optimum with relative
computational simplicity for multivariable function optimization [37]. Another advantage of ABC
is its simplicity. Parameters of GA are hard to set prior, but ABC is easy to implement and there are
few parameters to adjust. The ABC algorithm is expected to provide the estimated MS location more
accurately and efficiently, and to converge faster. In this study, a novel positioning method based on
the ABC algorithm for MS location estimation is developed and the results are compared with the
other existing methods.

In this section, the location model and objective function will be introduced first. Then, the proposed
ABC-based location algorithm will be presented clearly. ABC is an optimum approach method that
simulates the ability of bee colonies. ABC dynamically adjusts the value to fit a better solution based
on the gathered environmental information. In this scheme, the ABC-based positioning algorithm is
applied for optimal estimation. MS location estimation is accomplished by approaching a nonlinear
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optimization under nonlinear constraints. The object of optimization will be designed according to the
question waiting to be solved. In this paper, the ABC algorithm is proposed to decrease the NLOS
error and promote the positioning accuracy for wireless location systems.

The number of BSs is three due to the constraint on hearability. It is assumed that we have
a transmitting MS, and TOA measurements are taken at each receiving BS. As shown in Figure 1,
the coordinates for BS1, BS2, and BS3 are given by (0, 0), (X», 0), and (X3, Y3), respectively. (x,y) is the
MS coordinate waiting to be estimated. Then, the measured distance between the MS and the BS; is 7;,
i=1,2,3. According to the geometric approach, each measured distance by a BS forms a circle, and the
center of a circle is a BS. Multiple TOA measurements estimate MS location by the intersections of the
circles. The following three equations indicate the circles for TOA measurement:

Circle 1: x> + y* =112, @)
Circle 2: (x — Xp)? + y2 =1, ©)
Circle 3: (x — X3)? + (y-Y3)? = r3°. ©)

Figure 1. Geometric layout of the three circles.

In an ideal case, the intersection of three circles would be a point. However, in a practical
case, NLOS error is very common in our life. The accuracy of the estimated location degrades
seriously because of the NLOS propagation environment. No matter what kind of ranging technique is
used, the measured distance is greater than the true value. In the NLOS propagation environment,
the measured distance is always increased due to the signal strength attenuation or propagation time
delay. Therefore, the radius variation is always positive. Avoiding the interference generated from
the NLOS error being too large is another problem, i.e., one circle is fully covered by another circle.
Therefore, the measured radius would be adjusted so that any two circles can intersect at one point at
least. If ; > L;; + rj, we adjust the measured TOA value tor; = L;j +7; (i, j = 1,2,3;i # j), where L;; is
the distance between BS; and BS;. It is also mentioned in [20] to ensure there is at least one intersection
for any two TOA circles and to avoid the condition leads to the proposed location algorithm not
being employed.

Because of the NLOS error, the circles partially overlap on each other, and the region is formed
by the intersections. The true location of MS should be inside the overlap of three circles, which is
surrounded by U, V, and W. U, V, and W are defined as the feasible intersections. Feasible intersections
must meet the conditions of the following three inequalities:

P4yt < (10)

(x—X2)* + 12 <12, (11)
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(x—X3)* + (y—Y3)* <132 (12)

The MS location has to satisfy all the above Equations (10)—(12), so that it can be estimated by
using the feasible intersections of three circles. The nonlinear objective function was proposed in [27],
which can be seen as a cost function in this paper. It is the summation of the Euclidian distances
between the MS and the three points intersected by three TOA circles. By solving any two circle
equations of (7)—(9), three circles have six intersections. Then, the points of feasible intersections
U, V, and W can be percolated by the inequalities of (10)-(12). The coordinates of U, V, and W are
represented as (Uy,Uy), (Vy,Vy), and (Wy,Wy), respectively. Then, the cost function of the proposed
ABC algorithm is as follows:

floy) = \/(x U+ (= Uy’ 4 (k= Ve o+ (= V)P + (= W)+ (y = Wy)% (13)

