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R E V I E W  A R T I C L E

Should clinical automated perimetry be considered for routine 
functional assessment of early/intermediate age- related 
macular degeneration (AMD)? A systematic review of current 
literature
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Abstract

Purpose: There is growing interest in functional testing for early/intermediate 

age- related macular degeneration (iAMD). However, systematic evaluation of ex-

isting clinical functional tests is lacking. This systematic review examines evidence 

for using clinical automated perimetry in routine assessment of early/iAMD.

Recent findings: PubMed, Web of Science Core Collection, and Embase were 

searched from inception to October 2020 to answer, is there evidence of visual field 

defects in early/iAMD, and if so, are early/iAMD visual field defects linked to real- 

world patient outcomes? Articles using clinical automated perimetry (commercially 

accessible and non- modified devices/protocols) were included. Microperimetry was 

excluded as this has yet to be incorporated into clinical guidelines. The primary out-

come was global visual field indices including mean deviation (MD), pattern standard 

deviation (PSD), mean sensitivity (MS) and frequency of defects. The secondary out-

come was any real- world patient outcome including quality of life and/or activities 

of daily living indices. Twenty- six studies were eligible for inclusion and all studies 

were observational. There was consistent evidence of worsened MD, PSD, MS and 

frequency of defects for early/iAMD compared to normal eyes under photopic, low- 

photopic and scotopic conditions. Meta- analysis of studies using standard automated 

perimetry (SAP) under photopic conditions revealed worsened MD (−1.52dB [−2.27, 

−0.78 dB]) and MS (−1.47dB [−2, −0.94 dB]) in early/iAMD compared to normal eyes, 

representing large statistical effect sizes but non- clinically meaningful reductions. 

There was insufficient data for meta- analyses regarding other clinical automated pe-

rimetry protocols. Only one study assessed a real- world patient outcome (on- road 

driving performance), with no significant link to visual field outcomes in early/iAMD.

Summary: Significant reduction of global visual field indices is present in early/

iAMD, but not clinically meaningful using SAP under photopic conditions. 

Translational relevance of visual field outcomes to patient outcomes in early/iAMD 
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INTRO DUC TIO N

Age- related macular degeneration (AMD) is one of the 
leading causes of irreversible blindness for people over 
50 years of age.1 The appropriate management of AMD 
involves being able to accurately identify and promptly 
act upon significant disease progression either through in-
creasing the frequency of clinical reviews, counselling for 
modifiable risk factors and/or medical intervention.

Current clinical testing for AMD progression is based 
upon structural assessment of outer retinal biomarkers 
such as drusen, pigmentary abnormalities, atrophy and 
neovascularization.2– 9 Visual functional changes in AMD 
also occur and have been detected via a range of measures 
such as visual acuity, reading speed, contrast sensitivity, 
temporal function, visual adaptation (including dark ad-
aptation and photostress recovery), perimetry, colour vi-
sion and multifocal electroretinography.10– 17 Furthermore, 
functional biomarkers in early/iAMD have been linked to 
structural alterations, disease severity and risk of progres-
sion,17,18 and may even precede clinically- detectable struc-
tural impairment in AMD.19 Yet, very few functional tests 
are routinely performed in the clinic for AMD patients.

Current standardized clinical functional testing of AMD, 
i.e., visual acuity, contrast sensitivity and the Amsler grid, 
provide brief and/or imprecise glimpses of patients’ visual 
functional status with little to no spatial discrimination. 
These measures also do not consider the pathophysio-
logical underpinnings of AMD. For example, visual acuity 
typically presents information solely about foveal, high- 
contrast acuity despite the fact that AMD is not exclusively 
a foveal disease nor do the early stages of AMD confer any 
significant visual acuity loss.20 Meanwhile, contrast sensi-
tivity and the Amsler grid demonstrate poor sensitivity 
and/or repeatability with regards to the detection of func-
tional change in early/iAMD.18,21

Static automated perimetry as it is currently used in 
clinic22,23 has effectively fortified clinical diagnoses and 
monitoring of spatial visual function in ocular diseases 
such as glaucoma and other optic neuropathies.24 Visual 
functional impairment also occurs in early/iAMD,17 allud-
ing to a potential role for routine automated perimetry 
in these patients. However, there is a lack of synthesis ex-
ploring the role of clinical automated perimetry for the as-
sessment of early/iAMD. Recently, there are rising research 
interests in studying macular disease via microperimetry, 
which is based upon the same psychophysical principles 
but mostly under low- photopic/mesopic or scotopic con-
ditions.25 First, there is need for a quantified, systematic 

review investigating whether automated perimetry in its 
current clinical form may yield clinically meaningful data 
in early/iAMD.

The key recommendation for inclusion of a clinical test is 
proof that the test improves patient outcomes.26- 28 Hence, 
to investigate whether automated perimetry in its current 
clinical form should be part of routine functional assess-
ment of early/iAMD, we asked, is there evidence of visual 
field defects in early/iAMD, and if so, are early/iAMD visual 
field defects linked to real- world patient outcomes?

M ETHO DS

This systematic review adhered to the reporting guidelines 
of the Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses (PRISMA) statement29 and Rudnicka 
et al.30

Literature search strategy

Literature searches were developed a priori and performed 
using the electronic databases PubMed, Web of Science 
Core Collection and Embase (OVID), for all published jour-
nal articles from inception to 12 October 2020. This com-
bination of databases guaranteed adequate and efficient 
coverage of the literature.31 Searches were limited to 

remains unclear. Thus, SAP under photopic conditions is unlikely to be useful for 

routine assessment of early/iAMD.

K E Y W O R D S
age- related macular degeneration, automated perimetry, photopic, visual fields

Key points

• Significant statistical reduction of global visual 
field indices is present but not clinically mean-
ingful for routine, standard lighting (photopic) 
functional assessment of early/intermediate 
age- related macular degeneration.

• There is a distinct lack of studies translating 
visual field indices to real- world patient out-
comes in early/intermediate age- related macu-
lar degeneration.

• Further studies examining visual field indices 
under non- standard (mesopic and scotopic) 
lighting conditions are required to determine 
suitability of visual fields for routine assess-
ment of early/intermediate age- related macular 
degeneration.
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publications in English using the search terms described in 
Supplementary Table S1. Where available, relevant indexed 
terms were selected and exploded. As Web of Science did 
not have relevant indexed terms, keywords were searched 
instead. All subheadings were included to ensure com-
prehensive search results. Searches through Imaging and 
Perimetry Society articles were also performed. Conference 
abstracts were not included due to their limited data. 
Searches through reference lists of selected studies and 
relevant review studies were also performed, although re-
view studies themselves were not eligible for inclusion.

