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The identification of biomarkers for early diagnosis of Parkinson’s disease

(PD) prior to the onset of symptoms may improve the effectiveness of ther-

apy. To identify potential biomarkers, we downloaded microarray datasets

of PD from the Gene Expression Omnibus database. Differentially

expressed genes (DEGs) between PD and normal control (NC) groups were

obtained, and the feature selection procedure and classification model were

used to identify optimal diagnostic gene biomarkers for PD. A total of

1229 genes (640 up-regulated and 589 down-regulated) were obtained for

PD, and nine DEGs (PTGDS, GPX3, SLC25A20, CACNA1D, LRRN3,

POLR1D, ARHGAP26, TNFSF14 and VPS11) were selected as optimal

PD biomarkers with great diagnostic value. These nine DEGs were signifi-

cantly enriched in regulation of circadian sleep/wake cycle, sleep and gona-

dotropin-releasing hormone signaling pathway. Finally, we examined the

expression of GPX3, SLC25A20, LRRN3 and POLR1D in blood samples

of patients with PD by qRT-PCR. GPX3, LRRN3 and POLR1D exhibited

the same expression pattern as in our analysis. In conclusion, this study

identified nine DEGs that may serve as potential biomarkers of PD.

As a progressive motor neurodegenerative disorder,

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder after Alzheimer’s disease

among the elderly [1]. PD, with the typical symptoms

of resting tremor, bradykinesia, rigidity and postural

instability, is defined primarily as a movement disorder

and is pathologically characterized by degeneration of

nigrostriatal dopaminergic neurons and the presence of

Lewy bodies (misfolded a-synuclein) in the surviving

neurons [2]. Although research into PD has been per-

formed for nearly a century, there is still a large

amount of work to be done exploring the pathogenesis

of the disease. It is believed that the interaction of

genetic factors, environmental factors and aging

together contribute to the disease [3]. Up to now, the

current therapeutics for PD only alleviates the symp-

toms, and when the full-blown syndrome occurs, there

is no disease-modifying way available to treat the dis-

ease. It is expected that applying prodromal premotor

treatment to PD will slow down or stop the neurode-

generative process, leading to better quality of life of

PD-diagnosed patients. Accordingly, it is imperative to

identify useful biomarkers for early diagnosis of PD,

especially prior to the onset of motor symptoms [4].

With advances in various high-throughput technolo-

gies, a number of key genes have been identified as

diagnostic or prognostic biomarkers for various dis-

eases, such as cancer and neurodegenerative disorders,
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by microarray or other high-throughput technologies.

Chen et al. [4] provided a set of novel miRNA candi-

dates, including up-regulated miR-27a and down-

regulated let-7a, miR-142-3p, let-7f and miR-222, for

detecting PD. Chi et al. [5] proposed five significantly

down-regulated mRNAs and three significantly down-

regulated miRNAs to serve as useful clinical diagnostic

markers. Compared with a single microarray study,

integrated analysis of multiple microarrays could iden-

tify differentially expressed genes (DEGs) with more

accuracy, and increase the statistical power.

In the present study, we identified DEGs by com-

parison between patients with PD and normal control

(NC) groups by performing an integrated analysis of

multiple microarray datasets. By using a feature selec-

tion procedure and classification model, the optimal

diagnostic gene biomarkers for PD were obtained and

their potential functions in PD were further analyzed

by functional annotation. This study endeavored to

better understand the molecular events and pathways

of PD and represents an avenue for the exploration of

new diagnostic strategies for PD.

