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Abstract: The preparation of nitrogen-containing porous carbon (NCPC) materials by controlled
carbonization is an exciting topic due to their high surface area and good conductivity for use
in the fields of electrochemical energy storage and conversion. However, the poor controllability
of amorphous porous carbon prepared by carbonization has always been a tough problem due
to the unclear carbonation mechanism, which thus makes it hard to reveal the microstructure–
performance relationship. To address this, here, we comprehensively employed reactive molecular
dynamics (ReaxFF-MD) simulations and first-principles calculations, together with machine learning
technologies, to clarify the carbonation process of polypyrrole, including the deprotonation and
formation of pore structures with temperature, as well as the relationship between microstructure,
conductance, and pore size. This work constructed ring expressions for PPy thermal conversion
at the atomic level. It revealed the structural factors that determine the conductivity and pore
size of carbonized products. More significantly, physically interpretable machine learning models
were determined to quantitatively express structure factors and performance structure–activity
relationships. Our study also confirmed that deprotonation preferentially occurred by desorbing the
dihydrogen atom on nitrogen atoms during the carbonization of PPy. This theoretical work clearly
reproduces the microstructure evolution of polypyrrole on an atomic scale that is hard to do via
experimentation, thus paving a new way to the design and development of nitrogen-containing
porous carbon materials with controllable morphology and performance.

Keywords: nitrogen-containing porous carbon; carbonization; polypyrrole; machine learning;
reactive molecular dynamics

1. Introduction

Since the first report on nitrogen-containing porous carbon (NCPC) in 2005 [1], an
enormous amount of research has been performed to investigate new classes of NCPCs
with higher conductivity, larger surface areas [2,3], and tunable pore sizes for potential
applications in gas adsorption [4–6], catalysis [7–16], and energy storage and conversion
devices [17–19]. When selecting the precursors for preparing NCPCs, aromatic conductive
polypyrrole (PPy) is the preferred material due to its simple synthesis, high conductivity,
environmental stability, and biocompatibility [20–25].
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The typical method for preparing NCPCs is the template method [26–28]. The tem-
plate (SiO2, Al2O3, or zeolite) can be removed by chemical etching by reacting with acids
and bases (HCl, NaOH, or HF) to form soluble substances or gases. Therefore, the template
method inevitably consumes acids and bases, creates pollution, and results in high costs.
Alternatively, the preparation of NCPCs can be simplified by the one-step carbonization
of conductive polymers [29–31], a process that has high N-doping efficiency and is envi-
ronmentally friendly and convenient. However, the direct carbonization of conductive
polymers produces amorphous NCPCs, whose microstructures and properties are difficult
to control.

P. Bairi et al. pointed out that thermal conversion products are related to carbon source
and temperature [32–34]. The performance of materials is undoubtedly associated with their
internal microstructures. Therefore, to improve the controllability of amorphous NCPCs
prepared by carbonization, it is necessary to clarify the microstructural characterization of
carbonized products, the evolution of the microstructure with temperature and time, and
the relationship between the microstructure and its properties.

Much attention has recently been given to designing novel NCPCs with tunable ni-
trogen contents and understanding the structure–property relationship, which is crucial
for enhancing their performance [29,30,35–37]. However, current knowledge about the
microstructure modulation of conversion products comes almost exclusively from exper-
iments. Real-time information on microstructure evolution during carbonization is still
contained in a black box. We previously established a ring structure characterization
method for porous carbon materials based on ReaxFF molecular dynamics (ReaxFF-MD)
simulations [38]. In the current work, we extended the previous work to provide a solution
for regulating porous carbon properties by digging into quantitative relationships between
the ring structure and the properties of porous carbon materials.

In the current work, we employed a variety of theoretical methods to comprehensively
study the preparation process of NCPCs via the carbonization of polypyrrole, including
microstructure characterization, microstructure changes with temperature, and the rela-
tionship between the microstructure, conductivity, and pore size. Using reactive molecular
dynamics (ReaxFF-MD) simulations, we constructed a ring characterization scheme for the
evolution of the microstructure during PPy carbonization. We used machine learning tech-
niques to determine the structural factors describing the carbonized tissue’s conductance
and pore size parameters and further established quantitative mathematical models. We
revealed the deprotonation sites and pathways during PPy carbonization based on MD
simulations and first-principles calculations. This theoretical knowledge is conducive to
the optimal design of porous carbon materials for specific applications. By establishing the
functional relationship between theory and experiment, we hope to find a way to realize
the expected ring structure in nanomaterials to develop porous carbon materials with
controllable morphology and excellent performance.