Definition of clinical automated perimetry

In this review, clinical automated perimetry was defined 
as a group of current clinical, systematised testing devices 
that measure differential light sensitivities of the visual 
system to stimuli of varying luminance at pre- determined 
spaces in the visual field.32 The ‘clinical’ prefix as used 
in this review refers to commercially accessible, non- 
modified automated perimetry devices and protocols for 
hardware and software that may be used in current ocu-
lar healthcare settings, as mentioned in two key clinical 
guidelines: the European Glaucoma Society Terminology 
and Guidelines for Glaucoma,22 and the Assessment of 
Visual Function in Glaucoma by the American Academy 
of Ophthalmology.23 These included standard (white- 
on- white) automated perimetry, flicker perimetry and 
frequency- doubling technology, each of which is de-
fined below. Different lighting conditions were included 
in this review if part of commercially accessible and non- 
modified automated perimetry devices and protocols for 
hardware and software. Specifically, background lumi-
nance of 10 cd/m2 was considered photopic, 3.2 cd/m2 
was considered low- photopic,33,34 and 0 cd/m2 was con-
sidered scotopic. Studies that did not specify lighting con-
ditions were presumed to operate at the device/protocol's 
default settings. Short- wavelength automated perimetry 
(SWAP) was excluded as its clinical use is actively recom-
mended against in the more recent guideline, due to no 
evidence of ‘better performance’ compared to other vis-
ual field protocols.22 Discontinued automated perimetry 
such as high- pass resolution perimetry or the Friedmann 
Visual Field Analyser were excluded. Microperimetry (also 
known as fundus perimetry or SLO- guided perimetry) was 
excluded as this has not yet been incorporated into clini-
cal guidelines.22,23

Standard automated perimetry (SAP; white- on- 
white protocol)

White- on- white SAP is currently the clinical gold standard 
in automated perimetry, quantifying observers’ perception 
of static, varying contrasted achromatic stimuli (typically 

Goldmann size III, GIII) on a white background of constant 
luminance, primarily under photopic conditions.23,35,36

Current SAP devices include the Humphrey Field 
Analyser (Carl Zeiss Meditec, zeiss.com), Medmont auto-
mated perimeter (Medmont, medmont.com.au), Octopus 
static automated perimeter (Haag Streit, haag- streit.com) 
and the Henson perimeter (Topcon, topconhealthcare.
com).

Flicker perimetry

Flicker perimetry is a variant protocol of SAP, presenting 
flickering stimuli instead of static stimuli. The relatively 
large, motion- based stimuli of flicker perimetry were 
originally thought to selectively target the magnocellular 
sub- cortical visual pathway,37,38 which may be more sus-
ceptible to impairment due to the lesser population of 
corresponding retinal neurons.39,40 However, stimulation 
of the magnocellular pathway has also been observed in 
SAP.41 Therefore, differences between flicker perimetry 
and SAP output cannot be due exclusively to stimuli mo-
tion, and may instead be due to varying stimulus size and 
contrast range.41- 43

Current flicker perimetry devices include the Medmont 
automated perimeter (Medmont, medmont.com.au) and 
the Octopus static automated perimeter (Haag Streit, 
haag- streit.com). ‘Flicker protocols’ vary depending on 
the manufacturered device. The Medmont automated 
perimeter measures contrast thresholds for a set of tem-
poral frequencies, also known as contrast modulation 
perimetry (note that temporal frequency varies with 
eccentricity when using the ‘autoflicker’ protocol). The 
Octopus measures the maximum flicker rate at which 
the observer can distinguish flicker from a uniform state, 
i.e., the critical flicker frequency threshold.39 There is 
limited evidence comparing the performance of ‘flicker 
protocols’ in relation to each other, and in comparison to 
SAP.44- 49

Frequency- doubling technology (FDT)

Frequency- doubling technology is an alternate, discrete 
modality of automated perimetry that presents relatively 
large, achromatic, ‘pseudo- flicker’ stimuli. The illusion of 
doubled- frequency flickering stimuli is created from high 
temporal frequency counterphase modulation of low spa-
tial frequency sinusoidal gratings. The perceptual mecha-
nisms behind FDT are similar to flicker perimetry.39,40,41,50,51 
Studies of FDT compared to SAP have revealed some com-
parability in results.52– 60

Current FDT devices include the first- generation 
Humphrey FDT (Welch Allyn, welchallyn.com) and the 
second- generation Humphrey Matrix (Carl Zeiss Meditec, 
zeiss.com).
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Selection of studies

Inclusion criteria for this review were studies that used 
clinical automated perimetry as defined above, for the 
study of treatment- naïve, early and/or iAMD eyes.61 Studies 
which used alternate classifications of AMD such as ‘age- 
related maculopathy’ were included if the majority (>50%) 
of their AMD group were commensurate with the Beckman 
Initiative classification of early and/or iAMD.61 AMD groups 
that included eyes with any late AMD signs such as neo-
vascularisation and/or geographic atrophy were excluded. 
There were no restrictions with regards to demographic 
characteristics of the study groups. Studies that used par-
ticipants with AMD under 55 years of age61 were still in-
cluded (as has been done in other notable studies),62– 65 
provided that all AMD phenotypic criteria in the Beckman 
Initiative classification were met.

Exclusion criteria were studies that used non- clinical au-
tomated perimetry. Automated perimetry, which was lim-
ited to screening/suprathreshold testing protocols, were 
also excluded. Studies without any relevant comparative 
group (such as control, baseline, AMD severity or pheno-
type) were excluded.

Initial search results were exported via Comma 
Separated Values files into Microsoft Excel version 2107 
(Microsoft, microsoft.com) and assessed by two authors 
(MT and LNS) independently. Duplicate studies between 
database search results were manually removed and re-
maining studies were screened by title, abstract and then 
full text. Eligible studies were then compared between MT 
and LNS, with disagreements resolved by discussion and 
consensus.