Materials and methods

Microarray expression profiling in Gene

Expression Omnibus

The Gene Expression Omnibus (GEO), developed and

maintained by the National Center for Biotechnology

Information (NCBI), is the largest database of high-

throughput gene expression data. The microarray datasets

of PD were retrieved from the GEO database (http://www.

ncbi.nlm.nih.gov/geo) by searching keywords (‘parkinson

disease’ [MeSH Terms] OR Parkinson’s disease [All Fields])

AND ‘Homo sapiens’ [porgn] AND ‘gse’ [Filter]. Datasets

whose type was ‘Expression profiling by high throughput

sequencing’ and which met the following criteria were

included in our study: (a) the selected datasets were mRNA

transcriptome data of the whole genome; (b) the data were

derived from blood samples of patients with PD and NCs;

(c) the datasets were standardized or raw datasets; (d) the

sample size of the datasets was was ≥ 50. Two datasets

(GSE99039 and GSE6613) were treated as training sets,

and another dataset (GSE72267) served as a validated set.

For demographic and clinical characteristics of individuals

in these three datasets, refer to [6–8].

Data preprocessing

The probes corresponding to multiple genes were removed.

Among multiple probes corresponding to the same gene

symbols, the probe with the largest average expression of

the gene was retained for the following research.

Identification of DEGs between PD and NCs

MetaMA, a meta-analysis program for MicroArrays avail-

able in the R package, was used to identify the DEGs

between PD and NC groups. The threshold was defined as

P-value < 0.05.

Identification of optimal diagnostic gene

biomarkers for PD

The LASSO algorithm was used with the GLMNET package

(https://cran.r-project.org/web/packages/glmnet/) to reduce

the dimensions of the data. We performed single 10-fold

cross-validation cycles with the coordinate descent algorithm

for each fold and found regularization parameters that led to

the smallest average mean squared errors across all folds. The

more optimal DEGs between PD and NCs were selected.

To further identify diagnostic value of the optimal genes,

feature selection procedures were conducted as follows: (a)

The importance value of each DEG was ranked according

to the mean decrease in accuracy by using random forest

analysis; (b) the optimal number of features was found by

subsequently adding one DEG at a time in a top-down for-

ward-wrapper approach; and (c) by using the support vector

machine (SVM) at each increment, the accuracy was

assessed and the optimal diagnostic gene biomarkers for PD

were identified. Based on the obtained optimal diagnostic

gene biomarkers for PD, we established the SVM model by

using the E1071 package (https://cran.r-project.org/web/pac

kages/e1071/index.html) in R; we established the random

forest model by using the ‘RANDOM FORESTS’ packet (https://

cran.r-project.org/web/packages/randomForest/); we estab-

lished the decision tree model by using the ‘RPART’ packet

(https://cran.r-project.org/web/packages/rpart/index.html).

The diagnostic ability of these three models was accessed by

obtaining the area under a receiver operating characteristic

(ROC) curve (AUC), accuracy, sensitivity and specificity.

Functional annotation

To uncover the biological functions and detect the potential

pathways of optimal diagnostic gene biomarkers for PD,

the online software GENECODIS3 (http://genecodis.cnb.csic.

es/analysis) was used to perform the functional annotation,

including Gene Ontology (GO) classification (molecular

functions, biological processes and cellular component) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment. Statistical significance was defined as false

discovery rate (FDR) < 0.05. The FDRs were calculated by

using the Benjamin–Hochberg procedure.

Protein–protein interaction network construction

The optimal diagnostic gene biomarkers for PD were

scanned with the Biological General Repository for
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Interaction Datasets (BioGrid, http://www.uniprot.org/

database/DB-0184). A protein–protein interaction (PPI)

network was then constructed by using CYTOSCAPE software

(version 3.5.0, http://www.cytoscape.org) in order to further

explore the biological functions of the biomarkers.

Confirmation of DEGs

Eight blood samples from five normal control people and

three patients who were diagnosed as PD were collected.

PD patients with a history of autoimmune diseases, ana-

phylaxis, immune deficiency, diabetes, heart disease, stroke,

arteriosclerosis, psychosis, malignant tumor, severe cogni-

tive impairment or central nervous system infection were

excluded. Healthy controls matched by sex, age and educa-

tion level were recruited in our study, and were excluded if

there was nervous system disease, a history of mental ill-

ness or an adverse drug history. Written informed consents

were obtained from all participants in this study. The

research protocols complied with The Code of Ethics of the

World Medical Association (Declaration of Helsinki) and

the study was approved by the ethical committee of Dongy-

ing People’s Hospital.