2. Computational Details and Models

In this work, based on the needs of the research content, the following calculation
methods were adopted to study PPy carbonization.

2.1. Reax-FF MD Simulations

The simulation box contained four polypyrrole chains. Figure S1 in Supporting In-
formation (S.I.) shows the pyrrole molecule and pyrrole chain. The periodic boundary
conditions were used in the molecular dynamics simulations, ensuring the constant num-
ber of particles in the simulated system and eliminating boundary effects. The size of
the container was adjusted so that the initial density of the PPy system at T = 300 K was
1.51 g/cm [3,39,40], which is consistent with the experimental density. The experimental
density refers to that used when constructing the initial amorphous model. It is the ratio
of mass to volume, and this kind of density has been commonly applied to molecular
dynamics simulations. In the heating simulations, we first performed energy minimization
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with ReaxFF-MD simulations. The energy minimization was terminated when the differ-
ence between the energy and the force was less than 10−6. Then, the PPy systems were
equilibrated at 300 K for 100 ps, and we constructed 6 sample structures from the 300 K
trajectory within the last 10 ps of the simulation. Subsequently, the samples were heated to
3000 K with a heating rate of 5 K/ps using the ReaxFF-MD method. In the thermostatic
simulations, canonical (NVT) ensemble annealing simulations were performed for 6 ns
at constant temperatures. For heating and thermostatic simulations, the generated gas
products (H2, CH4, HCN, NH3, etc.) were removed from the system every 1 ns to remain
consistent with the experimental procedure.

ReaxFF-MD simulations were carried out with the Large-scale atomic molecular mas-
sively parallel simulator (LAMMPS) package [41]. Simulation snapshots were generated
using visual molecular dynamics (VMD) [42] and OVITO [43] software, and the pore size
was analyzed using the Zeo++ tool [44]. The ReaxFFC-2019 potential [45] was applied to
the simulation process. ReaxFFC-2019 was developed to characterize the dissociation and
formation of chemical bonds; thus, it was believed to be a suitable forcefield for the previous
study of polymer precursors [46,47] and the current investigation of PPy carbonization.

2.2. DFT-NEB Calculations for Dehydrogenation

All DFT calculations were performed with the Vienna Ab-initio Simulation Package
(VASP) [48–50]. The projector augmented wave (PAW) method and a van der Waals force-
corrected Perdew–Burke–Ernzerhof (PBE) functional (DFT-D3) were applied to describe
the interactions between the valence electrons and ionic cores and the electron exchange–
correlation energies, respectively [51,52]. The plane wave cut-off energy of 500 eV and
2 × 2 × 1 Gamma-Center k-points sampling were chosen as the optimization and CINEB
calculation parameters [53–55]. The energy and force convergence criteria were set to
10−7/10−5 eV and 0.05/0.02 eV/Å, respectively.

2.3. NEGF-DFT Calculations for Electronic Conductance

A two-probe transport model was constructed to calculate the electronic conductance,
the schematic diagram of which is illustrated in Figure S2 in S.I. In the electrode region, a
slab containing the two layers of Al atoms was used as the electrode’s repetitive unit. The
Al slab was extended along the z-direction to provide the bias and to collect the current.
Different rings acted as the central scattering region. The buffer region consisted of five
layers of Al atoms in the z-direction to isolate possible interactions between the electrode
and the central scattering region. The optimized distance between the rings and the buffer
region was 1.2 Å, based on the results of the DFT total energy calculation. Changes in
the energy with distance were shown in Figure S3 in the S.I. Finally, a vacuum region of
no less than 20 Å in the x-direction and y-direction was added to the transport model to
screen the interactions between the periodic images of the model. We successfully applied
a similar transport model in our previous study of the electronic conductance of a Ni/C
interface [56].

The NANODCAL package [57,58] was used to calculate the rings’ conductance. The
software was based on non-equilibrium Green’s function density functional theory (NEGF-
DFT). In the current study, the local density approximation (LDA) for the exchange–
correlation functional and a double-zeta polarized (DZP) atomic orbital basis set was
adopted [59,60]. In the self-consistent calculations, the convergence criterion was set to less
than 10−5 Hartree for the density matrix of every element.

