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The global signal (GS), which was once regarded as a nuisance of functional magnetic
resonance imaging, has been proven to convey valuable neural information. This raised
the following question: what is a GS represented in local brain regions? In order to
answer this question, the GS topography was developed to measure the correlation
between global and local signals. It was observed that the GS topography has an
intrinsic structure characterized by higher GS correlation in sensory cortices and
lower GS correlation in higher-order cortices. The GS topography could be modulated
by individual factors, attention-demanding tasks, and conscious states. Furthermore,
abnormal GS topography has been uncovered in patients with schizophrenia, major
depressive disorder, bipolar disorder, and epilepsy. These findings provide a novel insight
into understanding how the GS and local brain signals coactivate to organize information
in the human brain under various brain states. Future directions were further discussed,
including the local-global confusion embedded in the GS correlation, the integration
of spatial information conveyed by the GS, and temporal information recruited by the
connection analysis. Overall, a unified psychopathological framework is needed for
understanding the GS topography.

Keywords: fMRI, global signal topography, functional connectivity, psychopathology, local-global confusion,
spatiotemporal integration

INTRODUCTION

In fMRI studies, the global signal (GS), as the grand average of brain signals, is the largest scale
of signal integration in the whole brain. It has spurred a widespread debate in the past decade
(Fox et al., 2009; Power et al., 2014, 2017). The core issue of the debate is what information the
GS preserves (Liu et al., 2017). Early studies considered GS as a major confounding factor in
investigating the resting-state network organization (Fox et al., 2009; Murphy et al., 2009), thus
widely applying GS linear regression (GSR) to remove the effect of GS from fMRI data prior to
network analyses (Macey et al., 2004; Fox et al., 2005; Ciric et al., 2018).

However, significant evidence has uncovered the neurobiological information in the GS,
suggesting that GSR may inadvertently discard important neural signals (Fox et al., 2009;
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Saad et al., 2012; Yeo et al., 2015; Murphy and Fox, 2017; Power
et al., 2017). On the one hand, some studies have demonstrated
that GS fluctuations do have some influence on and are also
influenced by local neural activities in a static or dynamic way,
revealing the neural basis of GS (Turchi et al., 2018; Gutierrez-
Barragan et al., 2019). On the other hand, the amplitude of
GS fluctuations/GS variation (GSV) has been revealed to be
associated with mental states, such as vigilance (Wong et al.,
2013, 2016), conscious states (Orban et al., 2020; Tanabe et al.,
2020), and mental disorder (Zhu et al., 2018). Since once
“nuisance” is now a “signal” (Uddin, 2020), the prevailing view
is that the GS contains both non-neural and neural information
(Murphy and Fox, 2017).

However, the GS is just a single value for illustrating the whole-
brain neural activity without considering signals from specific
brain regions. Meaningful effects would be inevitably diluted or
attenuated by comparing GS fluctuations between groups for
the GS intrinsically averaging across correlated and uncorrelated
regions (Gotts et al., 2012). Critically, the spatial representation
of psychological mechanisms and pathological treatment cannot
be provided by GS fluctuations. The relationship between GS
and local neural activities may hold the key to unlock the
secret of this “catch-all” indicator. In this paper, we reviewed
an emerging method called “GS topography,” which reflects the
spatial distribution of GS representation, to solve this issue.

GS TOPOGRAPHY, A NEW FRONTIER IN
NEUROIMAGING

In the human brain, all regions do not work independently but
execute psychological functions in a coordinated manner, which
has made researchers shift their focus from local neural activities
to functional connectivity (FC) to explain the psychological
phenomenon in a mutually connected perspective. A seed-based
analysis is a classic method of establishing FC by calculating the
correlation of time series between selected regions of interest
(ROI) and other voxels/regions (Fox and Raichle, 2007). This
method relies heavily on the selection of appropriate ROIs,
which would be difficult if the underlying psychopathological
mechanism is unclear (Nair et al., 2014). This limitation has
been partially addressed by some data-driven approaches, such
as the principal component analysis and independent component
analysis (Biswal et al., 2010).

