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Abstract

Inferring how gene expression in a cell is influenced by cellular microenvironment is of great importance yet challenging. In
this study, we present a single-cell RNA-sequencing data based multilayer network method (scMLnet) that models not only
functional intercellular communications but also intracellular gene regulatory networks (https://github.com/SunXQlab/
scMLnet). scMLnet was applied to a scRNA-seq dataset of COVID-19 patients to decipher the microenvironmental regulation
of expression of SARS-CoV-2 receptor ACE2 that has been reported to be correlated with inflammatory cytokines and
COVID-19 severity. The predicted elevation of ACE2 by extracellular cytokines EGF, IFN-γ or TNF-α were experimentally
validated in human lung cells and the related signaling pathway were verified to be significantly activated during
SARS-COV-2 infection. Our study provided a new approach to uncover inter-/intra-cellular signaling mechanisms of gene
expression and revealed microenvironmental regulators of ACE2 expression, which may facilitate designing anti-cytokine
therapies or targeted therapies for controlling COVID-19 infection. In addition, we summarized and compared different
methods of scRNA-seq based inter-/intra-cellular signaling network inference for facilitating new methodology
development and applications.
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Introduction
The gene expression and cellular functioning are not determined
by the intracellular substance only but are also dependent on
extracellular signals [1]. Various types of cells and cytokines exist
in the extracellular microenvironment [2], which constitute a
heterogeneous environment for cell growth, migration and func-
tion. The microenvironmental signals can be transmitted into
the intracellular molecular regulatory network through multi-
ple layers of signal propagation including receptors, signaling
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molecules, transcription factors and target genes [3]. There-
fore, inferring intercellular communications and intracellular
signaling networks would help to deepen our understanding
of gene-expression regulation and cellular fate determination
[4, 5].

The emerging single-cell sequencing technology provides us
with an unprecedented opportunity to deconvolute microenvi-
ronment composition and to predict cell–cell communications.
At the resolution of single cell, cell-specific biological effects
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can be captured to depict cell heterogeneity [6]. The single-
cell RNA-sequencing (scRNA-seq) transcriptomic data can be
used to analyze interacting cell types and cell type-specific gene
expressions, so as to elaborate the microenvironment-mediated
intercellular and intracellular signaling pathways [7].

In recent years, several methods or tools have been devel-
oped to infer cell–cell communications from scRNA-seq data. For
example, SoptSC [8] predicts pathway-mediated cell–cell com-
munications by defining ligand–receptor (L–R) signaling proba-
bilities based on gene expression of specific pathway genes in
single cells. SingleCellSignalR [9] provides a curated LR database
and calculates a novel regularized score to assess the confi-
dence in predicted LR interactions by controlling false posi-
tives. A more comprehensive LR database CellPhoneDB [10] has
been created by taking into account the subunit architecture
of both ligands and receptors and a statistical framework was
developed to predict enriched cellular interactions between two
cell types from single-cell transcriptomics data. Furthermore,
considering important spatial distance between cells, SpaOTsc
[11] infers cell–cell communications by ‘optimally transporting’
signal senders to target signal receivers via structured optimal
transport to recover spatial properties of scRNA-seq data in the
aid of the spatial reference. More recently, CellChat [12] has
been developed to quantitively infer and analyze intercellular
communication networks from scRNA-seq data by means of
network analysis, pattern recognition and manifold learning
approaches.

However, the above methods or tools mainly focus on inter-
cellular communications but fall short on modeling how gene
expression of a cell is influenced by interacting cells. In fact, the
signaling events involved in cell–cell communications include
not only intercellular signals but also intracellular signaling
pathways and transcriptional regulations [3]. To predict ligand–
target gene links between interacting cells, NicheNet [13] inte-
grates prior knowledge on ligand–receptor, signaling and gene
regulatory networks into weighted networks and used a network
propagation method to calculate a regulatory potential score
between all pairs of potential active ligands and predefined
target genes. Although NicheNet can be applied to both bulk and
single cell expression data, the prior model of ligand–target reg-
ulatory potential depends mainly on prior network information
rather than expression relationships in specific cells. Therefore,
context-dependent multilayer, inter- and intra-cellular signal-
ing networks are required to be constructed for functionally
understanding cell–cell communications by more fully taking
advantage of the single cell gene expressions.

In this study, we developed a scRNA-seq data-driven mul-
tilayer network method (scMLnet) that models not only inter-
cellular communications but also intracellular gene regulatory
networks. scMLnet integrates intercellular pathways (ligand–
receptor interactions) and intracellular subnetworks (receptor–
TF pathways and TF–target gene interactions) based on cell-type
specific gene expression, prior network information and statis-
tical inference. scMLnet could be used to predict microenviron-
mental regulators of gene expression within a cell using scRNA-
seq data and to understand functional roles of intercellular
communications.

We then applied scMLnet to a scRNA-seq dataset of COVID-
19 patients to investigate microenvironmental regulation of
expression of SARS-CoV-2 receptor gene ACE2 (angiotensin-
converting enzyme 2), which has been reported to be correlated
with inflammatory cytokines and COVID-19 severity but the
underlying mechanisms remain poorly understood. To this end,

we collect published scRNA-seq data of COVID-19 patients
to analyze the cellular compositions and to construct both
intercellular and intracellular signaling networks. Specifically,
we construct subnetworks connecting to ACE2 and integrate
them into a multi-cellular multilayer network. Based on the
network analysis, several key regulators of ACE2 expression were
revealed. Subsequently, using independent bulk transcriptomic
data from COVID-19 patient samples, several pathways in
the multilayer network were verified to be activated during
SARS-CoV-2 infection. At last but not least, we experimen-
tally validate the predicted regulation of ACE2 by cytokines
including EGF, IFN-γ and TNF-α. Our study also has therapeutic
relevance for intervention of COVID-19. We also analyzed
the sensitivity/robustness of our method to the variation of
the cell clustering parameters. In addition, we summarized
and compared different methods of cell–cell communication
inference to facilitate tools’ applications and new methodology
development.