2.4. Machine Learning for Structural Factors and Tissue-Performance Relationships

Compressed, sensing-based, data-driven algorithm SISSO [61] was used to dig the
structural factors and tissue-performance relationships in PPy. This algorithm has been
applied to find physical descriptors in the materials and chemistry fields [62]. By con-
structing a high-dimensional feature space and solving the sparse solution of the linear
model, the best descriptor for the target quantity can be found efficiently. Each feature is a
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function based on a physical quantity and has certain interpretability. The final descriptor
is a combination of key features. The algorithm steps can be described as follows. First, we
took the input feature related to the target attribute as the starting point of feature space φ0,
and then we recursively performed the algebraic operation to expand the feature space.
After several iterations, φ0 was expanded into a huge φn, and there was an exponential
relationship between the size of the feature space φn and the number of iterations n.

Subsequently, the descriptors were filtered from the feature space using deterministic
independence screening (SIS) and sparsity operator (SO) methods. SIS is a method for
reducing the dimensions of high-dimensional spaces. It calculates the inner product of
target properties and features, evaluates their correlation, and selects features with high
correlation as subspaces. After dimensionality reduction, the SO method was carried out
to determine the optimal dimensional descriptor. The main parameters, set artificially,
were the dimension of two descriptors (the number of non-constant items in the Formula)
and the complexity of descriptors (the number of operators in descriptors and descriptor
complexity). Data sets of the target properties and features required for structural factors
and tissue-performance mining were provided in Figures S4 and S5 in the S.I.

3. Results and Discussion

We constructed six samples with different initial structures as research subjects to
eliminate individual differences during the simulation. Similar to the structure of porous
carbon [38], we found multiple C-C and C-N bonds in the nitrogen-containing carbon
formed by the carbonization of PPy, i.e., bonds in five-membered rings (5-M) and six-
membered rings (6-M). Thus, we followed the ring structure characterization method and
further clarified the labeling principle of the ring structure in NCPCs. We use (C-C)n and
(C-N)n to represent the different C-C and C-N bonds, where n is the coordination number
of rings. For example, (C-N)5 is a C-N bond in a 5-M ring. Accordingly, 5-MN1 denotes
five-membered carbon rings containing one nitrogen atom. In the following sections, this
ring notation is used to characterize the microstructure of carbonized PPy.

3.1. Tissue Evolution and Critical Temperature during PPy Carbonization

We first adopted heating simulations to roughly observe the tissue evolution during
the carbonization process of PPy. A total of 6 samples were equilibrated at 300 K by 100 ps
constant-temperature simulations. The temperature and energy changes with time verified
the equilibrium states, as shown in Figure S6 in the Supporting Information. Then, the
samples were heated to the target temperature (3000 K) with a 5 K/ps heating rate.

Figure 1a shows the variation of H2 molecules with temperature during the heating
process of the 6 sample structures. We found that no H2 was produced in the system when
the temperature was below 700 K, indicating that C–H or N–H bonds were not broken.
When the temperature was raised to above 700–1800 K, deprotonation occurred, and the
deprotonation rate was linear with temperature. At 1800–2800 K, the H2 content remained
almost unchanged, while the number of H2 increased significantly at 2800 K. Actually, de-
protonation below 2800 K occurred at the nitrogen sites. Above that temperature, hydrogen
on carbon was also desorbed. The deprotonation is closely related to the dehydrogenation
mechanism, explained in detail in Section 3.4. In addition, we found no structure evolution
below 1500 K, according to the ring structure analysis in Figure 1b. Above 1500 K, the
number of 5-M rings decreased, and other ring structures, such as 6-M, 7-M, and 8-M rings,
appeared in the systems. In general, through the heating simulation of PPy, we could
roughly determine that the theoretical dehydrogenation temperature is 700 K, and the
critical temperature of pyrolysis is 1500 K.
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Figure 1. (a) Changes in the number of H2 molecules with the temperature during heating; (b) the
number of rings in the six sets of samples versus temperature during heating.

Subsequently, a series of detailed thermostatic simulations were performed to verify
the heating simulation results. In these studies, the samples were balanced for 6 ns in 200 K
intervals from 1300 to 2500 K. Figure 2 shows the evolution of the average number of rings,
with the simulation time at each temperature.