Total RNA was extracted using RNAliquid (Huitian,

Beijing, China). By using FastQuant cDNA (Tiangen, Bei-

jing, China), we generated cDNA from 1 lg extracted

RNA. Quantitative PCR was performed with SuperReal

PreMix Plus (SYBR Green) (Tiangen) in an ABI7300 real-

time PCR system (Applied Biosystems, Foster, CA, USA).

By using the 2�DDCt method, relative gene expression was

analyzed. Statistical significance was assessed by one-way

ANOVA. The expression levels of the selected genes were

normalized against the GAPDH. The PCR primers used in

this study are displayed in Table 1.

Results

Identification of DEGs between PD and NCs

In this study, two gene expression microarray datasets,

namely GSE99039 and GSE6613, were enrolled for the

integrated analysis (Table 2). A total of 1229 DEGs,

including 640 up-regulated genes and 589 down-

regulated genes, were detected in PD.

Optimal diagnostic gene biomarkers for PD

Based on reduced dimensions of the data, we obtained

25 DEGs between PD and NCs by using the LASSO

algorithm (Table 3).

All these 25 DEGs were ranked according to the

mean decrease in accuracy with the random forest

analysis (Fig. 1A). Ten-fold cross-validation result

indicated that the average accuracy rate of nine DEGs

reached the highest point for the first time (Fig. 1B)

and we defined these nine DEGs as the optimal diag-

nostic gene biomarkers for PD. Box-plots displaying

the expression levels of these nine DEGs between PD

and NCs are shown in Fig. 1C–K.

Based on these nine DEGs between PD and NCs,

the SVM, random forest and decision tree models were

established. The AUC of the SVM model was 0.763

and the sensitivity and specificity of the SVM model

were 71.0% and 74.5%, respectively (Fig. 2A). The

AUC of the random forest model was 0.777 and the

sensitivity and specificity of the random forest model

were 65.5% and 80.8%, respectively (Fig. 2B). The

AUC of the decision tree model was 0.638 and the sen-

sitivity and specificity of the decision tree model were

65.1% and 64.7%, respectively (Fig. 2C). GSE72267

(Table 2) was used to confirm these three models, and

the ROC results are displayed in Fig. 2D–F.

Functional annotation

Gene Ontology enrichment analysis revealed that these

nine DEGs were significantly enriched in regulation of

circadian sleep/wake cycle, sleep (FDR = 0.0114558), T

cell activation (FDR = 0.0202354), extracellular space,

extracellular region (FDR = 0.00210323), prostaglandin-

D synthase activity (FDR = 0.01216), tumor necrosis

factor receptor binding (FDR = 0.015769) and voltage-

gated calcium channel activity (FDR = 0.0159844).

According to a KEGG pathway enrichment analysis,

several pathways were significantly enriched, including

Alzheimer’s disease (FDR = 0.0449926) and the calcium

signaling pathway (FDR = 0.0452304).

PPI network construction

The PPI network contained 138 nodes and 133 edges.

VPS11 (degree = 44), POLR1D (degree = 22) and

ARHGAP26 (degree = 21) were the three hub proteins

of the PPI network (Fig. 3).

Table 1. The primers used in qRT-PCR experiments.