Quality assessment

Quality assessment of included studies was performed by 
MT and LNS, and adapted from the Users’ Guides to the 
Medical Literature.28,66 These tools were selected based 
on their seminal articulation of evidence- based medicine67 
and informative approach towards the critical appraisal of 
studies against other quality assessment tools.68 Criteria 
used for quality assessment is shown in Supplementary 
Table S2. Data extracted for quality assessment and de-
scription of study characteristics included: 

• authors, publication year and study type (indicative of 
patient selection method);

• study location and funding and conflict of interest 
statements;

• AMD classification scheme used and sample sizes (and 
whether age was controlled or adjusted for between 
groups, indicative of comparability of study groups);

• testing conditions such as testing protocol/device, ra-
dius/area, threshold strategy, stimulus size and back-
ground luminance;

• relevant outcomes to this review (with reported 

statistical significance; and whether longitudinal and/or 
dose- response relationships were analysed).

Risk of bias

Risk of bias assessment was performed by MT and LNS, 
and graded as high, low or unclear risk according to the 
domains: (1) patient selection and (2) comparability of 
study groups. Sponsorship bias (i.e., funding and conflict 
of interest statements) was not added to the risk of bias as-
sessment as it is not officially recognised as a risk of bias 
domain.69,70

These domains were adapted from the QUADAS- 2: A 
Revised Tool for the Quality Assessment of Diagnostic 
Accuracy Studies71 and the Newcastle- Ottawa Scale for 
Assessing the Quality of Nonrandomised Studies in Meta- 
analyses72 to guide risk of bias assessment among observa-
tional studies. Criteria used for risk of bias assessment are 
shown in Supplementary Table S3. High risk of bias in each 
domain was defined as a ‘no’ in any signalling question. 
Low risk of bias in each domain was defined as a ‘yes’ in 
all signalling questions. Unclear risk of bias in each domain 
was defined when there was insufficient study data to de-
termine a clear ‘yes’ or ‘no’ to any signalling question.

Outcomes

The primary outcome was global visual field indices includ-
ing mean deviation (MD), pattern standard deviation (PSD), 
mean sensitivity (MS) and frequency of defects in early 
and/or iAMD eyes compared to normal eyes. Global visual 
field indices were reported separately for identical light-
ing conditions where available. Specifically, MD describes 
average deviation from age- corrected reference sensitivi-
ties, PSD describes departure from the normal hill- of- vision 
based on MD and age- corrected reference sensitivities and 
MS describes average sensitivity. Definitions were based 
on the Imaging and Perimetry Society Guidelines with re-
spect to the Humphrey Field Analyser formulae due to the 
device's extensive usage in the literature for this review.32 
Similar global visual field indices to the above with alter-
nate terminology, but equivalent definitions, were com-
bined for analysis. Similar global visual field indices to the 
above with non- equivalent definitions, e.g., mean defect, 
pattern defect, local spatial variation, etc., were reported 
individually and definitions may be seen in the respec-
tive studies and/or the Imaging and Perimetry Society 
Guidelines,32 with comparisons observed elsewhere.73

Where available, visual field outcomes were also ex-
plored in relation to a dose- response gradient (if there 
were global visual field indices change with increasing 
AMD severity), and longitudinally. Significant outcomes 
in the context of a dose- response and longitudinal rela-
tionship are thought to enhance confidence in a putative 
cause- effect relationship.74,75 The secondary outcome was 
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any real- world patient outcome including quality of life 
and/or activities of daily living indices, related to the pri-
mary outcome.

Studies which had relevant outcome(s), regardless of 
whether it was part of the study's primary outcome or not, 
were included, e.g., data from treatment- naïve (placebo) 
early/iAMD eyes from randomised controlled trials were 
included if relevant. All relevant outcomes in the published 
study were reported, if available, with no additional con-
tact to the study authors. Unclear outcomes, e.g., unclear 
statistical significance, were reported as such, while miss-
ing outcomes were considered unavailable.

Statistical analysis

Statistical meta- analyses were performed using the Review 
Manager (RevMan) computer program version 5.4.1 (The 
Cochrane Collaboration, revman.cochrane.org). Meta- 
analysis was performed only where more than two stud-
ies with related data were available to ensure meaningful 
results. Meta- analyses were grouped by testing protocol, 
i.e., SAP, flicker perimetry, or FDT, and by identical light-
ing conditions to maintain validity in comparing results. 
Study groups that did not control or adjust for ages be-
tween groups were excluded from meta- analyses. In stud-
ies where more than one relevant effect size was available, 
e.g., control group data being compared twice to separate 
early and iAMD classification group data, the latter groups 
were pooled particularly to reduce bias associated with 
duplicate study effects.76,77 For calculation of pooled ef-
fect sizes, study weighting was assigned according to 
the inverse standard error, and random effects models 
were used to provide more conservative estimates par-
ticularly among significant study heterogeneity.78 Pooled 
effect sizes were described based on Cohen et al.,79 i.e., 
0.2 = small, 0.5 = medium, 0.8 = large. Data were repre-
sented as standard forest plots. Inter- study heterogeneity 
were assessed using Tau2, Chi2 and I2 whereby I2 from 0%– 
40% may not be important, 30%– 60% may represent mod-
erate heterogeneity, 50%– 90% may represent substantial 
heterogeneity and 75%– 100% may represent considerable 
heterogeneity.80,81 In cases where meta- analysis resulted 
in I2 ≥ 50%, the individual study results were investigated. 
In cases where meta- analysis was not possible, the indi-
vidual study results were investigated. Default statistical 
significance was considered as p < 0.05.

R ESULTS

Selection of studies

The electronic database searches yielded 2223 studies and 
1740 unique studies, with 1683 studies excluded after being 
screened by title/abstract and 33 studies excluded after 
being assessed by full text (Figure 1). The primary reasons 

for exclusion by full text are provided in Supplementary 
Table S5. No additional studies were identified through 
the Imaging and Perimetry Society articles. Two additional 
studies were identified through reference lists of selected 
studies or relevant review studies. Thus, a total of 26 unique 
studies were eligible for inclusion. The number of eligible 
studies per search query are provided in Supplementary 
Table S1. Reviewers MT and LNS were in agreement for all 
included and excluded studies, with three of the 26 final 
included studies requiring brief discussion and resolution 
as relevant data were not immediately obvious.

Quality assessment and study characteristics

Quality assessment details and study characteristics for the 
26 included studies can be seen in Supplementary Table S4. 
All studies were observational studies, with the majority 
being case- control studies (n = 19/26) ,15,49,82–98 followed by 
cohort studies (n = 5/26),48,99–102 and cross- sectional stud-
ies (comparison between groups that did not involve a con-
trol or baseline group, but instead defined groups by AMD 
severity or phenotype; (n = 2/26).103,104 Feher et al.102 had 
their study type re- classified from a randomised controlled 
trial to a cohort design, as for the purposes of this review, 
only longitudinal data from the treatment- naïve (placebo) 
early/iAMD eyes were extracted.