In face of this limitation, many recent studies have applied
global brain connectivity (GBC), a data-driven technique, to
illustrate whole-brain connectivity. In the GBC, an n × n
r-value FC map is obtained by calculating correlations between
voxels/regions and converted to z-value using the Fisher’s
Z transformation. The weighted GBC (wGBC) for a given
voxel/region is defined as the mean z-value of correlations
between that voxel/region and all other voxels/regions, whereas
the unweighted GBC (uGBC) is the count of these correlations
over a given threshold (Cole et al., 2010). Therefore, the GBC
reflects the overall connection of each voxel/region, providing
an unbiased, and non-artificial evaluation of the FC map
(Cole et al., 2010).

In a similar vein, the GS topography has been established
to measure the correlation between local brain signals and the
GS, i.e., GSCORR. After obtaining the GS by averaging signals
of all voxels, the GSCORR is measured by calculating temporal
correlations between the GS and signal in each voxel. The
distribution of GSCORR has been demonstrated to be very
similar to the topographies of the uGBC (r = 0.96, Zhang et al.,
2019) and the wGBC (r = 0.88, Scalabrini et al., 2020), indicating
that most of the information is consistent among them. Of
note, one obvious difference between GSCORR and GBC is that
the former contains information of GS. It is suggested that the
frequency and phase of GS modulate network states (Scheinost
et al., 2016; Gutierrez-Barragan et al., 2019). The amplitude of
GS also carries valuable neural information as mentioned above,
which influences GS topography directly. Taken together, the GS
topography is graced by global information which endows it with
unique features. In fact, many recent studies have revealed rich
information hidden in the GS topography, making it become a
new frontier in psychological and pathological researches.

PROGRESS OF GS TOPOGRAPHY

Intrinsic Architecture of the GS
Topography
The cortical organization of functional brain networks has
been revealed to be largely consistent across resting and
various task states, suggesting the existence of an intrinsic
architecture of functional networks (Cole et al., 2014, 2016;
Gratton et al., 2018). Several studies have discussed the large-
scale gradient from sensorimotor to transmodal areas in cortical
organization (Mueller et al., 2013; Huntenburg et al., 2017,
2018; Jiang et al., 2020). This gradient cortical organization
reflects the sensorimotor-to-transmodal heterogeneities
of neurodevelopmental order, FC, and gene expression
(Huntenburg et al., 2018). Therefore, it is considered to be
the intrinsic anatomical and functional structure of the human
brain. As shown in Figure 1, the distribution of GS topography
has been revealed to show a similar mode characterized by
higher GSCORR in sensory cortices (visual, auditory, and
somatosensory regions) and lower GSCORR in higher-order
cortices (prefrontal and parietal cortices) in the resting state
(Power et al., 2017; Yang et al., 2017; Zhang et al., 2019, 2020;
Li et al., 2020). It is suggested that sensory cortices primarily
process external stimuli through parallel circuits and networks
to ensure cognitive consistency, whereas high-order association
cortices integrate sensory inputs into uniform information (Huth
et al., 2016; Margulies et al., 2016). Therefore, multisensory
inputs activate sensory cortices parallelly, leading to higher levels
of correlation across sensory networks, further resulting in a
stronger GSCORR. In contrast, fewer shared neural activities
would exhibit a relatively weaker GSCORR across association
areas (Yang et al., 2017). This hypothesis entails the previous
view that the brain’s spatial arrangement follows a global
gradient between sensorimotor and transmodal systems. This
intrinsic arrangement is considered to be a key feature of
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FIGURE 1 | The spatial distribution of Fisher’s Z value of GS topography
(0.01–0.08 Hz) using a dataset from the Human Connectome Project 100
unrelated subjects (https://db.humanconnectome.org). Higher GSCORR is
mainly located in sensory cortices (visual, auditory, and somatosensory
regions) and lower GSCORR in higher-order cortices (prefrontal and parietal
cortices).

the brain to accommodate ever-changing external situations
(Huntenburg et al., 2018).