Methods
scRNA-seq data collection and quality control

The scRNA-seq data of bronchoalveolar lavage fluid (BALF) in
COVID-19 patients were collected from the Gene Expression
Omnibus (GEO) database with accession number GSE145926
[14]. The dataset contained nine samples of COVID-19 patients,
including three patients in moderate stage and six patients
in severe stage. In addition, we included four samples of
BALF in healthy controls (GSE145926 [14] and GSM3660650
[15]) for accurate and comprehensive cell clustering and
cell-type annotation. The scRNA-seq data were subject to
quality control to obtain high-quality data for the following-up
analysis. We perform quality control using the following criteria
(gene number between 200 and 6000, UMI count >1000 and
mitochondrial gene percentage < 0.1 [14]). All the 13 samples
of scRNA-seq data were used for cell-clustering analysis, and
then the expression matrix of cells with annotated identity
in the nine patient samples were used as input of scMLnet to
infer multilayer networks of ACE2 regulation during SARS-CoV-2
infection.

Cell type identification

The integration, normalization, standardization, dimensionality
reduction and tSNE visualization of the expression matrix were
performed using R package Seurat v3.1.2 [16].

The ‘NormalizeData’ function of Seurat was used to nor-
malize the expression matrix of single cells. The method ‘Log-
Normalize’ was used to multiply the expression matrix by 10
000, which was then divided by the size of the total library, so
that different cells could be comparable. The top 2000 highly
differentially expressed genes for principal component analy-
sis were identified using the ‘FindVariableGenes’ function (vst
method as default). The ‘ScaleData’ were used to scale and
center the expression levels of highly variable genes, excluding
the influence of mitochondrial genes and the total number of
molecules detected within a cell. Finally, tSNE method was used
for visualization. The ‘FindClusters’ function was used for single-
cell clustering, and the cell types were identified according to
the expression levels of marker genes from the original studies.
Appropriate parameters were selected according to the original
study [14].
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Figure 1. A schematic diagram of scMLnet. (i) We first processed the RNA-seq data and performed clustering analysis to identify cell types according to specific marker

genes. (ii) We then constructed multilayer network by integrating intercellular pathways (ligand–receptor interactions) and intracellular subnetworks (receptor–TF

pathways and TF–target gene interactions) based on cell-type specific gene expression, prior network information and statistical inference (Fisher’s exact test and

correlation). (iii) A multicellular network was constructed by connecting different microenvironmental cells to the target cells via combining multilayer networks, to

elucidate microenvironment-mediated regulation of gene expression.

Screening cell type-specific highly expressed genes

Based on the above data clustering and cell-type identi-
fication, we firstly analyzed the expression of cell type-
specific genes. The gene-expression proportions in the specific
type of cells were calculated. The highly expressed genes
were screened according to the following requirements: (1)
The gene-expression proportions detected in either of the two
populations (sender cells and receiver cells) should be larger
than a certain threshold (set to 0.05 by default); (2) The ratio
of gene-expression proportions between the two populations
should be larger than a certain threshold (set to -Inf by default);
(3) In addition, the difference of the mean expression values
between the two populations should be larger than a certain
threshold (e.g. 0.15). For genes screened by the above criteria,
the corresponding expression matrix was then normalized by
LogNormalize method. T test was used to select highly expressed
genes in one versus another cell type (P value < 0.05). These
highly expressed genes were considered to be related genes
involved in cell–cell interactions. We assumed that the highly
expressed genes are most likely to be affected and the most
physiologically significant signals in cell interactions, in order
to reduce the complexity and false positives of signaling network
construction.

scMLnet

A schematic illustration of the scRNA-seq data-based multi-
layer network method is shown in Figure 1. The multilayer
network method provides a new tool for modeling cell–cell

communication and microenvironment-mediated gene expres-
sion. To this end, we developed an R package, scMLnet, for
constructing the scRNA-seq based multilayer network (https://
github.com/SunXQlab/scMLnet).

Input and output

Before using scMLnet, scRNA-seq data should be processed and
clustered to identify cell types for dissecting cell type-specific
gene expressions by employing existing methods or tools (e.g.
Seurat [16]). scMLnet requires the following information as input:
(1) scRNA-seq expression matrix (a Sparse matrix, where rows
represent genes, columns represent cells); (2) clustering results
containing two columns: cell’s barcode and cluster identities;
(3) two cluster identities of receiver cells and sender cells
respectively. The output of scMLnet has two forms: (1) tabular
information of the constructed multilayer network, containing
gene pairs connecting each upstream layer and downstream
layer (i.e. ligand–receptor links, receptor–TF links and TF–target
links); (2) graphical visualization of the constructed multilayer
networks.

Below we describe the algorithmic details of inference and
integration of ligand–receptor subnetwork, receptor–TF subnet-
work and TF–target gene subnetwork in scMLnet.