Gene Primers (50–30)

GAPDH Forward: 50 GGAGCGAGATCCCTCCAAAAT 30

Reverse: 50 GGCTGTTGTCATACTTCTCATGG 30

GPX3 Forward: 50 ACCCTCAAGTATGTCCGACCA 30

Reverse: 50 GGTCAGATGTACCCAGGAGCT 30

SLC25A20 Forward: 50 GCAGTGATGATCCGAGCCTTC 30

Reverse: 50 TCTCCTCAACGACAGCTTCCA 30

LRRN3 Forward: 50 TGGTACCATTGAGTCTCTGCCA 30

Reverse: 50 TGCCGAACATTCTGACCTTGG 30

POLR1D Forward: 50 CTGAAGGCGAGAGGAAGACAG 30

Reverse: 50 GGTACCTCGAGTCTGAATGCG 30
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qRT-PCR confirmation

To verify the expression of DEGs in our integrated

analysis, the expression of four genes, namely GPX3,

SLC25A20, LRRN3 and POLR1D, was selected ran-

domly for testing by quantitative real-time polymerase

chain reaction (qRT-PCR). Based on our integrated

analysis, GPX3 was up-regulated while LRRN3 and

POLR1D were down-regulated in PD compared to

NCs. Except for SLC25A20 (which may be due to its

relative large FDR value), expression trends of three

genes (GPX3, LRRN3 and POLR1D) in the qRT-PCR

results were consistent with that in our integrated anal-

ysis, generally (Fig. 4).

Discussion

In recent years, a number of microarray studies of PD

have been performed, mainly from the brain regions or

blood. The most affected brain region in PD is the sub-

stantia nigra in the midbrain but the analysis of this

region from postmortem PD brains may only highlight

genes linked with changes in cellular composition [9].

However, it is not readily possible to obtain post-

mortem brain tissue and this entails RNA quality con-

cerns [10]. This leads to the importance of studying

blood samples in PD. It is easy to obtain the blood

leukocytes, and the RNA can be obtained at high qual-

ity from them [11]. Importantly, searching for blood-

Table 2. List of mRNA study samples from GEO.

GEO

accession Author Platform

Samples

(N : P) Year Country

GSE99039 Amar D GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

Array

233 : 205 2017 Israel

GSE72267 Roncaglia P GPL571 [HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array 19 : 40 2015 Italy

GSE6613 Scherzer

CR

GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 22 : 50 2007 Denmark

Table 3. Differentially expressed mRNAs between PD and normal control after reduced dimensions of data. ES, effect size.

ID Symbol Combined ES P-value FDR Regulation

5730 PTGDS 0.55350343 1.59E-10 1.98E-06 Up

54674 LRRN3 �0.447409685 3.60E-07 0.000447953 Down

8740 TNFSF14 0.424933035 9.17E-07 0.000759974 Up

51561 IL23A �0.423333989 1.02E-06 0.000789527 Down

23092 ARHGAP26 0.380421675 8.27E-06 0.003114467 Up

2878 GPX3 0.412451433 3.14E-05 0.006979377 Up

7056 THBD 0.390970585 3.22E-05 0.006979377 Up

246126 TXLNGY 0.362737505 3.39E-05 0.006979377 Up

6192 RPS4Y1 0.360917753 3.62E-05 0.007060049 Up

51082 POLR1D �0.339807664 6.01E-05 0.009568719 Down

11328 FKBP9 0.445852125 0.000134479 0.015715772 Up

7280 TUBB2A �0.324660659 0.000143781 0.016000973 Down

222658 KCTD20 0.32072981 0.000252398 0.02036717 Up

79960 JADE1 0.277092679 0.001245194 0.05016542 Up

79096 C11orf49 �0.262382026 0.002737984 0.079974141 Down

7145 TNS1 �0.246923009 0.004042499 0.102313913 Down

8435 SOAT2 �0.240853329 0.006551083 0.132374478 Down

776 CACNA1D 0.348515061 0.008196295 0.150106032 Up

55823 VPS11 �0.219797536 0.013025479 0.193159457 Down

788 SLC25A20 0.419278937 0.016440044 0.218264276 Up

745 MYRF �0.313968366 0.018317776 0.229702324 Down

138151 NACC2 0.418849159 0.035769967 0.321790421 Up

1777 DNASE2 0.25753019 0.038446143 0.332709069 Up

1791 DNTT �0.276654672 0.039502997 0.336086867 Down

5087 PBX1 �0.256786543 0.040926883 0.342953477 Down
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Fig. 1. Identification of optimal gene biomarkers for PD. (A) The importance value of each DEG ranked according to the mean decrease in

accuracy by using a random forest analysis. (B) The variance rate of classification performance when increasing numbers of the predictive