Psychological Significance of GS
Topography
The intrinsic architecture of GS topography raises an
important question: Is architecture modulated by a variety
of psychopathological states and, if so, how? To answer this
question, Li et al. (2019) conducted the canonical correlation
analysis (CCA) between principal components derived from
the GS topography and those derived from behavioral data.
A positive correlation was found between the frontoparietal
control network with behavioral outcomes, while a negative
correlation was observed between sensorimotor/visual networks
and behavioral outcomes. It is worth noting that the positive–
negative axis was also found in FC maps (Finn et al., 2015; Smith
et al., 2015) wherein the default mode network (DMN) and
frontoparietal network contribute most to individual traits but
sensory regions contribute few (Smith et al., 2015), indicating
that the GS topography and FC map are sensitive to individual
factors in different ways.

Another study compared the GS topography between resting-
state and seven cognitive tasks (Zhang et al., 2020). Consistent
reductions of GSCORR were found in all tasks relative to resting-
state, in regions considered to be task-unspecific, including
auditory, sensorimotor cortex, and DMN. In contrast, task-
specific regions, including the visual cortex and some regions
in the frontoparietal network and ventral attention network,
exhibited unchanged or a small set of increased GSCORR.
Considering all the visual-based and attention-demanding tasks
here, the GS topography may be coarsely modulated in sensory
and transmodal areas rather than in highly task-specific regions.

Alternatively, the sensorimotor and transmodal dichotomous
architecture of GS topography may be highly tolerant of
cognitive tasks and hard to change. Besides, like the classic
functional network, the intrinsic architecture of GS topography
is mildly modulated by cognitive tasks, indicating that these two
architectures have similar dynamic properties. These hypotheses
warrant further investigations. This study also inspires finer
investigations on relationships between GSCORR and particular
cognitive processes indicated by various methods such as brain
activation, brain signal variability, FC, and so on.

Since the GS is closely associated with vigilance, it can be
speculated that the GS topography may be modulated by different
conscious states. Based on this hypothesis, Tanabe and colleagues
tested the GS topography during physiologic, pharmacologic, and
pathologic unconscious states in humans and rats. They found
that unconsciousness is accompanied by a consistent reduction
of GSCORR (Tanabe et al., 2020). Specifically, GSCORR is
decreased in the majority of networks in general anesthesia
and unresponsive wakefulness syndrome, and in sensory and
attention networks in stage 3 of sleep. However, decreased FC
within sensory networks with the loss of consciousness has
rarely been emphasized in previous FC studies (Larson-Prior
et al., 2011; Uehara et al., 2014; Demertzi et al., 2015; Hannawi
et al., 2015; Riehl et al., 2017; Golkowski et al., 2019). It seems
that altered FC patterns in sensory networks depend more
on the GS than specific local connections. This study further
suggests that the GS topography is sensitive to general vigilance-
based brain states.

Combining these findings, it can be seen that the GS
topography is modulated by individual factors, cognitive tasks,
and conscious states but that it is not sensitive enough to task
details. The lack of task specificity in GS topography may be
caused by the dominance of vigilance information from GS,
which could be modulated not by overwhelming attention-
unrelated information but by attention-demanding tasks (Zhang
et al., 2020). Alternatively, the task specificity of GS topography
may be determined by the network construction method.
Similarly, inconsistent task-specific FC maps were reported
with different network construction methods (Cole et al., 2016;
Gratton et al., 2018; Di and Biswal, 2019; Sasai et al., 2021).
Therefore, more investigations are needed to clarify the cognitive
and state characteristics of GS topography.