Constructing ligand–receptor subnetwork

We collected ligand–receptor pairing information from databases
such as DLRP, IUPHAR, HPMR, HPRD, STRING and other databases
as well as previous studies [17] to form a list containing 2557

https://github.com/SunXQlab/scMLnet
https://github.com/SunXQlab/scMLnet


4 Cheng et al.

pairs of ligand–receptor directional pairings (Table S1), defined
as ELR = {(ligandi, receptori)}. In order to predict the multilayer
signal regulatory network between cell type A (sender cells) and
cell type B (receiver cells), we need to obtain the genes that
are highly expressed in cell types A and B, respectively (see the
‘Screening cell type-specific highly expressed genes’ section).
The ligands with high expression in type A cells were defined as
LA

H, and the receptors with high expression in type B cells were
defined as RB

H, so we select the known ligand–receptor pair for
further analysis by searching the pair (LA

H × RB
H) in our ligand–

receptor database ELR. The selected known ligand–receptor pair
N′LR = ELR ∩ (LA

H × RB
H) was defined as primary intercellular

signaling subnetwork.

Constructing TF–target gene subnetwork

We collected TF–target genes information from TRED, KEGG,
TRANSFAC and GeneCards databases. We obtained a TF–target
gene list containing 8874 pairs of TF–target gene interactions
(Table S1), denoted as ETT = {(TFi, TGi)}. The set of target genes
with high expression in type B cells was denoted as TGup, and
the list of target genes of a given transcription factor TFi was
denoted as TGTFi

by searching the target genes of a given tran-
scription factor in the TF–target gene list ETT. The collection of
all the target genes in the TF–target gene list was denoted as
TGall. Fisher’s exact test was used to verify the activation of the
transcription factors in cell type B, with the activation probability
calculated as:

P =
(

a + b
a

) (
c + d

c

) / (
a + b + c + d

a + c

)
(1)

where
(n

k

)
represents the binomial coefficient. a = |TGup ∩ TGTFi

|
represents all highly expressed target genes for a given tran-
scription factor, b = |TGup| − a represents the part of the highly
expressed genes that are not regulated by this transcription
factor, c = |TGTFi

| − a represents the non-highly expressed target
genes of TFi, d = |TGall| − a − b − c represents target genes that
are neither highly expressed nor target genes of TFi. When the P
value is lower than 0.05, this transcription factor is considered as
a significantly activated transcription factor in receiver cells. The
set of transcription factors was defined as TFB

A. So, the primary
subnetwork between transcription factors and target genes can
be defined as N′TT = ETT ∩ (TFB

A × TGup).

Constructing receptor–TF subnetwork

The complete signaling network includes ligand–receptor–TF–
target gene interactions. In order to connect the primary inter-
cellular subnetwork N′

LR with the primary subnetwork between
transcription factors and genes N′

TT, we sought to find the path-
ways connecting receptors and transcription factors. We used
the string database to extract functional links or pathways from
the receptors to the downstream transcription factors, including
39 141 pairs of receptor–TF links (Table S1), defined as ERT =
{(receptori, TFi)}. The set of activated transcription factors in type
B cells were denoted as TFB

A, and the collection of transcription
factors of a given receptor, Ri, was denoted as TFRi

. The collection
of transcription factors was denoted as TFall. Similarly, Fisher’s
exact test was used to verify the activation of the receptors,
and the activation probability of receptors was calculated by the

following formula:

P =
(

x + y
x

) (
m + n

m

)/ (
x + y + m + n

x + m

)
(3)

where
(n

k

)
represents the binomial coefficient. x = |TFB

A ∩ TFRi
|

represents all activated transcription factors regulated by a given
receptor, y = |TFB

A|−x is the part of activated transcription factors
that not regulated by this receptor, m = |TFRi

| − x represents the
non-activated transcription factors regulated by this receptor,
n = |TFall| − x − y − m is the transcription factors that are neither
activated nor regulated by Ri. When the P value is lower than
0.05, this receptor Ri is considered to be significantly activated.
The set of activated receptors was denoted as RB

A. Therefore,
the primary receptor–TF subnetwork can be defined as N′RT =
ERT ∩ (RB

A × TFB
A).

Refining subnetworks and constructing multilayer
signaling network

According to the above analysis, the significantly highly
expressed (see ‘Constructing ligand–receptor subnetwork’ sec-
tion) and activated (see ‘Constructing receptor–TF subnetwork’
section) receptors in cell type B could be defined as RAH = RB

A∩RH
B.

As such, we could refine ligand–receptor subnetwork and
receptor–TF subnetwork to be NLR = ELR ∩ (LA

H × RAH) and
NRT = ERT ∩ (RAH × TFB

A), respectively. More specifically, the
ligand–receptor links and receptor–TF links containing receptors
that are not highly expressed nor significantly activated were
removed from the network. We denoted the corresponding
downstream transcription factors in NRT as TFNRT , so the TF–
target gene subnetwork could be refined as NTT = ETT ∩ (TFNRT ×
TGup). More specifically, the TF–target gene links containing TFs
that were absent in the refined receptor–TF subnetwork NRT
were removed.

Furthermore, we performed correlation analysis based on
the single cell gene expressions to verify the reliability of the
intracellular subnetworks and to further refine the subnetworks.
We calculated correlations for each of receptor–TF links and TF–
target gene links based on the raw count matrix of the receiver
cells using Kendall’s rank-correlation coefficient since it is more
robust on non-normal distributions compared with Pearson’s
correlation coefficient (PCC). Significantly correlated receptor–
TF links (Kendall’s tau �= 0 and P value < 0.05) and TF–target
gene links with significant positive correlations (Kendall’s tau
> 0 and P value <0.05) were retained and others were filtered.
For simplicity, the refined receptor–TF subnetwork and TF–target
gene subnetwork were still denoted as NRT and NTT, respectively.