DEGs. (C–K) Box-plots displaying the expression levels of PTGDS (C), GPX3 (D), SLC25A20 (E), CACNA1D (F), LRRN3 (G), POLR1D (H),

ARHGAP26 (I), TNFSF14 (J), and VPS11 (K); the y-axis represents gene expression levels.
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based diagnostic markers is now an emerging field of

study [12,13]. Hence, there is a growing interest in

detecting blood biomarkers for PD. In this study, we

performed an integrated analysis of PD microarray

datasets to better reveal the pathogenesis of and

develop novel diagnostic biomarkers for PD. A total of

1229 genes (640 up-regulated and 589 down-regulated)

across the study were differentially expressed in PD

with a P-value < 0.05. We selected GPX3, SLC25A20,

LRRN3 and POLR1D to verify their expression level

in PD. Except for SLC25A20, the other three genes dis-

played the same pattern in qRT-PCR as that in the

integrated analysis, which added evidence as to the reli-

ability of the results in the integrated analysis.

Glutathione-independent prostaglandin D synthase,

encoded by prostaglandin D2 synthase (PTGDS), cat-

alyzes the conversion of prostaglandin H2 to prosta-

glandin D2, a prostaglandin involved in pain, sleep

and smooth muscle contraction/relaxation, and a

potent inhibitor of platelet aggregation [14,15]. As is

well known, sleep disorders are one of the symptoms

of PD [16]. A study has reported that additional

PTGDS-immunoreactive isoforms appear in many

neurodegenerative disorders including Alzheimer’s dis-

eases and PD [17]. In the integrated analysis, PTGDS

was expressed more highly in PD compared with con-

trols. In addition, in GO enriched analysis, PTGDS

was enriched in regulation of the circadian sleep/wake

cycle and in the sleep pathway. Importantly, up-

regulated PTGDS was identified as being a unique

blood-based signature capable of differentiating

between patients with idiopathic Parkinson disease and

controls in previous original studies of the microarrays

[8]. Hence, these results may suggest that increased

PTGDS may play a crucial role in PD.

Duke et al. [18] reported that glutathione peroxidase

3 (GPX3) was more highly expressed in the medial

nigral component of PD. In the integrated analysis,

GPX3 was found to be up-regulated in PD as well.

After GO and KEGG enriched analysis, GPX3 was

enriched in the pathways glutathione metabolic pro-

cess, hydrogen peroxide catabolic process, response to

oxidative stress, glutathione binding, and glutathione

peroxidase activity, which are all associated with

Fig. 2. ROC results. (A–C) The ROC results of SVM (A), random forest (B) and decision tree (C) models based on the nine DEGs between PD

and NCs. (D–F) The ROC results of SVM (D), random forest (E) and decision tree (F) models of the confirmation by dataset GSE72267 for

these three models. The value before the parenthese represents the cut-off. The values in the parenthese represent the specificity and

sensitivity, respectively. The value below represents the AUC.