So, the considered positioning problem is reformulated to an optimizing problem. In the best
situation, the feasible intersections of U, V, and W overlap with the minimization of the objective
function value. The objective function value is equal to zero at this moment. By minimizing this
objective function, the NLOS error can be decreased effectively. The considered optimizing problem
can be described as minimizing the cost function with nonlinear constraints. The general constrained
optimization problem is to find the MS location (x, y), so as to:

minimize f(x,y) . (14)
With the constraints represented as:

min{Uy, Vy, Wy} < x < max{Uy, Vy, Wy}

min{uy, Vy, Wy} <y< max{uy, vy, Wy} (15)

In this scheme, he ABC algorithm is applied to solve the constrained optimization problem.
Each bee represents a horizontal coordinate and each food source is considered as a possible solution.
In the ABC algorithm, two control parameters should be set prior, including the colony size and the
limit value. Because of the differences in the searching range of the x and y coordinates, the coordinates
of x and y cannot be regarded as a parameter with two dimensions. The ABC-based positioning
algorithm is completed by operating on two parameters for the x and y coordinates to search for the
best solution separately and simultaneously. However, the two parameters for the x and y coordinates
are used together to calculate and compare the objective function value. In this step, the searching
range is shown as Equation (15). If the ABC algorithm is regarded as a block diagram, the proposed
positioning method can be simply presented as Figure 2. After the feasible intersections of U, V, and W
are obtained, the proposed positioning method utilizes the ABC algorithm to estimate the MS location.

zh "
Input : ABC Convergence
uwxUy) | Algorithm Determining

NEVAVA)

WWEWY)
[xo |
YES
Output: Terminati
Estimated MS location: ermination
MS(x,¥)

Figure 2. Main procedures of the proposed artificial bee colony (ABC)-based algorithm.
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Honey bees use several mechanisms like the waggle dance to locate food sources and search for
new ones optimally. By the behaviors of a honey bee colony, the richest food sources can be obtained in
the shortest possible time. The position of the richest food source is the estimated MS location with the
highest opportunity approaching the real MS location. The convergence qualification is defined as the
solution that keeps the minimization of the objective function value during three cycles continuously.
During iterations, the best solution can be found within the area bounded by feasible intersections of
three circles and satisfies the convergence qualification with the lowest objective function value.

5. Simulation Results

To examine the performance of the proposed location algorithm in the NLOS environment,
computer simulations should be implemented. The performance of the proposed location algorithm
was compared with other algorithms, such as TSA, LLOP, RSA, and GA. In this paper, the three BSs
coordinates were set to BS1: (0, 0), BS2: (1732 m, 0), and BS3: (866 m, 1500 m). For each test, the random
real MS location was chosen with a uniform distribution in the range surrounded by the points BSy, I, J,
and K as shown in Figure 3. In total, 10,000 tests were performed independently and all numerical
quantities are presented in meters.

/TN

Figure 3. Cell layout showing the relationship between the base stations (BSs) and the inter-BS distances.

Before the ABC algorithm was implemented, some control parameters were defined. The control
parameters were set to colony size = 100, and Limit = 10. Another control parameter is maxcycles,
defined as the max cycles of iteration. The control parameter of maxcycles does not need to be discussed
in this research. Rather than apply the fixed parameter, we utilized the convergence mechanism
to decide the moment for stopping the iterations. Many test functions were used to observe the
performance in [39]. The objective function we used in this paper is just like a Griewank function.
The corresponding global optimum solution is the global minimum value, which is the bottom of the
surface for this function, as shown in Figure 4. It can be observed that the food source in the ABC
algorithm is strongly multimodal when the objective function value decreases with dimensionality.
The bees search in the limited range until the optimal solution can be found. The optimal solution is
the prediction of the MS location.
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Figure 4. The surface plot of the objective function.