At last, the multilayer inter-/intra-cellular signaling network
could be thereby constructed by integrating the three subnet-
works as N = NLR ∪ NRT ∪ NTT. The final ligand–receptor
subnetwork NLR and the final receptor–TF subnetwork NRT were
connected via the common receptors across the two subnet-
works. The final receptor–TF subnetwork NRT and TF–target gene
subnetwork NTT were connected via the common TFs. As a result,
a directed graph G = 〈V,E〉was constructed, where V = V(G) is the
set of vertices consisting of genes in the multilayer network and
E = E(G) is the set of edges consisting of ligand–receptor links,
receptor–TF links and TF–target gene links.
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Applying scMLnet to analyze
microenvironment-mediated ACE2 regulation

We applied scMLnet method to analyze microenvironment-
mediated ACE2 regulation based on the above BALF scRNA-
seq data of COVID-19 patients (GSE145926). We extracted
signaling pathways connecting microenvironmental ligands
from various types of cells to intracellular ACE2 target gene
through receptors and transcription factors. Cells with high
expression of ACE2 were viewed as the central cells (the
receiver cells), and other cells expressing the ligands were
viewed as neighbor cells (the sender cells). We used scMLnet to
predict and visualize the multilayer networks, which were then
integrated into a multicellular network to fully demonstrate the
microenvironmental regulation of ACE2 expression.

Experimental validation

Cells and cytokine treatment

To validate the predicted regulation of cytokines on ACE2 expres-
sion in lung cells, a human bronchial cell line (Beas-2B) was
cultured for in vitro experiments. Beas-2B cells were treated
with different doses of EGF (50, 100, 200 ng/ml), IFN-γ (25, 50,
100 ng/ml) or TNF-α (50, 100, 200 ng/ml). In all experiments,
cells were incubated with LPS as the control group. All cytokines
were obtained from Peprotech (EGF: Animal-Free Recombinant
Human EGF, AF-100-15, 100 μg; TNF-α: Recombinant Human
TNF-α, 300-01A, 10 μg; IFN-γ : Recombinant Human IFN-γ , 300-02,
20 μg).

Quantitative real-time polymerase chain reaction analysis

Total RNA was isolated from cells using TRIzol (MRC, TR118–
500) and cDNA was made using M-MuLV Reverse Transcrip-
tase (Promega,M1705). The mRNA expression level of ACE2 was
detected by quantitative real-time polymerase chain reaction
(qPCR) using ChamQ SYBR qPCR Master Mix (Vazyme,Q341-03).
All kits were used according to the manufacturer’s instructions.
The specific primers for the PCR were as follows: ACE2: 5’ TGCT-
CAAACAAGCACTCACG 3′, Rev: 5’ TGTTTCATCATGGGGCACAG 3′.
All qPCR experiments were run in triplicate.

Results
scMLnet reveals microenvironmental regulation
of ACE2 expression using scRNA-seq data
of COVID-19 patients

Using scRNA-seq data of BALF samples from COVID patients
and healthy controls, 23 916 genes and 66 452 cells were inte-
grated for cell clustering after data pre-processing. After stan-
dard procedure for single-cell transcriptome analysis by Seu-
rat [16], a total of 12 types of cells were identified (Figure 2A),
including secretory cells, macrophages, ciliated cells, T cells,
B cells, plasma cells, plasmacytoid dendritic cells (pDCs), NK
cells, mast cells, myeloid dendritic cells (mDCs), Neutrophils and
Doublets cells (CD68 + CD3D+), according to cell type marker
genes (Figure S1A). ACE2 was mainly expressed in epithelial
cells, especially in secretory cells (Figure 2B and C), which is
consistent with previous studies that ACE2 is highly expressed in
AT2 cells, a type of secretory cell in the lung tissue [18]. In addi-
tion, we found that BALFs of COVID-19 patients in severe stage
contained higher expression of ACE2 than those in moderate
stage (Figure S1B).

We used the scRNA-seq data of COVID19 patient samples
to predict multilayer networks of ACE2 regulation during SARS-
CoV-2 infection. The annotated output of the clustering analysis
for cells in the infected samples was used as input of scMLnet.
Since we focus on the regulatory network of ACE2, the secre-
tory cells with higher expression of ACE2 were considered as
receiver cells and the other types of cells were considered as
sender cells. Multilayer signaling networks produced by scMLnet
depicted regulation of ACE2 in secretory cells by other types of
cells (Figure S2). The multilayer signaling network consists of
four layers: ligand layer, receptor layer, TF layer and target gene
layer (i.e. ACE2). Most cell types (including B cells, macrophages,
mast cells, mDCs, neutrophils, NK cells, plasma cells and T
cells) were predicted to interact with secretory cells, regulat-
ing ACE2 expression. Among them, macrophages, T cells and
mDCs have more complex intercellular interactions with secre-
tory cells. The intercellular signaling pathways (ligand–receptor
interaction) mainly involve the tumor necrosis factor superfam-
ily (TNF, LTA, LTB, TNFSF12), growth factor family (TGFB, AREG),
interleukin family (IL1B, IL6) and their respective receptors.

From the above results, we know that scMLnet does not only
model intercellular communications but also infer intracellular
gene regulatory networks. Moreover, scMLnet used the down-
stream gene expression to infer activation of the TFs, which
was further used to evaluate the activation of the upstream sig-
naling pathways. In this way, only functionally effective ligand–
receptor interactions that could transfer the intercellular com-
munications into the intracellular signaling events regulating
gene expressions would be retained; other ligand–receptor pairs
despite highly expressed would be pruned.