1465FEBS Open Bio 9 (2019) 1460–1468 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

F. Jiang et al. Potential diagnostic biomarkers in PD

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72267


22222bbAA51G5.22bA51G5.2

ESRSR

55CC1orf855CC1orf85C1orf855

PHPHSHSSSSRNASPSRSRNASPS P

22AAARFRP2ARFRP2

OCIL

TSG10TSG10

NXF1

11LLLRSAM1LRSAM1

MOV10MOV10MOV10

STX17

TATIP

ARH12ARH12

2626P22P2ARARRRRHGAP2RHGAP2

11.11RP333-422H13-422H1

PKN3PK

22PPPPTHSL2PTHSL2P 2

DEC

LCA15

CASM

ETAR

838HHHSPC238HSPC238
11PPPPPP10141PP10141P

23.12RP444-636O24-636O2

P3P3CCCACAAMSAPCAMSAPCA P 44DDDDDFNB24DFNB24

77CCC15orf27C15orf27

VPS8V

KDM1AKDM1AKDM1A
21.112RP1RP11111-560I2-511-560I21 2VPS18PS18VPS18

111HHVPS41HVPS41HVP 4111HVPS41

GGA3R
AAVVVPS33AASVVPS33AAA

RAB7
DIWSDIW

0-80-KRKRRRRTAP10RTRTAP10R 0
VIL2IL2

66RRRRRNF166RNF166TRAP1TTT

SSCRB1S

11NNNNNOTCH1NOTCH1N 1

121ZKZKKKKSCAN1KSCAN1K 1

PARVAPARVAPARVA

pphhhhhhVam6p6hVahVam6ph p

VVPS11VPS11

ssPPP130CasP130Cas

19.21RP1R 111-12M11-1211-12M1

00CC 0CC7orf60f60C7orf600

ISLR

MMP26MMP26MMP26

AUF1

202SSSSLLSLC25A2LC25A2

7.27RPPP1-3J17P1-3J17

OS4

SGTB

NIT1

P2PCDCDDC42EPDC42EP
424ARRRHGAP4GARHGAP4

NYAP1N

JP-1
9.11RP555-919F15-919F1

686KKKIAA1486KIAA1486

MYR8

5858CCC21orf2521C21orf25 101ARRRHGAP1HGRHGAP1

SIII

FAK

OPN1

11SSH2BP1SH2BP1SH2BP1GAF1

1TTSBN51TSBN51TSBN51

01480hCGGG_17780G_17780

CT1.11C
00CCCHOP10CHOP10

444HAX1

HSJ2

CDK8 RPC8

2fff 2flj32422flj32422

OODD ODIABLODIABLODIABLO

APP

B4BSESEERPINBERPINB

LRRN3LRRN3LRRN3

E2F-4

55CCCALML5CALML5

44DDDDNAJB4DNAJB4D 4

4.4HHRBP14.HRBP14.

ASE1

CDC42CDC42

DDDDPPPPOLR1DPOLR1D

22NNNCKAP2NCKAP2

AD-009AD-009AD-009

SCAP1S

CRKL

SBP
PIG61 APCA

BARR2BARR2 ORM1
DP1D

PRKBAPRKBAPRKBA

GPX3GPX3

CALB1C

DA41 D1DCCAACNA1ACNA1

PIG3

ATX1

PIG30

33CCHN2-3CHN2-3CHN2-3

SSPTGDSPTGDSPTGDS

0-70-KRKRRRRTAP10RTAP10R 0

S3S3RRRRRARRRRARRESRARRESRARRESRAR S

CHNPCCHNPCCHNPCC

FBX30

BCT2

NNHHHSP90NHSP90N

L12mt

TRP53TRP53

GRL

2A2CCCDC25A2CDC25A2

PPTTTTTNFR-RPTNFR-RPT P

MIHB

6B6TNNNFRSF6NFRSF6

44TTTNTNFSF14TNFSF14

CAP1

20.62RP333-395M23-395M2

TRAP3TRAP3

NTRK1N

UVRAGUVRAGGVUVRAG

MI1MFLLLVI2/BMMLVI2/BMM

HHSRG1HSRG1

MSN

SHMT2SHMT2SHMT2

CTAK1C
0-30-KRRRTAP10RTAP10

RPC5

ISOC2

Fig. 3. PPI network. The red and green ellipses represent proteins encoded by up- and down-regulated differentially expressed mRNAs

between PD and normal controls. Blue ellipses represent other proteins. Ellipses with a black border are the nine DEGs which were

selected as the optimal diagnostic gene biomarkers for PD.