The NLOS error is the main reason that causes location accuracy with a bad performance.
NLOS effects were taken into account for the analysis of simulations in this paper. Two typical error
models were applied, one is the circular disk of scatters model (CDSM) [40] and another one is a
uniformly distributed noise model [24]. CDSM is the first introduced error model, which simulates the
NLOS propagation environment. It assumes that the path of signal transmission between MS and BSs
is not a straight path. One scatter spreading around MS in the circular disk is considered to obstruct
the signal transmission. The signal is changed to go through a single reflection on the points of scatter.
Therefore, the measured distance is reformulated by calculating the sum of two distances, including
the distance between BSs and the scatters, and the distances between MS to the scatters. The measured
distance would be increased according to the triangle theorem shown as Figure 5. P presents the scatter
point. The real travel path is between MS and BS, but the measured ranges are the sum of 1, and r; after
the signal is interfered with by the scatter point. The AOA measurement is also affected in the CDSM
error model. 0, is the AOA measurement error. The scatter points in the circular disk are considered
as the lower range error with a higher probability to appear. The maximum error value is when the
scatter point is on the circumference. Thus, range error depends on the scatter radius; a bigger scatter
radius with a larger measured error.

Y
A

Figure 5. Geometry of circular disk of scatters model (CDSM).

Figure 6 shows the average location error of the proposed ABC-based location algorithm compared
with other existing methods in the CDSM error model. All methods increased the average error,
with the longer radius of scatter. However, the proposed ABC-based algorithm has a lower average
location error than TSA, LLOP, and RSA. The curve of the method we proposed has a relatively smooth
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curve. Compared with TSA, LLOP, and RSA, the simulation results show that the proposed algorithm
has the best performance on the location accuracy and supports the estimation of MS location with the
best accuracy.
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Figure 6. Average location error versus the different radius of scatters.

The second common NLOS propagation model is the uniformly distributed noise model [27].
In this NLOS error model, the measured distance is the true distance, which adds an error value.
The NLOS error value is distributed uniformly in the range (0, U;), where 0 and U; are the lower
bound and the upper bound of the error for each BS. An example of a uniformly distributed noise
model is shown in Figure 7. The measured distance is the sum of the real distance R and the NLOS
error with a uniform distribution for each BS. In Figure 8, the simulation shows the performances
of the proposed algorithm and other methods with the NLOS error of various upper bound values.
Obviously, the proposed algorithm has the lowest average location error in the uniformly distributed
noise model.
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Figure 7. Example of the uniformly distributed noise model.



Sensors 2020, 20, 5597 12 of 17

-3 - TSA .
—¥—LLOP -
-%---RSA A

600 [ —S—ABC P 4

500 |- ]

B
Q
o

@
£
o

Average error (m)

0
200 300 400 500 600 700
Upper bound on NLOS range error (m)

Figure 8. Average location error versus the upper bound of non-line-of-sight (NLOS) errors.

In a previous study, we proposed the positioning algorithm combined with GA [33]. A positioning
method based on the ABC algorithm is used to precisely locate the MS as well as accelerate the
convergence time, which is a bottleneck of the one based on GA. Therefore, the comparison of ABC
and GA is an important issue. The error effect of CDSM and the uniformly distributed noise model on
the average location error was compared with GA and ABC, as shown in Tables 1 and 2, respectively.
Both the GA and ABC algorithms provide a more accurate estimation of the MS location. It can be
observed that the ABC-based algorithm has a better performance than GA-based in the two NLOS
error models.

Table 1. Average location errors versus the radius of scatters.

Radius of scatter (m\m) 100 200 300 400 500
GA-based algorithm 64.32 121.71 174.5 232.71 292.93
ABC-based algorithm 62.84 117.37 173.91 231.56 290.59

Table 2. Average location errors versus the upper bound of the NLOS errors.