An integrated multilayer network between secretory cells
and other types of cells was constructed to investigate the
inter-/intra-cellular pathways of ACE2 regulation (Figure 2D).
The constructed network demonstrated that multiple signaling
pathways, that connected extracellular signals from microen-
vironmental cells to receptors then to TFs, could regulate ACE2
expression. For instance, AREG that were highly expressed and
secreted by Mast cells could bind to the ERBB3 receptor on the
surface of secretory cells, and then activate the downstream
pathways and TFs, such as c-Fos, STAT1 and HIF1A, regulating
ACE2 expression. Likewise, ligand IFNG, highly expressed in
NK cells, could bind with receptor IFNGR2 in secretory cells
to further activate the downstream pathways and TFs that
regulated ACE2 expression. The above analysis demonstrated
that ACE2 expression in COVID19 patient BALF was mainly
regulated by several specific upstream transcription factors
including FOS, HIF1A, STAT1, IRF1. Importantly, the network
analysis suggested that these ACE2-regulating transcription
factors were activated by some extracellular cytokines, such
as AREG and IFNG secreted from immune cells, via the
corresponding inter- and intra-cellular signaling pathways.

Verification of ACE2-regulating pathways using bulk
RNA-seq data of COVID19 patients

To verify which signaling pathways inferred by the multilayer
networks were significantly activated during SARS-CoV-2
infection, we used independent bulk RNA-seq data [19] for
analysis. The RNA-seq data for two BALF samples from
patients (each in duplicate) were downloaded from the National
Genomics Data Center (https://bigd.big.ac.cn/) under accession
number PRJCA002326. The RNA-seq data for three BALF samples
from healthy controls were downloaded from the SRA database
under accession numbers: SRR10571724, SRR10571730 and

https://bigd.big.ac.cn/
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Figure 2. scMLnet applied to scRNA-seq data of BALF in COVID-19 patients reveals microenvironmental regulation of ACE2 expression. (A) Cell-type clustering and

identification. According to the expression of marker genes (Figure S1), a total of 12 cell types were obtained, including secretory cells, macrophages, ciliated cells, T

cells, B cells, plasma cells, mDC, NK cells, mast cells, pDC cells, neutrophils and doublets cells (CD68 + CD3D+). (B) tSNE plot of ACE2 expression in different cell types.

(C) Violin plots of ACE2 expression in different cell types. For visualization purpose, the expression matrix was imputed using ‘Run_ALRA’ function in Seurat to visualize

ACE2 expression. (D) Multicellular network depicting regulation of ACE2 in secretory cells by other types of cells. See related multilayer networks in Figure S2.

SRR10571732. The raw counts were mapped to the human
genome (GRCh38) by STAR and then quantitatively analyzed
by RSEM with the default parameters. We perform quality

control by filtering out genes that were not expressed in all
samples. DESeq2 was used to analyze differential expressions
based on the raw counts from transcriptome sequencing data.
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Differentially expressed genes (DEGs) were selected by the
following criteria: adjusted P-value < 0.01 and fold-change > 4.
Figure 3A shows heatmap of the top 200 significantly up-
regulated and down-regulated genes in BALF of COVID-19
patients compared to the healthy controls.

We then used Fisher’s exact test (similar to Equation (1))
to assess the statistical significance of activation pathways
based on the norm value calculated by DESeq2 and the DEGs
(requiring reads counts greater than 10). Pathway information
in KEGG database was collected from graphite package v1.30.0.
We selected KEGG pathways overlapped with the multilayer
networks for analysis. More specifically, the selected pathways
should consist of the components that could reach activated
transcription factors and that could be reached by the expressed
ligands for evaluation. For the Fisher’s exact test of each pathway,
the significant up-regulated genes and activated TFs were
considered up-regulated regardless of their expression level.
The ligands and receptors in each pathway were excluded for
evaluation since we only focused on the downstream signaling
of the pathway. Those pathways with P < 0.05 were considered
to be significantly activated (Figure S3).

As a result, several pathways were assessed to be signifi-
cantly activated (Figure 3B), including PI3K-Akt signaling path-
way, JAK–STAT signaling pathway, TNF signaling pathway, MAPK
signaling pathway and NF-kB signaling pathway. The overlapped
ligand–receptor genes and TFs between the significantly
activated pathways and the multilayer networks were also
shown in Figure 3B. The significantly activated TFs overlapped
with the inferred multilayer network include FOS, HIF1A, STAT1
and IRF1, which were predicted to be major players in regulating
ACE2 transcription. The integration of these pathways and
TFs suggested the regulatory mechanisms of ACE2 expression
induced by extracellular cytokines during SARS-CoV-2 infection
(Figure 3C). More specifically, IFN-γ might induce the expression
of ACE2 through the downstream transcription factors HIF1A
and STAT1 through JAK–STAT signaling pathway and JAK–
STAT signaling pathway. AREG (a member of the epidermal
growth factor family) could promote expression of ACE2 via
the MAPK signaling pathway and JAK–STAT signaling pathway.
In addition, TNF-α could also affect ACE2 expression through
interacting with specific receptors, LTBR, and the downstream
TNF-α signaling pathway and NF-kB signaling pathway.

Experimental validation of ACE2 regulation by EGF,
IFN-γ and TNF-α

Our multilayer network-based predictions of ACE2 regulation
are consistent with previous studies. The previous experiments
have validated that the expression of ACE2 is not only affected
by coronavirus [20, 21] but also regulated by inflammatory
cytokines such as IL-1β [22] and CCL4 [23], which were also
predicted by our multilayer network (Figure 2). In addition, the
integrated multicellular network further revealed that NK cells
might be source cells secreting CCL4 and that macrophages
might be source cells secreting IL-1β (IL1B).