Below the 1500 K, the number of 5-membered rings in the system did not change, and
no other stable types of rings were formed. At 1700 K, deprotonation occurred in the early
simulation stage, then the number of 5-M rings decreased slowly, and 6-M rings appeared
in the later stage of the simulation, indicating the occurrence of the pyrolysis reaction.
As the temperature rose, the variety and number of new rings increased. At 1900 K, we
observed new rings (6-M, 7-M, and 8-M). The number of new rings, especially 6-M rings,
was negatively correlated with the number of 5-M rings. However, we found that 8-M rings
were not stable and disappeared at the end of thermostatic simulations at 1900 K.

At 2100 and 2500 K, the rings changed more dramatically and in different ways. The
number of 5-M rings decreased rapidly, then rose, and finally remained constant. After
structural analysis, we confirmed that this phenomenon originated from the formation of
pure carbon 5-M rings after the emission of nitrogen atoms in the later carbonation stage,
which inversely increased the total number of 5-M rings in the system. The simulation
results showed that the number of 6-M rings significantly suppressed the number of
5-M rings, indicating that graphitic carbon was the dominant form in the system, and the
graphitization of PPy was complete. The 8-M rings remained unstable and tended to fade
in the later stages of the simulation. The thermostatic simulation results further confirmed
that the theoretical critical temperature of the pyrolysis reaction is 1500 K.
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Figure 2. (a–f) are the variations of average ring numbers with temperatures from 1300 K to 2500 K.
Below 1500 K, the type and number of rings in the system did not change. At 1700 K and above,
the number of 5-M rings decreases, accompanied by the formation of new types of rings. As the
temperature increases, the variety and number of new rings increased. The blue, red, yellow, and
purple data sets represent the 5-M rings, 6-M rings, 7-M rings, and 8-M rings, respectively.

In experiments, the deprotonation of PPy materials generally occurs at 450–600 K [63],
and the critical temperature of the pyrolysis reaction is usually 1200 K [19]. It should
be noted that the theoretical critical temperature is higher than the one monitored in ex-
periments. To follow the tissue evolution in a limited simulation time, we employed an
accelerated kinetics method [38,64] in the simulation process, which returned a higher
critical temperature. However, we reproduced the tissue evolution observed in the experi-
ment by MD simulations, and accelerated kinetics has been widely accepted and applied
in theoretical studies [38,64,65]. As presented below, our theoretical simulations provide
essential knowledge and demonstrate the feasibility of the controllable preparation of
amorphous NCPCs, which will promote the development of experimental work.

3.2. Tissue Correlation with Electronic Conductance

Conductance is a material property with crucial practical value. It shows a significant
correlation with tissue during the carbonization of PPy. Still, the understanding of this
relationship has not been solved, which poses a substantial obstacle to regulating the con-
ductance through tissue. Now that we have constructed a ring-structure characterization
scheme for the carbonized tissue, it is possible to build structure–property relationships
between the conductance and the ring structure.
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Different from ionic conductance, the calculation of electronic conductance is a rather
tricky problem for our systems because ReaxFF-MD provides little information on the
transport of electrons. The current model systems are also too large for first-principles
conductance calculations based on non-equilibrium Green’s functions. We need a physical
quantity to characterize the evolution of conductance with the carbonized tissue to elucidate
the structure-performance relationship.

Since the ring structure has been used as a descriptor of the tissue, we constructed
a statistical conductance model based on the proportion of ring structures in the PPy
carbonized tissue. The statistical conductance is defined as:

Con= ∑i wiσi (1)

where wi is the weight of different types of rings in the system obtained by MD trajectory
analysis, and σi is the conductance of the corresponding rings calculated by the non-
equilibrium Green’s function DFT method that is listed in Table 1.

Table 1. The conductance (unit: 2e2/h) of different rings in the PPy carbonized tissue.

5-M Ring 6-M Ring 7-M Ring 8-M Ring

N0 1.6319 2.0311 1.8404 1.1564
N1 0.9319 1.2667 2.1085 1.0176
N2 1.0053 1.4475 1.7509 0.9608
N3 1.8146

N0–3: The number of nitrogen atoms in the carbon rings.