Upper bound (m\m) 200 300 400 500 600 700
GA-based algorithm 65.59 94.97 123.58 154.82  186.58 218.2
ABC-based algorithm 65.16 93.37 122.74 15349 185.14 218

Another important ability is the efficiency of positioning, as how to provide the most accurate MS
location in the shortest time is a critical and practical issue. Consequently, in order to provide the MS
location estimation efficiently, the speed of convergence is a significant indicator. The algorithm with
faster convergence can reduce the consumption time and computational complexity for positioning.
As a result, the proposed algorithm not only reduces the time for positioning but also saves redundant
hardware resources. Figure 9 demonstrates the proposed ABS-based algorithm has a quick convergence
in various error models. In each error model, the proposed algorithm has the fast converging ability to
obtain the best solution by the swarm intelligence of bees. The average convergence cycles/generations
and the time taken for the procedure are recorded in Table 3. The results show that not only are the
iteration cycles/generations of the ABC algorithm less than GA but also the ABC algorithm needs less
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time to implement the optimization problem when the number of loops is fixed. Compared to GA,
the ABC algorithm has a relatively simple and fast-converging iterative procedure. It can be observed
from our simulation results that the proposed ABC-based location algorithm can improve the location
accuracy and speed up the positioning execution time by its excellent optimization ability.
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Figure 9. Cont.



Sensors 2020, 20, 5597 14 of 17

429 T T
—8—ABC (Maxcycle number = 30)
—>-GA (Generation number = 30)
428.9 B
o
= 42881 B
©
>
c
he]
T 4287 :
c
=]
2
S 4286 B
o
4285 B
¢
428.4 ‘ ) ‘ ‘ .
5 10 15 20 25 30
generation(cycle) number
(9
4185k ' : ‘ R
-@—ABC (Maxcycle number = 30)
—>—-GA (Generation number = 30)
418
g 4175
©
>
& a7
=
o
c
=
= 4165
o
@
o
o
416
4155
415 1 1 | 1 1
5 10 15 20 25 30
generation(cycle) number
(d)

Figure 9. Convergence graph of the best objective function value in different error models: (a) The radius
of scatters of 200 m on the CDSM error model (b) The radius of scatters of 400 m on the CDSM error
model (c) The upper bound of 300 m of NLOS range error (d) The upper bound of 500 m of NLOS
range error.

Table 3. Average convergence cycles/generations and the location execution time.

Method ABC-Based Algorithm GA-Based Algorithm
Convergence 12.98 (cycles) 26.62 (generations)
Time
(for 30 cycles/generations) 451(9) 693 (s)
Time 2.40 (s) 6.14 (s)

(convergence)
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6. Conclusions

In this paper, a novel ABC-based location algorithm was presented to estimate the MS location in
the NLOS environment. The objective function of the proposed location algorithm is according to the
geometrical relationships between MS and three BSs. It can be observed that the NLOS interference
can be ameliorated when the sum of the distance from MS to three feasible intersections is minimized.
Therefore, the problem of MS location estimation can be regarded as a constrained optimization
problem. The ABC algorithm was applied to search for the MS location in this constrained optimization
problem. The ABC algorithm is a swarm intelligence algorithm, based on the behavior observed from
the food source searching procedure of the honey bee. Three kinds of bees search for the best food
source in the searching range, which overlap the three circles. During cycles, the value of the objective
function is decreased gradually. Lastly, the optimum solution, which equals the estimated MS location,
could be obtained by the ABC algorithm without any NLOS error prior information. The simulation
results of the location error show that the positioning accuracy of the proposed ABC-based location
algorithm is better than LLOP, TSA, RSA, and GA. Compared to GA, the ABC-based algorithm is more
accurate and efficient, converges faster, and is capable of handling complex optimization problems.
Another important advantage is that the ABC algorithm is relatively simpler compared to other
well-known metaheuristic algorithms like GA, as only two parameters (colony size and limit) are
needed in the ABC algorithm. In this paper, the proposed ABC-based location algorithm provides the
estimated MS location not only with best location accuracy but also the shortest execution time.
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