Furthermore, our method made some new predictions on
microenvironmental regulation of ACE2 expression during
SARS-CoV-2 infection based on scRNA-seq data. As also verified
by the bulk RNA-seq data (Figure 3), cytokines EGF, IFN-γ (IFNG)
and TNF-α (TNF) were predicted to regulate ACE2 expression.
We therefore sought to validate the above predictions using in
vitro experiments. The human bronchial epithelial cells (BEAS-
2B) were treated with each of the above cytokines at different
concentrations. qPCR was performed to measure the expression

levels of ACE2 at 0, 12, 24, 36 and 48 h after cytokine stimulations.
The raw data of qPCR were provided in Table S2.

The regulation of ACE2 expression in response to the stimu-
lation of these cytokines in BEAS-2B was confirmed (Figure 4).
Stimulation of BEAS-2B with EGF, IFN-γ and TNF-α resulted
in time-dependent upregulation of ACE2 expression across all
the three concentrations of each cytokine. Among the three
cytokines, IFN-γ induced most significant increase of ACE2, par-
ticularly at 36 and 48 h. For different concentrations of the three
cytokines, the overall trend of ACE2 expression was ascending
within 36 h. Interestingly, EGF, IFN-γ and TNF-α induced different
temporal patterns of ACE2 expression. High concentrations (100,
200 ng/ml) of EGF resulted in pulse changes of ACE2 expres-
sion (i.e. increasing from 0 to 36 h then decreasing afterwards)
(Figure 4A). While high concentrations (50, 100 ng/ml) of IFN-
γ induced sustained increase of ACE2 expression (Figure 4B).
In addition, although TNF-α induced weakest changes of ACE2,
stimulation with higher concentration of TNF-α resulted in more
elevated ACE2 expression at 48 h (Figure 4C). These experimental
data validated the up-regulation of ACE2 by cytokines EGF, IFN-γ
and TNF-α, supporting the above multilayer network inference
and prediction. These results also provided implications that
SARS-CoV-2 could accelerate its entrance into the infected cells
by leveraging up-regulation of its receptor gene ACE2 via induc-
tion of cytokine storm involving IFN-γ , TNF-α as well as EGF.

Sensitivity of scMLnet to the variation
of clustering results

To evaluate the sensitivity or robustness of scMLnet to the
variation of the clustering results, we tested the influence of
adjusting resolution parameter (set as 0.4, 0.8, 1.2, 1.6, 2) of the
‘FindClusters’ function in Seurat on network inference. We used
the above BALF scRNA-seq data (GSE145926) for evaluation. To
identify subtypes of some cell types (e.g. macrophages and T
cells) when clustering resolution changed, we used more cell
markers: Macrophages (FABP4+ Macro: FABP4, CD52, MARCO;
FCN1+ Macro: S100A8, FCN1, S100A9; LGMN+ Macro: SPP1,
LGMN, CCL18) and T cells (CCR7+ T: CCR7, IL7R; CD8+ T: GZMA,
GZMB; Mixed T: CTLA4, IL2RA) in the workflow for scRNA-seq
data analysis (see Methods section). The cell clustering results
generated by these different resolution parameters (Figure S4)
were used as different inputs of scMLnet.

We focused on the multilayer network prediction of ACE2
regulation, we counted the occurrence times of ligands,
receptors, transcription factors and their links in different
output networks, so as to examine the sensitivity/robustness
of scMLnet to different resolution parameters (res = 0.4, 0.8,
1.2, 1.6, 2, respectively). Figure 5A shows the overlaps of
ligands, receptors and transcription factors among different
multilayer signaling networks. We found that most ligands,
receptors and TFs were overlapped among different networks
predicted by scMLnet. scMLnet could get the same ligands
(52/69), receptors (53/73) and transcription factors (4/4) as
ACE2 regulators under three or more different resolutions.
Figure 5B shows numbers of predicted ligands, receptors and
TFs in the multilayer networks with different resolution
parameters. The number of TFs was more robust than that
of ligands and receptors with respect to the variations of
resolutions. Figure 5C shows the overlaps of ligand–receptor
links and receptor–TF links among different multilayer signaling
networks with different resolutions. Again, most ligand–receptor
links and receptor–TF links were overlapped among different
networks predicted by scMLnet. scMLnet could predict the same
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Figure 3. Verification of the predicted ACE2-regulating pathways using independent bulk RNA-seq data of BALF samples from COVID-19 patients. (A) Heatmap of the

top 200 significantly up-regulated and down-regulated genes (fold change >2, P < 0.01) in BALF of COVID-19 patients compared to healthy controls. (B) Significantly

activated pathways in COVID-19 samples and the overlapped genes in the inferred multilayer networks. The Fisher’s exact test was used to assess the significance of

activation of each KEGG pathway based on the DEGs. The overlapped ligand–receptor genes and TFs between the significantly activated pathways and the multilayer

networks were also listed. (C) A diagram illustrating ACE2-regulating pathways that were significantly activated in COVID-19 patients.
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Figure 4. qPCR validation for the regulation of ACE2 expression by cytokines EGF, IFN-γ and TNF-α in human lung cells. The human bronchial epithelial cells (BEAS-2B)

were treated with each of the above cytokines for 0, 12, 24, 36 and 48 h. (A) Time-course expression of ACE2 after stimulation with different doses of EGF (50, 100,

200 ng/ml). (B) Time-course expression of ACE2 after stimulation with different doses of IFN-γ (25, 50, 100 ng/ml). (C) Time-course expression of ACE2 after stimulation

with different doses of TNF-α (50, 100, 200 ng/ml).

ligand–receptor links (88/139) and receptor–transcription factor
links (102/148) under three or more different resolutions.