Studies were conducted in Australia (n = 11/26) , 
15,48,49,83,84,87–89,97,100,101 USA (n = 6/26),85,94,95,98,99,103 Italy, 
(n = 3/26),92,93,96 China,86 Hungary,102 India,104 Korea,91 
Sweden90 and the UK82 (n = 1/26 for each remaining coun-
try). The majority of studies included funding source(s) (n 
= 19/26) 15,48,49,82,84,85,87,88,90,92–95,97–100,103,104 and conflict of 
interest statements (n = 15/26 ),15,48,49, 82,85,88,91,93,94,95,97–100,104 
provided in Supplementary Table S6. Four studies48,49,88,100 
had funding or conflict of interest associated with clinical au-
tomated perimetry.

Over one- third of included studies used an uncom-
mon or outdated classification scheme for AMD such 
as ‘age- related maculopathy’ (n = 9/26),83,84,86,87,90–93,103  
which was expected as all but one91 of these studies 
were published prior to the Beckman Initiative classifica-
tion.61 The remainder used the Age- Related Eye Disease 
Study classification105 (AREDS; n = 9/26)85,89,94–97,99,101,104;  
the International Classification and Grading System106 
(ICGS; n = 5/26)15,48,49,100,102; the Beckman Initiative classi-
fication61 (n = 2/26)88,98 and the Rotterdam study classifi-
cation107 (n = 1/26).82 Study sample sizes varied from four 
to 827 eyes with early and/or iAMD and four to 1007 nor-
mal eyes. Age as a significant co- variable affecting global 
visual field indices were controlled or adjusted for in 
23/26 studies.15,48,49,82–85,87,88–101,103

Testing conditions, i.e., visual field testing device/
protocol, radius, threshold strategy, stimulus size, back-
ground luminance, etc. also varied across all studies. The 
most commonly used testing device was the Humphrey 
Field Analyser (n = 19/26),82,84,85,87– 95,97,98,99,101– 104  
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followed by the Medmont automated perimeter (n = 
5/26),15,48,49,83,100 the Octopus static automated perim-
eter (n = 2/26)86,96 and the first- generation Humphrey 
FDT (n = 1/26).83 Testing protocols included: SAP under 
photopic conditions (10 cd/m2; n = 21/26)49,82,84– 99,101– 104; 
SAP under low- photopic conditions (3.2 cd/m2; 
n = 3/26)48,49,83; SAP under scotopic conditions (0 cd/m2; 
n = 1/26)86; flicker perimetry under low- photopic condi-
tions (3.2 cd/m2; n = 5/26)15,48,49,83,100 and FDT under phot-
opic conditions (100 cd/m2108; n = 1/26).83 Some studies 
used more than one test device/protocol. Additional 
testing conditions were included if mentioned: inclusion 
of practice exam; prior perimetry experience; pupil sta-
tus; background lighting adaptation; spatial area anal-
ysed (if different to the testing radius); study groups (if 
sub- divided beyond early and/or iAMD and normal eyes) 
and follow- up time. Further details of testing conditions 
are seen in Supplementary Table S4.

All studies measured outcomes in the same way be-
tween the groups being compared. In the five cohort stud-
ies,48,99– 102 follow- up times ranged from one to three years 
and was not sufficiently long considering the protracted 
natural history of AMD.109 Eight studies48,82,87,92,93,97,103,104 
explored a potential dose- response gradient.

Risk of bias

Risk of bias assessment for the 26 included studies can  
be seen in Supplementary Table S7. Regarding patient  
selection, almost all studies (n = 25/26)15,48,49,82– 101,103,104  
had a high risk of bias while one study102 had a low 
risk of bias. Regarding comparability of study groups, 
few studies (n = 4/26)86,94,102,104 had a high risk of bias 
while most studies (n = 22/26)15,48,49,82– 85,87– 93,95– 101,103 
had a low risk of bias. No studies had unclear risk of 
bias. All studies had at least one domain with a high 
risk of bias.

Primary outcome –  global visual field indices

Decreased mean deviation (MD) in early/
intermediate age- related macular degeneration 
(iAMD) versus normal eyes

Photopic conditions
Three studies [#ID 1, 13, 26]82,91,97 reported MD of early/
iAMD eyes in comparison to normal eyes using SAP 
under photopic conditions (Supplementary Table S4). 

F I G U R E  1  Preferred reporting items for systematic reviews and meta- analyses (PRISMA) flow diagram29 for the selection of studies. iAMD, 
intermediate age- related macular degeneration; MD, mean deviation; MS, mean sensitivity; SAP, standard automated perimetry; WoS, Web of Science 
Core Collection [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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These studies all controlled or adjusted for age between 
groups. The studies however used different sample sizes 
(20– 76 early/iAMD eyes and 22– 100 normal eyes), differ-
ent classifications of early/iAMD and different testing 
conditions, potentially contributing to heterogeneous 
outcomes.

Data from the three studies [#ID 1, 13, 26]82,91,97 were 
collated for meta- analysis, including assessment of het-
erogeneity to determine if the above study design dif-
ferences may have significantly varied the study results 
(Figure 2). The combined sample size was 162 early/iAMD 
eyes and 198 normal eyes. The total MD mean difference 
between early/iAMD and normal eyes was −1.52dB [95% 
CI −2.27, −0.78 dB], i.e., worsened, with a large and sig-
nificant effect size (Z = 4, p < 0.0001). The estimates may 
have represented moderate- to- substantial heterogene-
ity not reaching statistical significance (I2 = 60%, Chi2 
p = 0.08). As I2 was ≥50%, individual study results were 
further investigated. There were two notable differences 
between the three studies [#ID 1, 13, 26].82,91,97 First, dif-
ferent classifications of early/iAMD were used including 
the Rotterdam study,107 ‘dry AMD’,91 and AREDS classifi-
cations respectively, with a further sub- group defined 
as the ‘better eye’ and ‘worse eye’ in Wood et al.[#ID 
26].97 Second, each study also used varying visual field 
testing protocols including radii of 10°, 30° and 24– 2, 
respectively. These differences likely contributed to the 
moderate- to- substantial heterogeneity of meta- analysis 
results, although all three studies commonly reported 
statistically significant decreased MD in early/iAMD 
(ranging from −0.8dB [−1.6, 0 dB] to −2.23dB [−3.37, 
−1.09 dB]).