In Figure 3, we plot the variation in the statistical conductance with temperature using
the equilibrium structure at each temperature. We know that below the critical tempera-
ture, PPy undergoes dehydrogenation. As shown in Figure 3, the statistical conductance
decreased gradually with dehydrogenation from 700 to 1500 K because the polypyrrole
salt slowly transformed into a less-conductive base [66–68]. Then, the pyrolysis reaction
occurred, and the structure began to evolve when the simulated temperature was higher
than the critical temperature. We found that the statistical conductance increased with PPy
pyrolysis from 1500 to 2300 K. The behavior of the statistical conductance below 2300 K
is consistent with experiments in which the conductivity of PPy during carbonization
showed a quadratic variation with temperature [63,67]. More importantly, our theoretical
calculations revealed a phenomenon that was not found in the experimental results due
to the temperature limitation. When over-carbonation occurred, the tissue was graphi-
tized, and the conductance instead decreased upon increasing the temperature. Thus, the
conductance–temperature curve shows a tissue-dependent optimum conductance during
carbonization.

Although the statistical conductance differed from the real conductivity in the nu-
merical and physical senses, we verified that the statistical model correctly reflected the
evolution of conductivity with carbonized tissue by comparing the calculated results
with experimental data; thus, it can be further used to explore the tissue correlation with
conductivity.

Because the complexity of the PPy amorphous carbonized structure is beyond the
scope of our rational treatment, we introduced a machine learning method to study the
dependence of conductance on the structure. In this process, 13 ring structures were treated
as machine learning features, and the statistical conductance was the target property. Above
the critical temperature, the PPy underwent significant tissue evolution, so we collected
feature and target data sets by analyzing and calculating the outputs of molecular dynamics
thermostatic simulation at 2100 and 2500 K.
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Figure 3. The variation of equilibrium statistical conductance with temperature. The tissue circled
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First, the XGBoost algorithm [69] was used to analyze the weights of the effect of ring
structures on conductance. Table 2 shows that the top four features affecting conductance
were the 5-M ring, 5-MN1 ring, 6-M ring, and 6-MN1 ring, accounting for 17.7%, 24.2%,
17.4%, and 9.2% weight, respectively, with a total weight that is close to 70%.

Table 2. Weights of the effect of ring structures on conductance.

Temperature Feature 5-M 5-MN1 5-MN2 6-M 6-MN1 6-MN2 6-MN3

2100 K Weights 0.177 0.242 0 0.174 0.092 0.046 0.026
2500 K 0.139 0.211 0.007 0.201 0.177 0.047 0.003

Temperature Feature 7-M 7-MN1 7-MN2 8-M 8-MN1 8-MN2

2100 K Weights 0.046 0.056 0.056 0.043 0.036 0.006
2500 K 0.068 0.044 0.031 0.017 0.031 0.024

Then, the four features were used to construct the initial feature space φ0. The SISSO
approach was executed to mine the functional relationship between the target property
and features. In the first iteration of descriptor optimization, 55 candidate features were
generated, and 1130 features were generated in the second iteration. The features most
closely related to the target property were filtered through sure independence screening
(SIS) in each iteration. Then, the formula was fitted by the sparsifying operator (SO) with a
specific root mean square error (RMSE).

Among several structure–activity relationship models produced by machine learning,
we chose the formula with the smallest RMSE and the most apparent physical meaning
(see Table S1 in S.I.). The structure–performance relationship between the conductance and
microstructure can be presented as:

Con = γ(T) ∗ 3
√

N6−M/N5−MN1 + B(T) (2)

where γ(T) and B(T) are temperature-dependent parameters that can be obtained by fitting
the constant temperature MD simulation data at different temperatures. At 2100 K, γ(T)
and B(T) are 0.586 and 0.908, respectively, while they are 0.433 and 1.045 at 2500 K. N6−M
is the number of 6-membered carbon rings in the PPy tissue, and N5−MN1 is the number
of 5-membered rings containing 1 nitrogen. Their combination constitutes a structural



Materials 2022, 15, 3705 9 of 17

factor F in the carbonized PPy that can be used as a descriptor of conductance. We found
that γ(T) and B(T) changed slightly at 2100 K and 2500 K and became approximately
0.5 and 1, respectively. Therefore, an approximate formula of conductance, independent of
temperature, may be expressed as:

Con = 0.5 ∗ F1/3 + 1; F = N6−M/N5−MN1 (3)

Formula (3) can represent the relationship between conductance and structural evolu-
tion during polypyrrole carbonization at different temperatures.