Discussion
Summary and comparison of different methods

We summarized different methods of inferring cell–cell commu-
nication signaling networks in Table 1. Among these methods,
SoptSC [8], SingleCellSignalR [9], CellPhoneDB [10], SpaOTsc [11],
CellChat [12] and iTALK [24] are mainly designed for inferring
intercellular signaling networks, while NicheNet [13], CytoTalk

[25], CCCExplorer [26] and our method scMLnet are designed
to infer inter- and intra-cellular signaling networks. The differ-
ences between these methods in input, output, main goal, prior
information and main algorithm are also summarized in Table 1.

Based on the case study of ACE2 regulation, we compared
scMLnet with other methods (including CCCExplorer [26] and
NicheNet [13]) for inferring extracellular regulations of gene
expression. CytoTalk is another method recently developed to
infer inter-/intra-cellular signaling network from scRNA-seq
data, but we found that it required much more time (over 6 h) to
run on a dataset with moderate size (10 000 genes X 100 cells),
so we did not include it for comparison. The same scRNA-seq
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Figure 5. Robustness of scMLnet to cell clustering with different resolution parameters. (A) Overlap of ligands, receptors and transcription factors in different multilayer

signaling networks inferred with input from clustering using Louvain algorithm at different resolutions (res = 0.4, 0.8, 1.2, 1.6, 2, respectively). (B) Number of ligands,

receptors and TFs in the multilayer network regulating ACE2 predicted by scMLnet with different resolutions. (C) Overlap of ligand–receptor links and receptor–TF links

in the multilayer signaling network with different resolutions.

dataset of the BALF (GSE145926) was used to test whether the
above methods could correctly predict the regulations of ACE2
by EGF, IFN-γ and TNF-α. scMLnet correctly inferred the three
ligands regulating ACE2 expression as experimentally validated
above, whereas CCCExplorer and NicheNet did not (Figure S5).

Here, we focus on discussing the major differences between
scMLnet and NicheNet for inferring inter-/intra-cellular signal-
ing network from scRNA-seq data. (1) Difference in the required
data for input: NicheNet depends on (bulk or single-cell) gene-
expression data with differential expression information, which
cannot be ‘steady state’ data (see also in Supplementary Notes
Table 1 of [13]). Both target gene set of interest and possible
active ligands are needed for NicheNet to perform ligand activity
prediction. In contrast, scMLnet uses single-cell gene-expression
data as input to infer interactions between any two types of
annotated cells, which can be ‘steady state’ data. Moreover,
scMLnet does not require predefined target gene set. (2) Dif-
ference in algorithm of network inference: NicheNet employs
network propagation methods on the integrated networks to cal-
culate a ligand–target regulatory potential score, which depends
more on the integrated network of prior information but less
on gene-expression values. In contrast, our scMLnet exploits
more about the information of single cell gene expressions by
employing statistical inference (Fisher’s exact test and correla-
tion test) on the integrated networks to evaluate the significance

of TF activation and pathway activation and to evaluate the
correlations of receptor–TF targets links.

Furthermore, we calculated correlations in R–TF target gene
links predicted by scMLnet and NicheNet for a quantitative
comparison. To this end, we applied scMLnet and NicheNet to
the above scRNA-seq dataset of the BALF (GSE145926) to predict
upstream regulators and pathways of a COVID-19-related gene
set (500 genes up-regulated in A549 cells treated with SARS-CoV-
2 at both 0.2 MOI and 2MOI concentrations) that was downloaded
from the COVID-19 Gene and Drug Set Library [27] (GSE147507
dataset). This gene set was used as the target gene set of interest
for input of NicheNet. For scMLnet (with default parameters), the
intersection between the inferred target gene set and the above
gene set was used as the final target genes in the multilayer
signaling network. We then calculated PCC between genes in
each receptor–TF link and TF–target gene link of the two inferred
networks (Figure S6). We found that both R–TF correlations and
TF–target gene correlations were higher for scMLnet network
than NicheNet network, supporting that scMLnet could predict
more reliable links.

General applicability of scMLnet

Our method can be applied to at least the following two aspects.
First, scMLnet can be used to predict microenvironmental
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regulators of gene expression within a cell using scRNA-seq
data. It can be used to infer signaling mechanisms underlying
microenvironment-mediated regulation of important genes in
tumors or developmental tissues. For example, programmed
cell death 1 (PD-1) and its ligand programmed death ligand-
1 (PD-L1/B7-H1/CD274) play critical roles in T cell-mediated
tumor immunity and their expressions have been shown to
be regulated by tumor microenvironment [28]. In the future
study, we will apply scMLnet to infer which cells and which
cytokines in the tumor microenvironment can regulate PD-L1
expression, which may provide insights on designing novel
combination immunotherapies. Second, scMLnet can be used
to investigate functional roles of intercellular communications.
It can be used to investigate how interacting cells via ligand–
receptor signaling affect downstream gene expressions that
could be enriched in biological process or functions. As such,
the intercellular communication networks predicted by scMLnet
could be manipulated to control cell fate decisions or may be
used as biomarkers to predict disease progression [7].

Limitations of our method

Our method has several limitations which could be improved in
the future studies. First, the prior information of ligand–receptor
interactions, signaling pathways and gene regulations used in
the current study may not be the most comprehensive one. In
the future work, we will integrate more available data sources
to build a weighted network consisting of ligand–receptor–TF
target links using a similar approach of NicheNet. Based on the
integrated weighted network, we will further train a predictive
model using single-cell gene-expression data. Second, although
scRNA-seq data involves a large number of cell samples for
statistical analysis and model training, gene-expression profiles
from single cells are sparse due to technical artifacts such as
dropout, which may lead to bias of quantitative analysis. In the
future study, we will incorporate data imputation procedure into
our tool to mitigate those impacts.