Low- photopic conditions
Phipps et al. [#ID 22]49 reported a similar index ‘mean 
defect’ mean difference using SAP (Medmont auto-
mated perimeter, 10° radius) and flicker perimetry (10° 
radius) under low- photopic conditions. Twenty- five 
AMD eyes (modified ICGS classification)106 were com-
pared to 34 normal eyes with age accounted for. Mean 
defect was increased (worsened) in AMD eyes using 
both SAP (mean ± SD, 1.8 ± 0.6 dB) and flicker perimetry 
(4.3 ± 0.6 dB). No studies explored MD (or equivalent) 
under scotopic conditions.

Increased pattern standard deviation (PSD) 
in early/intermediate age- related macular 
degeneration (iAMD) versus normal eyes

Photopic conditions
Two studies [#ID 1, 13]82,91 reported PSD of early/iAMD 
eyes in comparison to normal eyes using SAP under pho-
topic conditions (Supplementary Table S4). These studies 
had differing sample sizes (20 and 76 early/iAMD eyes, 22 
and 76 normal eyes, respectively) and both controlled or 
adjusted for age between groups. Classification of early/
iAMD used the Rotterdam study107 and ‘dry AMD’91 clas-
sifications, respectively. Both studies also used differing 
testing radii of 10° and 30°, respectively. These differences 
likely contributed to the dissimilar results, whereby Acton 
et al. [#ID 1]82 showed no significant difference and Lee 
et al. [#ID 13]91 showed significantly increased (worsened) 
PSD (2.38dB [2.16, 2.6 dB]) in their respective comparisons 
of early/iAMD to normal eyes.

Low- photopic conditions
Phipps et al. [#ID 22]49 reported a similar index ‘pattern 
defect’ mean difference using SAP (Medmont automated 
perimeter, 10° radius) and flicker perimetry (10° radius) 
under low- photopic conditions. Comparing 25 AMD eyes 
(modified ICGS classification)106 to 34 normal eyes with age 
accounted for, resulted in increased (worsened) pattern 
defect using both SAP (5.2 ± 0.4 dB) and flicker perimetry 
(7.6 ± 0.5) excluding non- zero values. No studies explored 
PSD (or equivalent) under scotopic conditions.

Decreased mean sensitivity (MS) in early/
intermediate age- related macular degeneration 
(iAMD) versus normal eyes

Photopic conditions
Fourteen studies [#ID 1, 2, 5– 7, 9– 11, 13, 16– 19, 
24]82,84,86– 95,98,101 reported MS of early/iAMD eyes in com-
parison to normal eyes using SAP under photopic con-
ditions (Supplementary Table S4). Varying sample sizes 
(11– 253 early/iAMD eyes and 8– 1007 normal eyes), clas-
sifications of early/iAMD, and different testing conditions 
potentially contributed to heterogeneous outcomes. Chen 

F I G U R E  2  Forest plot of mean deviation (MD) mean differences between early/intermediate age- related macular degeneration (iAMD) and 
normal eyes using standard automated perimetry (SAP) under photopic conditions. Negative values indicate worsened mean deviation (MD) in early/
intermediate age- related macular degeneration (iAMD) versus normal eyes [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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et al. [#ID 5]86 did not control or adjust for age between 
groups and was subsequently excluded from meta- analysis. 
Neely et al. [#ID 18]94 was also excluded from meta- analysis, 
as although age was adjusted for between eyes with sub- 
retinal drusenoid deposits (SDDs) versus without SDDs, age 
was not controlled or adjusted for between AMD and nor-
mal eyes. Owsley et al. [#ID 19]95 was excluded from meta- 
analysis as their control group was AREDS stage 1 eyes, 
which overlaps with AMD classification in other studies. A 
further three studies [#ID 2, 7, 11]84,88,90 were excluded from 
meta- analysis as data were not available to calculate MS 
mean differences between early/iAMD and normal eyes.

The eight remaining studies [#ID 1, 6, 9, 10, 13, 16, 17, 
24]82,87,89,91– 93,98,101 were collated for meta- analysis includ-
ing assessment of heterogeneity (Figure 3). The iAMD (but 
not early AMD) group from Sevilla et al. [#ID 24]98 were 
older than comparative groups and hence excluded from 
meta- analysis. The combined sample size was 234 early/
iAMD eyes and 221 normal eyes. The total MS mean differ-
ence was −1.47dB [−2, −0.94 dB], i.e., worsened, with a large 
and significant effect size (Z = 5.48, p < 0.00001). The esti-
mates may have represented moderate to substantial het-
erogeneity and this was borderline statistically significant 
(I2 = 55%, Chi2 p = 0.03). As I2 was ≥50%, individual study 
results were further investigated. Notable differences be-
tween the eight studies included different classifications 
of early/iAMD in almost every study and different testing 
radii and spatial areas analysed, likely contributing to the 
moderate- to- substantial heterogeneity. While all studies 
commonly reported decreased MS in early/iAMD (ranging 
from −0.5dB [−1.56, 0.56 dB] to −2.73dB [−4.62, −0.84 dB]), 
only three studies [#ID 13, 16, 17]91- 93 reported statistically 
significant results.

Low- photopic and scotopic
Luu et al. [#ID 15]48 reported decreased MS which varied by 
AMD sub- group, using SAP (Medmont automated perim-
eter, 10° radius) under low- photopic conditions. The study 
compared 266 eyes with ‘early AMD’ (ICGS classification)106 
vs. 24 normal eyes and accounted for age. Three studies 
[#ID 12, 14, 15]15,48,100 also reported decreased MS using 

flicker perimetry (common 10° radius) under low- photopic 
conditions. These studies had varying sample sizes (15– 266 
early/iAMD eyes, 14 or 24 normal eyes), although ages were 
accounted for and AMD eyes were commonly defined by 
the ICGS classification.106 Decreased MS were similar for 
the former two studies [#ID 12, 14]15,100 (−3.28dB [−3.82, 
−2.74 dB] and −4.09dB [−6.09, −2.09 dB], respectively), 
while the latter study [#ID 15]48 reported varying results by 
AMD sub- group.