Pathological Significance of the GS
Topography
As shown in Table 1, resting-state fMRI studies have revealed
altered GS topography in several psychiatric and neurological
disorders. Similar to abnormal brain regions in classic FC analysis
(Kaiser et al., 2015; Li et al., 2018; Syan et al., 2018; Yan et al., 2019;
Zovetti et al., 2020), altered GS topography is mainly located
in higher-order association networks (such as the DMN, limbic
affective network, frontoparietal network, and salience network),
with a relatively small part in the sensorimotor network.
However, there may be different pathological mechanisms
indicated by GS topography and classic FC. As mentioned in
section “Psychological significance of GS topography,” the GS
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TABLE 1 | Altered GS topography in mental diseases.

References Type of disease Sample Abnormal brain regions

Yang et al., 2017 SCZ Dataset 1: 90 patients
90 HC
Dataset 2: 71 patients
74 HC

Decreased GSCORR in sensory regions
Increased GSCORR in association regions

Wang et al., 2019 SCZ 39 early-onset patients
31 HC

Static: Decreased GSCORR in right superior temporal gyrus
Dynamic: Decreased GSCORR in right middle temporal gyrus, left middle temporal
Gyrus, left precuneus, and left calcarine.
Increased GSCORR in left cerebellum crus 1, left middle cingulate gyrus, right
putamen, right precuneus, and right supramarginal gyrus

Wang et al., 2020 SCZ 39 early-onset patients
31 HC

GS topography in 0.01–0.027 Hz: sensory network
GS topography in 0.027–0.073 Hz: DMN

Han et al., 2019 MDD 63 patients
63 HC

Static: decreased GSCORR in the left middle temporal gyrus, bilateral
parahippocampal gyrus, bilateral hippocampus gyrus, and right fusiform gyrus
Dynamic: increased standard deviation of the dynamic GSCORR in right
parahippocampal gyrus, right hippocampus gyrus, and right ventromedial prefrontal
cortex

Scalabrini et al., 2020 MDD 49 patients
50 HCs

Increased GSCORR in default mode network

Zhang et al., 2019 BD 99 patients (30 in the manic
phase, 35 in the depressive
phase, and 34 in euthymic
phase)
64 HC

Depressed phase: increased GSCORR in left hippocampus, parahippocampus, and
fusiform area.
Manic phase: increased GSCORR in bilateral motor cortex
Euthymic phase: decreased GSCORR in pregenual anterior cingulate cortex

Li et al., 2020 Epilepsy 127 patients in IGE-GTCS
114 patients in TLE
161 HC

IGE-GTCS: decreased GSCORR in para/hippocampus, cerebellum, midbrain
tegmentum, and calcarine gyrus. Increased GSCORR in orbital frontal cortex and
medial frontal cortex.
TLE: decreased GSCORR in para/hippocampus, midbrain tegmentum, and middle
temporal gyrus. Increased GSCORR in orbital frontal cortex.

HC, Healthy Controls; IGE-GTCS, Idiopathic Generalized Epilepsy with Generalized Tonic–clonic Seizures; and TLE, Temporal Lobe Epilepsy.

topography is sensitive to general arousal-based or attention-
demanding brain functions, which may be caused by the neural
generator of GS in the basal forebrain (Turchi et al., 2018).
Since the basal forebrain is modulated by the locus coeruleus–
noradrenergic system (España and Berridge, 2006), we consider
the abnormality of GS topography could be traced to the
disrupted locus coeruleus–noradrenergic system. Indeed, the
locus coeruleus–noradrenergic system has been demonstrated
to be associated with various mental disorders, indicating the
potential relationship between GS topography, and the locus
coeruleus–noradrenergic system (Baumann et al., 1999; Anticevic
et al., 2014; Kuffel et al., 2014). If so, the GS topography
may provide an appropriate biomarker for medical treatment
of attention, arousal, or conscious dysfunction associated with
various mental disorders.