Despite the above limitations, our multilayer network
approach could serve as a hypothesis-generating tool for
further experimental validation. The findings in our study are
helpful for understanding the mechanism underlying tissue
microenvironment-mediated regulation of ACE2 expression.
We validated the prediction of ACE2 regulation by cytokines
EGF, IFN-γ and TNF-α (Figure 4). In addition, we verified the
correlations between expressions of ACE2 and receptor genes
and the correlations between transcription factor and receptor
genes in ACE2+ cells revealed by the multilayer networks. Note
that the expression levels of the ligand genes and ACE2 are not in
pairing relationship and hence it is not feasible to calculate their
correlations. We calculated the Kendall correlations between
27 receptors, 4 transcription factors and target gene ACE2 in
multilayer signal networks based on the gene expressions in
ACE2+ cells (Figure S7). These results supported that almost all
the predicted receptor TF links and TF-ACE2 regulations were
significantly correlated.

Implications for understanding and intervention
of COVID-19

The COVID-19 pandemic has posed great threat to human health
and caused enormous impact on economic and social devel-
opment. It is in urgent need to understand the pathogenesis
of SARS-CoV-2. ACE2 has been identified as a key receptor of
SARS-CoV-2 [29], the same for SARS-CoV [30]. ACE2 is not only a

channel for SARS-CoV-2 to invade cells, but also plays important
roles in the development of coronavirus disease [31]. Previous
studies have suggested that changes in ACE2 expression has
important roles in COVID-19 progression and may be related to
inflammatory response to SARS-CoV-2 infection. A recent study
showed that type I interferon IFN can elevate ACE2 expression
in airway epithelial cells both in vitro and in vivo [32]. There-
fore, unraveling the microenvironmental mechanism of ACE2
regulation is of therapeutic relevance to COVID-19.

Modeling, inference and analysis of molecular regulatory net-
works is one of the central questions in computational systems
biology, which has wide applications in biomedical research [33–
35]. For example, network-based approaches have been devel-
oped to predict subtype-specific drug targets [36] or to predict
tumor recurrence in breast cancers [37] using network propa-
gation (or heat diffusion) methods. In this study, to elucidate
how immune microenvironment regulates ACE2 expression, we
developed a single-cell RNA-seq transcriptomic data-based mul-
tilayer network approach to investigate interactions between
ACE2+ cells and microenvironmental cells.

Our study has implications for understanding and interven-
tion of COVID-19. Several studies have shown that patients in
intensive care might develop acute respiratory distress syn-
drome (ARDS), a devastating clinical syndrome with a high mor-
tality rate [38, 39]. With the development of the disease, the over-
activated immune system releases a large number of cytokines
to induce ARDS [40]. ACE2 and ACE are two important compo-
nents in renin angiotensin system and have distinct roles in
the development of ARDS [31]. Therefore, the dysregulated ACE2
expression mediated by inflammatory immune microenviron-
ment might act as a mechanism of coronavirus disease develop-
ment and may explain how inflammatory cytokine storm pro-
motes the induction of ARDS in patients with severe COVID-19
who have elevated cytokine levels [41].

Therefore, it is reasonable to propose that the strategy mod-
ulating ACE2 expression may serve as effective intervention of
COVID-19. As revealed in our study, the ACE2 expression could be
controlled by targeting above-mentioned TFs such as c-Fos and
STAT1 or manipulating cytokines such as IFN-γ and TNF-α, for
controlling COVID-19 severity. In fact, TNF-blocking antibodies,
such as adalimumab, etanercept and golimumab, have been
reported to effectively treat inflammatory diseases [42]. Clinical
trials of anti-TNF-α therapy are thus urgently recommended for
COVID-19. Another therapy based on targeting IFN-γ treatment
is also promising and feasible by inhibiting the associated JAK–
STAT signaling pathways which has been under evaluation in a
clinical trial for COVID-19 [43]. As such, therapies targeting c-Fos
and STAT1 are strongly recommend and may represent a novel
treatment for controlling COVID-19, which is in urgent need of
clinical trials.

Conclusion
In conclusion, we developed a scRNA-seq based multilayer
network approach to reveal microenvironment-mediated
regulation of ACE2 expression for better understanding SARS-
CoV-2 entry and cell infection. We revealed and validated
that ACE2 expression could be up-regulated by extracellular
cytokines EGF, IFN-γ and TNF-α, via PI3K-Akt pathway, JAK–
STAT pathway and MAPK pathway as well as their downstream
transcription factors. Our study brings new insights into tissue
microenvironment-mediated inter-/intra-cellular signaling
mechanisms of ACE2 regulation and provides implications for
designing rational therapeutic strategies for COVID-19.
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We summarized and compared different methods of infer-
ring signaling networks underlying cell–cell communications
from scRNA-seq data, providing a valuable roadmap for tools’
applications and new methodology development.

Key Points
• The scRNA-seq data based multilayer network (scML-

net) method provides a new tool for modeling both
intercellular communications and intracellular gene
regulatory networks, with an R package available at
https://github.com/SunXQlab/scMLnet.

• scMLnet could be used to predict microenvironmen-
tal regulators (e.g. cell types and cytokines) of gene
expression using scRNA-seq data and to understand
functional roles of intercellular communications.

• Applying scMLnet to a COVID-19 dataset, we predicted
that ACE2 expression could be up-regulated by extra-
cellular cytokines EGF, IFN-γ and TNF-α, which was
validated using in vitro experiments in human lung
cells.

• Our study brings new insights into immune
microenvironment-mediated regulation of ACE2
expression and provides implications for designing
novel therapeutic strategies of COVID-19.

Data availability

The data used for analysis in this study were downloaded
from publicly available databases that have been described
in the main text. The R code used for analysis and the scML-
net package are available at https://github.com/SunXQlab/
scMLnet.
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