Using Formula (2), we plotted the conductance variations with time and the structural
factor at 2100 and 2500 K in Figure 4. The data mining results closely reproduced the
variation trend of conductance with time at both temperatures. In the physical dimension,
γ(T) has the meaning of conductivity density, and B(T) is the conductance of the initial
PPy. Therefore, Formula (2) is a physically interpretable machine learning model. The
training set used in machine learning for conductance training was listed in Table S2 in S.I.
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graph (a,b)) and 2500 K (Subgraph (c,d)).

The conductance–rings relationship is important for the controlled carbonization of
PPy because it can directly obtain nitrogen-containing carbon materials with expected
properties through tissue regulation to improve the preparation efficiency and reduce
costs. Different kinds of rings can be distinguished in experiments by fitting them to the
component peaks in X-ray photoelectron spectroscopy (XPS) spectra [19]. Then, the type
and number of rings can be obtained by analyzing the position and intensity of these
peaks. Also, carbonized PPys can be characterized by transmission electron microscopy
(TEM) [35], powder X-ray diffraction (XRD) [70], Raman spectroscopy [66], and nitrogen
adsorption-desorption isotherms [14]. These experimental methods make it feasible to
prepare NCPCs via0 the controlled carbonization of PPy.
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3.3. Tissue Correlation with Pore Size

Pore size is an essential parameter of porous carbon materials, but the evolution
mechanism of pore size with ring structure is still unclear. Based on the results presented
in Section 3.1, the pore size in the carbonized PPy changes significantly only during the
pyrolysis stage. Therefore, we will focus on variations in the pore size distribution (PSD)
above the critical temperature (1500 K).

In Figure 5, we plotted the variation of PSD with temperature using the equilibrium
structure at the respective temperature. Below 1500 K, deprotonation led to a gradual
increase in the pore size of the system. Pyrolysis-dominated reactions occurred between
1500 and 2300 K, and different types of rings were distributed in the carbonized PPy tissue.
Upon increasing the temperature, the degree of carbonization deepened, and the pore
size of the structure continued to increase. At 2500 K, PPy was over-carbonized, and we
observed apparent graphite-like layered structures. We found that at 2500 K, the pore
size first increased, and when the graphite-like structure spread, the pore size gradually
decreased. The final reduced pore size at 2500 K was similar to that at a lower temperature
(2100 K). More detailed information about microstructure and aperture distribution can be
found in Figure S7 in SI.
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By employing a machine learning strategy similar to the one used in the conductance
study, we found that the top four features affecting pore size were 5-M ring, 5-MN1 ring, 6-
M ring, and 6-MN1 ring, accounting for 18.7%, 22.4%, 14%, and 13.2% weight, respectively,
with a total weight close to 70%, as shown in Table 3. Among several structure–activity
relationship models produced by SISSO, we chose the formula with the smallest RMSE and
the most apparent physical meaning (see Table S3 in S.I.). Finally, we dug a pore size–ring
relationship for the carbonized PPy as:

Psd = A(T) ∗ X + C(T); X = (N6−m ∗ N6−MN1 − N5−MN1) (4)

In this model, the pore size is proportional to the structure factor X, which com-
bines the number of different ring types, including 6-membered carbon rings N6−m,
6-membered rings containing one nitrogen N6−MN1 and 5-membered rings containing
1 nitrogen N5−MN1. A(T) and C(T) are temperature-dependent parameters whose tem-
perature dependence can be fit using MD simulations. Formula (4) is also a physically
interpretable machine learning model because A(T) has the physical meaning of pore
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density, and C(T) is the initial pore size. Figure 6 shows the linear change of pore size with
the structure factor X at 2100 K and 2500 K. At both temperatures, the fitting results reflect
the pore evolution within an acceptable error range. The training set for machine learning
were provided in Table S4 in S.I.

Table 3. Weights of the effect of ring structures on pore size.