Chen et al. [#ID 5]86 reported decreased MS (−2.73dB 
[−10.48, 5.02 dB]) using SAP (Octopus static automated 
perimeter, 25° radius and GV stimulus) under scotopic 
conditions using a Wratten blue filter (commercially avail-
able). Twenty- four eyes with ‘dry- form age- related macular 
degeneration’ were compared against normal eyes albeit 
without accounting for age differences.

Frequency of defects in early/intermediate 
age- related macular degeneration (iAMD) 
versus normal eyes

Photopic conditions
Two studies [#ID 1, 3]82,85 reported frequency of defects 
of early/iAMD eyes in comparison to normal eyes using 
SAP under photopic conditions (Supplementary Table S4). 
Sample sizes were slightly different (20 and 59 early/iAMD 
eyes, 22 and 15 normal eyes, respectively), both controlled 
or adjusted for age between groups, and testing condi-
tions (10° radius) were similar. Both studies reported no sig-
nificant mean difference in the frequency of defects.

Low- photopic conditions
Phipps et al. [#ID 22]49 reported significantly increased 
frequency of defects in early/iAMD eyes in comparison to 
normal eyes using SAP (Medmont automated perimeter, 
10° radius) and flicker perimetry (10° radius) under low- 
photopic conditions. Twenty- five AMD eyes (modified 
ICGS classification)106 were compared to 34 normal eyes 
with age accounted for. No studies explored frequency of 
defects under scotopic conditions.

F I G U R E  3  Forest plot of mean sensitivity (MS) mean differences between early/intermediate age- related macular degeneration (iAMD) and 
normal eyes using standard automated perimetry (SAP) under photopic conditions. Negative values indicate worsened MS in early/iAMD versus 
normal eyes [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Dose- response gradient of visual field indices 
in early/intermediate age- related macular 
degeneration (iAMD) eyes

Several studies explored a potential dose- response gradi-
ent of visual field indices in early/iAMD eyes, i.e., whether 
indices worsened with increasing AMD severity. For MD 
(or equivalent), two studies [#ID 1, 26]82,97 using SAP under 
photopic conditions revealed no significant MD mean dif-
ferences between different AMD stages, or between the 
‘worse eye’ and ‘better eye’ of early/iAMD eyes, respec-
tively. The former study compared 20 AMD eyes (Rotterdam 
study classification)105 with 22 normal eyes using a 10° 
radius protocol, while the latter compared 66 AMD eyes 
(AREDS classification)110 with 100 normal eyes using a 24– 2 
protocol. Both studies accounted for age between groups. 
No studies explored a dose- response gradient of MD (or 
equivalent) using low- photopic or scotopic conditions.

For PSD (or equivalent), Acton et al. [#ID 1]82 using SAP 
under photopic conditions found no significant PSD mean 
differences between different AMD stages. Study charac-
teristics were as described above. No studies explored a 
dose- response gradient of PSD (or equivalent) using low- 
photopic or scotopic conditions.

For MS, four studies [#ID 1, 6, 16, 17]82,87,92,93 using 
SAP under photopic conditions reported varying dose- 
response relationships. The four studies had similar sample 
sizes (20 to 47 early/iAMD, 8 to 36 normal eyes) and testing 
protocol (common 10° radius). However, meta- analysis was 
not feasible due to the varying classifications of AMD, i.e., 
Rotterdam study,107 ‘PARM’ and ‘early ARM’,87 ‘macular dru-
sen’92 and ‘early AMD’,93 respectively. Three studies [#ID 1, 
6, 17]82,87,93 revealed no significant differences in MS while 
Midena et al. [#ID 16]92 observed borderline decreased MS 
with increased AMD severity (‘soft drusen’ versus ‘no soft 
drusen’ and ‘drusen size ≥63 µm’ vs. <63 µm). Luu et al. [#ID 
15]48 using SAP (Medmont automated perimetry, 10° ra-
dius) and flicker perimetry (10° radius) under low- photopic 
conditions described varying dose- response relation-
ships as well. The sample size was 266 early/iAMD (ICGS 
classification)106 and 24 normal eyes with age accounted 
for. Generally, there was significantly decreased MS with 
increased AMD severity, varying by the nine AMD sub- 
groups. No studies explored a dose- response gradient of 
MS using scotopic conditions.

For frequency of defects, three studies [#ID 1, 4, 
25]82,103,104 using SAP under photopic conditions reported 
relatively different dose- response relationships. Sample 
sizes varied (20 to 98 early/iAMD eyes, 22 normal eyes), 
AMD classifications varied (Rotterdam study,107 AREDS,105 
and ‘dry AMD’, respectively) and testing protocol varied 
(10°, 10° radius, and 4° × 6° area, respectively). Meta- analysis 
was not feasible due to the varying classifications of AMD 
and insufficient outcome data. Two of the studies [#ID 1, 
25]82,103 found no significant dose- response relationship, 
whereas Acton et al. [#ID 1]82 considered AMD staging 
and Tolentino et al. [#ID 24]103 considered drusen area as 

measures of AMD severity. Alternatively, Bharathi et al. [#ID 
4]104 found a negative relationship between the frequency 
of defects and early/iAMD severity although with unclear 
significance, and Tolentino et al. [#ID 25]103 found a positive 
relationship when considering RPE atrophy area as a mea-
sure of AMD severity. No studies explored a dose- response 
gradient of frequency of defects using low- photopic or 
scotopic conditions.

Longitudinal global visual field indices in early/
intermediate age- related macular degeneration 
(iAMD) eyes

Few studies explored longitudinal changes in visual field 
indices in early/iAMD eyes. There were no studies that 
reported MD (or equivalent), PSD (or equivalent) or fre-
quency of defects over time. For MS, there were two stud-
ies [#ID 8, 10]101,102 using SAP under photopic conditions 
with different sample sizes (110 and 13 early/iAMD eyes, re-
spectively) and AMD classifications (ICGS106 and modified 
AREDS,105 respectively), but identical testing protocol (10° 
radius) and follow- up time (one year). Both studies found 
no significant MS change over time. Owsley et al. [#ID 20]99 
also used SAP under photopic conditions although re-
ported a different MS outcome, i.e., baseline MS and AMD 
incidence over three years follow- up, and found no asso-
ciation. One study [#ID 15]48 assessed MS using SAP under 
low- photopic conditions and two studies [#ID 14, 15]48,100 
assessed MS using flicker perimetry under low- photopic 
conditions. Most aspects of study designs were identi-
cal between study #14100 and #1548 (AMD ICGS classifica-
tion,106 10° Medmont automated perimeter), except early/
iAMD sample size (39 and 266 respectively) and follow- up 
time (two and one year, respectively). There was no signifi-
cant MS change over time, except in one AMD sub- group 
where study #14100 presented a greater rate of decreased 
MS in ‘eyes that developed geographic atrophy’ compared 
to normal eyes. No studies explored longitudinal changes 
in MS using scotopic conditions.