GS Topography: The “Spatiotemporal
Psychopathology”
Many studies have found specific spatial alternations of GS
topography in various psychological and pathological states.
A few studies, however, have concerned the temporal aspect of
GS topography, such as the temporal dynamics and frequency
characteristics (Scheinost et al., 2016; Wong et al., 2016;
Gutierrez-Barragan et al., 2019). Each value of the GS topography
measures the temporal co-activation of local and global neural
activities, supporting the idea that symptoms of psychopathology

are not only caused by disrupted function in local brain regions
but are also driven by a global spatiotemporal organization
(Scalabrini et al., 2020). Based on this idea, the “spatiotemporal
psychopathology” was put forward to link the global organization
of the human brain to psychopathological symptoms (Northoff,
2016a,b). This concept shifts the focus from internal or external
stimuli and specifical brain functions to the spatiotemporal
organization, such as whole-brain functional networks, global-
to-local neural activities, and the profile of full frequency power
spectrum (Northoff et al., 2020). Overall, the spatiotempral
organization of GS topography may play an important role
to uncover valuable neural information in GS topograhy, and
it may provide a solution to some important questions in
psychopathological investigations, including consciousness, self-
reference processing, and so on.

CORE ISSUES AND FUTURE
DIRECTIONS

Understanding the Relationship Between
“Local Signal” and “Global Signal”
Although the GS topography seems like a promising index and
perspective to solve psychological or pathological problems, there
is still a lot to discover underground, just like the GS. A basic
issue underlying the GS topography is the relationship between
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local signal and GS, or rather to say, the local-global confusion.
Human brain is a widely connected complex system. The signal
within one node, not only represents local neural activity but
also contains complex interactions with other nodes. As shown
in the above sections, local signal and GS contain each other
in the GS topography. This local-global confusion is partially
distinguished by comparing results with or without GSR. For
instance, a recent study examined the effect of GSR on GSCORR
in the DMN (Scalabrini et al., 2020). It has been found that after
GSR, significant differences of intra-DMN connectivity largely
disappeared between patients with major depressive disorder and
healthy controls. It suggests that the meaningful pathological
information lies in the global activity, and the DMN activity is
strongly influenced and shaped by the GS. However, the causal
influences of GS on DMN and local neural activities, or vice
versa, have not been examined yet. The effective connectivity
(e.g., dynamic causal modeling and Granger causality analysis)
may describe the bidirectional influences that global exerts
over local or vice versa. All in all, further investigations are
needed to explain the independence and interaction between
the local and GS.

Integrating Spatial and Temporal
Dimensions
Because the GS topography is established by a temporal
correlation between the spatial average of whole-brain signals
(GS) and signals in each voxel, it inherently integrates spatial
and temporal dimensions. Besides the spatially local-global
confusion, the GS topography is temporally limited in the low-
frequency range (usually < 0.25 Hz) due to the low sampling
rate of fMRI. Although a recent study has tested the relationship
between the GS of fMRI and that of electroencephalograph
(Huang et al., 2019), high-frequency GS topography has not been
studied yet based on techniques with high sampling rates. It
is a core mission of GS topography to integrate spatial signals
from local to global and temporal signals from low frequency
to high frequency. Multimodal approaches such as fMRI, EEG,
and other techniques, and multi-index approaches combining

amplitude, phase, and frequency are essential to integrate spatial
and temporal dimensions in future studies.

CONCLUSION

The GS topography describes brain networks from a global-
local relationship perspective, providing an unbiased evaluation
of the cortical functional organization. Valuable information
in the GS topography was uncovered in various situations,
such as different conscious states, cognitive tasks, and brain
disorders, shedding new light on the psychopathological theory.
Some essential issues such as the local-global confusion and the
integration of spatiotemporal information are to be resolved in
order to clarify the psychological, physiological, and pathological
significances of GS topography. A spate of recent studies
suggests that GS topography is becoming the next frontier of
neuroimaging research.
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