Fig. 4. The qRT-PCR results of DEGs between PD and NCs. (A) GPX3, (B) SLC25A20, (C) LRRN3, and (D) POLR1D. The P-value > 0.05 was

assessed by one-way ANOVA. The error bars represent SD. n = 3.
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oxidative stress. Several studies in the literature have

verified that oxidative stress plays an important role in

the degeneration of dopaminergic neurons in PD [19–

22]. Taken together, GPX3 may be implicated in the

development of PD.

Calcium voltage-gated channel subunit alpha-1D

(CACNA1D) encodes a subunit which is one of the

voltage-gated calcium channels (VGCCs). VGCCs can

be subdivided into various subfamilies, including the

L-type VGCCs (Cav1 family), the T-type VGCCs

(Cav3 family) and the P/Q-type, R-type and N-type

VGCCs (Cav2 family) [23]. Based on the study of Ber-

ger et al. [24], Cav1.3 channels seem to be involved in

neurodegenerative mechanisms associated with the

development of PD, and a plethora of animal studies

imply an important role of VGCCs in normal brain

function and cognitive processes. Besides, the results

of GO and KEGG enriched analysis showed that

CACNA1D was enriched in pathways associated with

calcium ion transport (e.g. regulation of calcium ion

transport via voltage-gated calcium channel activity,

voltage-gated calcium channel activity, calcium signal-

ing pathway) and Alzheimer’s disease, which is also a

neurodegenerative disorder. Based on this evidence,

the up-regulation of CACNA1D detected in this analy-

sis may be involved in PD.

The gene Rho GTPase activating protein 26 (ARH-

GAP26) was reported to be associated with neuropsy-

chiatric diseases [25]. In our study, ARHGAP26 was

significantly up-regulated in PD when compared with

controls, and it was also a hub gene in the PPI net-

work, which further suggested that the gene ARH-

GAP26 may be associated with PD.

To our best knowledge, there is no report to link

TNF superfamily member 14 (TNFSF14) with PD until

now. A previous study reported that TNFSF14 shows

an up-regulation trend in Machado–Joseph disease

(MJD) patients when compared with controls. MJD is

a late-onset polyglutamine neurodegenerative disorder

caused by a mutation in the ATXN3 gene, which

encodes the ubiquitously expressed protein ataxin-3

[26]. Similarly to PD, the non-motor manifestations,

such as sleep disorders, cognitive disturbances, psychi-

atric symptoms, olfactory dysfunction, peripheral neu-

ropathy and dysautonomia, are also found in MJD

[27]. In the present study, TNFSF14 also showed up-

regulation in PD compared with controls. Besides,

according to GO and KEGG enrichment analysis,

TNFSF14 was enriched in the pathways associated

with immunoregulation and apoptotic processes (for

example, release of cytoplasmic sequestered nuclear

factor-jB, T cell proliferation, T cell activation, nega-

tive regulation of cysteine-type endopeptidase activity

involved in apoptotic processes). All signs indicated

that increased TNFSF14 may play a vital role in PD.

In conclusion, nine DEGs were identified in this

study that may serve as potential biomarkers of PD.

Functional annotation of these DEGs in PD could

contribute to exploring their precise roles in PD and

further understanding the mechanism of PD at the

molecular level. Among these nine DEGs, PTGDS was

detected in GSE99039, and SLC25A20 and LRRN3

were detected in GSE72267. As Calligaris et al. [7]

said, it is not surprising to find a very limited overlap

in the identities of single genes between a study and

those previously published, probably due to the com-

plexity and heterogeneity of PD itself and differences

in the cohort of patients and technical settings. Our

study had a limitation. The sample size of the datasets

used for the validation was small. Further validation

studies with a larger sample size need to be performed

to test the predictive power in diagnosis before clinical

application.
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