Secondary outcome –  real- world 
patient outcomes

Only one study reported any real- world patient outcome 
in relation to the primary outcome. Wood et al. [#ID 26]97 
investigated participants with early/iAMD using outcomes 
of SAP 24- 2 under photopic conditions against on- road 
driving performance assessed by an occupational thera-
pist. Measured outcomes for SAP included MD of the better 
and worse eye and 10° radius integrated visual fields (com-
bined monocular visual fields including the more sensitive 
point- wise data). Measured outcome for on- road driving 
performance was an overall driver safety rating. There 
were no significant association of SAP outcomes compared 
to overall driver safety rating. Other outcomes for SAP 
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(e.g., Binocular Esterman score) and on- road driving per-
formance (e.g., driving behaviours) were also assessed, al-
though it is unclear whether these outcomes were directly 
compared.

D ISCUSSIO N

This is the first systematic review including meta- analyses 
to explore the evidence regarding potential use of clinical 
automated perimetry in routine assessment of patients 
with early or iAMD. There was consistent evidence of sig-
nificant visual field defects in early/iAMD compared to 
normal eyes under photopic, low- photopic and scotopic 
conditions. However, meta- analyses demonstrated that 
reductions in global visual field indices at least using SAP 
under photopic conditions were not clinically meaning-
ful, while there was insufficient data to draw conclusions 
regarding other clinical automated perimetry protocols. 
There was also a dearth of evidence translating early/iAMD 
visual field outcomes to real- world patient findings, high-
lighting the need for more studies in this area. Thus, SAP 
under photopic conditions is unlikely to be useful for rou-
tine assessment of early/iAMD.

Standard automated perimetry (SAP) under 
photopic conditions is inadequate for routine 
clinical assessment of age- related macular 
degeneration (AMD)

In this review, we provide the first meta- analyses address-
ing whether global visual field indices measured using 
clinical automated perimetry are impacted in early/iAMD. 
MD, PSD and MS were consistently worse in early/iAMD 
compared to normal eyes across the different visual field 
testing protocol and lighting conditions, despite possible 
moderate to substantial heterogeneity between studies. 
The summary outcomes of −1.52dB MD and −1.47dB MS 
using SAP under photopic conditions in early/iAMD com-
pared to normal eyes, however, did not equate to a clini-
cally meaningful effect size79,111,112 when considering the 
magnitude of SAP test- retest variability in normal eyes up 
to (one standard deviation) ±2.5dB MD58,113,114,115,116 and 
±2dB MS.35,59,116,117,118 Regarding PSD mean difference in 
early/iAMD eyes compared to normals, studies using SAP 
under photopic conditions reported mixed outcomes, and 
PSD magnitudes were also small when considering test- 
retest variability up to ±1.5dB PSD.58,113,114,115,116 Our results 
demonstrate that the magnitude of global visual field indi-
ces in early/iAMD using SAP under photopic conditions do 
not provide clinically meaningful results.

It has been well- recognised that the relationship be-
tween visual field sensitivity and background luminance is 
represented by the threshold- versus- intensity (TVI) func-
tion.119,120 In diseases that primarily cause photoreceptor 
impairment such as AMD,2 the TVI function shifts ‘upwards 

and rightwards’.121- 124 Thus, there is a greater disparity in 
increment threshold (and thus visual field sensitivity) be-
tween normal and photoreceptor- diseased eyes under 
lower light conditions.121- 123 Empirically, studies have long 
established psychophysical evidence for visual field testing 
under lower light conditions in AMD eyes,125- 130 as previ-
ously modelled.131,132

In this review, there were an inadequate number of 
studies utilising flicker perimetry or FDT, and low- photopic 
or scotopic lighting conditions to amalgamate into meta- 
analyses. General results indicated worsened global visual 
field indices in early/iAMD eyes that underwent the testing 
protocol, although no substantial conclusion(s) could be 
drawn regarding their role for routine functional assess-
ment of early/iAMD. Conversely, there is increasing micro-
perimetry use (which operates under lower light conditions 
than most SAP) for macular disease research. Studies using 
microperimetry have ostensibly evinced greater magni-
tude of worsened global visual field indices in early/iAMD 
eyes133- 141 compared to the results we describe under phot-
opic conditions. However, the lack of systematic evidence 
addressing whether microperimetry may be useful for rou-
tine functional assessment of AMD in clinic warrants fur-
ther review.

Paucity of evidence denoting a cause- effect 
relationship between early/intermediate age- 
related macular degeneration (iAMD) and 
visual field outcomes

Another consideration in establishing the potential use 
of visual fields for routine assessment of early/iAMD is 
whether there is an apparent cause- effect relationship. A 
putative cause- effect relationship may be strengthened by 
demonstration of a dose- response gradient and temporal 
relationship.142 That is, is there evidence that global visual 
field indices in early/iAMD eyes worsen as a function of dis-
ease severity and time? For example, these relationships 
are fundamental to the integration of visual field testing in 
glaucoma clinical staging143 and monitoring.144,145

Overall, dose- response gradients from the studies in this 
review formed equivocal results. MD, PSD and frequency 
of defects in relation to AMD severity showed no dose- 
response using SAP under photopic conditions. Meanwhile, 
some studies revealed worsened MS with increased AMD 
severity48,92 while others did not82,87,93 using SAP, likely due 
to differing definitions of AMD severity and also differing 
visual field testing conditions. Because of these highly vari-
able outcomes, further studies using standardised AMD 
classification and results that are more transparent are 
needed to ascertain whether there may be a dose- response 
relationship that would help support the cause- effect rela-
tionship between visual field defects and AMD.