Temperature Feature 5-M 5-MN1 5-MN2 6-M 6-MN1 6-MN2 6-MN3

2100 K Weight 0.187 0.224 0.018 0.140 0.132 0.052 0.032
2500 K 0.215 0.172 0.013 0.137 0.164 0.049 0.017

Temperature Feature 7-M 7-MN1 7-MN2 8-M 8-MN1 8-MN2

2100 K Weight 0.052 0.029 0.052 0.026 0.033 0.023
2500 K 0.051 0.066 0.035 0.028 0.032 0.021
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3.4. Deprotonation Mechanism

The hydrogen content in PPy plays a vital role in conductance and pore size, making
it necessary to understand the deprotonation process and mechanism. The deprotonation
process was accompanied by hydrogen evolution [66–68]. Therefore, we first studied
changes in the hydrogen evolution rate and hydrogen content in PPy with temperature.

As shown in Section 3.1, deprotonation occurred above 700 K. Figure 7a shows the vari-
ation of the amount of H2 generated over time from 700 to 1700 K. The hydrogen generation
rate gradually accelerated upon increasing the temperature. Accordingly, the hydrogen
content in PPy decreased as the temperature rose, as shown in Figure 7b, indicating that a
higher temperature promoted the deprotonation reaction.

Further, we studied the deprotonation process and mechanism in detail. Figure 8a–f
shows the simulated equilibrium structures of PPy at 700–1700 K. By analyzing the depro-
tonation pathway, we found that, in the temperature range of 700–1500 K, the hydrogen
atom on the nitrogen atom dissociated first to form H2. At 1700 K, with the occurrence of
the pyrolysis reaction, the hydrogen atoms attached to carbon atoms were transferred to
nitrogen atoms and then further dissociated to produce hydrogen. This shows that nitrogen
was the deprotonation site.
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At 2100 and 2500 K, we observed the same phenomenon as at 1700 K, in which
hydrogen atoms at different initial positions first moved to nitrogen atoms and then
generated H2. This may be because the N–H bonds broke more preferentially than the C–H
bonds, and the migration barrier of the hydrogen atom in tissue was low. Nudged elastic
band (NEB) calculations based on density functional theory were performed to explain the
hydrogen evolution behavior in the carbonized PPy. The hydrogen evolution path was
shown in Figure 9.
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Using the saturated tricyclic PPy models, we calculated the dissociation energy of
hydrogen at the carbon and nitrogen sites, respectively. We found that the dissociation
energy of a single hydrogen atom from carbon was ~1.8 eV higher than that from nitrogen.
However, the dissociation energy of dihydrogen atoms was much lower than that of single
hydrogen atoms, about 2.0 eV lower, both at the carbon and nitrogen sites. The migration
activation energy of the hydrogen atom moving on the rings was ~0.46 eV, which is a lower
barrier than the ambient energy (1.5–2.5 eV). Compared with the thermal energy provided
by the environment, the current NEB calculations support the notion that deprotonation
preferentially occurs by desorbing dihydrogen atoms at nitrogen sites. Figures S8–S13 in S.I.
provide detailed NEB calculations and discussions.

In Section 3.1, we found that the dehydrogenation rate increased significantly at
2800 K. The hydrogen evolution path at this temperature was shown in Figure 10. By
analyzing the production process of H2 in the system, we found that the hydrogen at the
carbon and nitrogen sites dissociated directly at this temperature. Therefore, the additional
deprotonation sites caused by the ambient temperature increased significantly, promoting
the hydrogen evolution process.
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4. Conclusions

Amorphous porous carbon prepared by carbonization has poor controllability, mainly be-
cause of the unclear characterization of carbonized tissue and the microstructure–performance
relationship. This manuscript discovered the deprotonation, pyrolysis, and graphitization
mechanisms of PPy undergoing carbonization using a variety of theoretical calculations.
This computational work constructs a ring expression for PPy thermal conversion at the
atomic level. It reveals performance-related structural factors in the carbonized tissue that
can quantitatively describe the performance evolution. In addition, our study confirmed
that deprotonation preferentially occurred by desorbing dihydrogen atoms at nitrogen
atoms, clarifying the deprotonation sites and hydrogen evolution paths during the car-
bonization of PPy. Our comprehensive atomic-scale study uncovers the feasibility of
modulating the microstructure and properties of NCPC materials and the thermal conver-
sion pathways correlated with tissue monitoring and temperature. It also contributes to the
design and development of high-surface-area materials with controllable morphology and
performance.
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