Evidence for a longitudinal relationship between early/
iAMD and global visual field indices were also mostly 
equivocal. MS did not change over follow- up periods up 
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to two years using SAP under photopic or low- photopic 
conditions, or flicker perimetry under low- photopic con-
ditions. Notably, however, Luu et al.100 using flicker pe-
rimetry under low- photopic conditions highlighted that 
AMD ‘eyes that developed geographic atrophy’ (GA) had 
a significantly faster rate of decreasing MS than normal 
eyes. When considering only locations that developed 
GA, rate of decreasing MS was faster than both normal 
and ‘high- risk early AMD’ eyes (i.e., ‘early AMD’ eyes that 
did not develop late AMD). These changes were not 
found in AMD ‘eyes that developed neovascularisation’. 
These data suggest a possible monitoring/prognostic 
role for flicker perimetry in clinical settings, as AMD eyes 
that have faster deteriorating MS may be indicative of 
oncoming GA. At the time of Luu et al's100 publication, 
structural biomarkers including incomplete retinal pig-
ment epithelial and outer retinal atrophy146 which over-
laps with the definition of nascent GA147,148 had not yet 
been described. It is possible that the faster progressing 
areas that Luu et al.100 described via flicker perimetry may 
correlate to the aforementioned structural biomarkers. 
Future study detailing structure- function correlations 
in early/iAMD eyes would help clarify this uncertainty. 
Overall, while a majority of longitudinal studies exhibited 
no significant visual field changes in early/iAMD eyes, the 
duration of follow- up was insufficient considering the 
protracted natural history of AMD.109 Longer duration co-
hort studies are needed to establish whether automated 
perimetry may be useful for clinical monitoring of AMD.

Dearth of evidence translating early/intermediate 
age- related macular degeneration (iAMD) visual 
field outcomes to real- world patient outcomes

Recent studies have demonstrated a linkage between 
early/iAMD and real- world patient outcomes.149- 152 
Correspondingly, there is growing interest in determining 
which visual function tests (with or without structural tests) 
may best reflect patients’ quality of life and daily living ac-
tivities. Surprisingly though, only one study met these eli-
gibility criteria in this review and addressed whether visual 
field outcomes in early/iAMD linked to real- world patient 
outcomes, and found no link between global visual field 
indices and driving safety. During the literature search, 
another study153 was identified which described links be-
tween global visual field indices and parts of the Turkish 
National Eye Institute- Visual Function Questionnaire- 25 
describing various quality of life factors, e.g., near and dis-
tance activities, vision- specific social functioning and men-
tal health, etc. However, no relevant comparison group was 
included and hence this study was excluded from our re-
sults. There is hence ample opportunity for future studies 
to explore whether using automated perimetry in patients 
with early/iAMD can effectively translate into patient out-
comes. Establishing this link is vital not just when consid-
ering if visual field testing can improve patient outcomes, 

but also as patient compliance to clinician advice signifi-
cantly improves with better patient understanding of how 
their disease may impact upon vision.154,155

Future directions

Synthesis of the literature for this review uncovered a di-
verse quality and high risk of bias in all studies, making 
critical appraisal challenging. To overcome this, we used a 
highly recognised quality assessment28,66 and risk of bias 
assessment guides,71,72 included meta- analysis where pos-
sible, and also provided comprehensive tables of relevant 
data for transparency. Inclusion of our systematic review 
into a formal register such as PROSPERO could have also 
helped to mitigate repeated efforts and reporting bias, 
and promoted transparency.156

Analysis of observational studies also includes inher-
ent biases due to differences in inter- study designs and 
populations which lack experimental randomisation.157 In 
future, test accuracy can be improved by consecutive or 
random enrolment of participants,158,159 which would be 
more representative of populations the clinician would 
encounter in routine clinical practice.27 Additionally, more 
consistency in reporting would benefit future syntheses of 
data. Consistently reported measures such as exact AMD 
classification, visual field testing conditions, statistical sig-
nificance and inclusion of dose- response and temporal re-
lationships where possible would strengthen the putative 
cause- effect relationship between early/iAMD and visual 
field defects. More stringent reporting of funding and con-
flict of interest statements would also help ascertain the risk 
of sponsorship bias.70,160,161,162 Admittedly, some reporting 
uncertainties could have been clarified through contact of 
the study authors and improved our review credibility.163 It 
is however unlikely that this would have made a significant 
impact on our mostly negative findings and conclusions.

This review also highlighted that while current clini-
cal automated perimetry may reveal functional deficits 
in early/iAMD, more sensitive functional testing than 
SAP under photopic conditions is required to confer clin-
ical significance. Studies using low- photopic or scoto-
pic light conditions that we reviewed along with other 
studies133- 141 using microperimetry that operates under 
borderline low- photopic/mesopic lighting conditions 
(1.27 cd/m2)33,34 have demonstrated greater magnitude 
of worsened global visual field indices in early/iAMD eyes 
compared to the majority of our results, which represent 
photopic conditions. This begets the question of whether 
current clinical automated perimetry, which can already 
operate at lower light conditions, could produce similar re-
sults to microperimetry.

Finally, sparingly discussed in the literature is the ad-
vantage of topographical, visual function description 
provided via automated perimetry. From the 26 studies 
included, only four[#ID 1, 5, 12, 15]15,48,82,86 reported global 
visual field indices with respect to eccentricity. These 
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four studies commonly reported less decreased MD or 
MS with increasing eccentricity using SAP and/or flicker 
perimetry. This common topographical pattern of visual 
field change may suggest structure- function linkage, as 
drusen occur most commonly towards the central mac-
ula.164,165 Considering the growing body of evidence high-
lighting the structure- function relationship in early/iAMD,
98,133,134,136,138,140,141,166– 174 automated perimetry may still 
have potential for clinical integration (albeit not using SAP 
under photopic conditions) to fortify diagnoses and mon-
itoring of disease, akin to its role for glaucoma.175 There 
may also be a use for automated perimetry as a functional 
biomarker for pre-  and post- treatment of late stage AMD. 
However, demonstration of benefit to patient outcomes 
in lower- risk early/intermediate, treatment- naïve AMD pa-
tients is necessary before imposing more testing burden 
on these individuals.

CO NCLUSIO N

There was consistent evidence of significant visual field 
defects in early/iAMD compared to normal eyes under 
photopic, low- photopic and scotopic conditions. However, 
meta- analyses results demonstrated that global visual 
field index reductions at least using SAP under photopic 
conditions were not clinically meaningful, while there was 
insufficient data to draw conclusions regarding other clini-
cal automated perimetry protocols. Evidence regarding 
translational relevance of visual field findings to patient 
outcomes is lacking and should be considered. Thus, SAP 
under photopic conditions is unlikely to be useful for the 
routine assessment of early/iAMD.
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