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The activation of the androgen receptor (AR) pathway is crucial in the progression of human prostate cancer. Results of the
present study indicated that the target protein xenopus kinesin-like protein (TPX2) enhanced the transcription activation of
AR and promoted the proliferation of LNCaP (ligand-dependent prostate carcinoma) cells. The protein-protein interaction
between AR and TPX2 was investigated using coimmunoprecipitation assays. Results of the present study further
demonstrated that TPX2 enhanced the transcription factor activation of AR and enhanced the expression levels of the
downstream gene prostate-specific antigen (PSA). TPX2 did this by promoting the accumulation of AR in the nucleus and also
promoting the recruitment of AR to the androgen response element, located in the promoter region of the PSA gene.
Overexpression of TPX2 enhanced both the in vitro and in vivo proliferation of LNCaP cells. By revealing a novel role of
TPX2 in the AR signaling pathway, the present study indicated that TPX2 may be an activator of AR and thus exhibits
potential as a novel target for prostate carcinoma treatment.

1. Introduction

Androgen receptor (AR), a member of the nucleus receptor
protein family (also known as nucleus receptor subfamily 3
group c member 4; NR3C4), plays a critical role in the trans-
formation and proliferation of prostate carcinoma cells [1].
Similar to other members of the nucleus receptor superfam-
ily, the transcription factor activation of AR is modulated by
cofactors or coregulators, and the interaction between AR
and its cofactors plays important roles in the transformation
and maintenance of prostate carcinoma [2, 3]. Thus, the

specific cofactors of AR and their subsequent roles in pros-
tate carcinoma must be determined [4, 5]. The targeting pro-
tein for xenopus kinesin-like protein (TPX2) is well-
established as a microtubule-interaction protein that regu-
lates the maintenance of cell morphology. TPX2 contains a
conserved motif that allows interaction with microtubules
[6, 7]. Previously, the interaction between microtubules
and TPX2 has been considered as the main mechanism
underlying TPX2 in the promotion of cancer cell prolifera-
tion and division [8, 9]. Results of previous studies have fur-
ther indicated that TPX2 may function as a potential target
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for prostate carcinoma treatment [10, 11]. Results obtained
by Zou et al. revealed that overexpression of TPX2 is associ-
ated with the progression of prostate cancer and a poor
prognosis in patients, whereas Pan et al. demonstrated that
targeting TPX2 suppressed the proliferation of human pros-
tate carcinoma cells [10, 11]. To the best of our knowledge,
the present study was the first to reveal a novel mechanism
of TPX2 in mediating the proliferation of prostate carci-
noma cells. In the present study, the effects of TPX2 on
the transcription factor activation of AR were investigated,
and the proliferation of LNCaP cells, a well-established
endocrine-dependent prostate carcinoma cell line, was exam-
ined using numerous experiments. Results of the present study
further extended the current knowledge of the TPX2/AR path-
way and uncovered the potential of TPX2 in the treatment of
prostate cancer.

2. Material and Methods

2.1. Clinical Specimens, Cell Lines, and Agents. A total of 30
paired clinical specimens (paired prostate carcinoma and
nontumor tissues) were obtained by our lab from May
2017 to November 2018 via daily surgical resection. Written
informed consent was obtained from all patients. The col-
lection and use of these clinical specimens were approved
by the Ethics Committee of Daping Hospital, Army Medical
University, and all experiments were carried out following
the Helsinki Declaration. LNCaP cells (a common human
endocrine-dependent prostate carcinoma cell line) were
gifted by Dr Fan Feng from Beijing 302nd Hospital [12].
The plasmids and lentivirus particles containing full-
length TPX2 or AR or the small interfering (si)RNA of
TPX2 were prepared by Vigene Corporation. The luciferase
reporters, ARE-Luc (androgen response element luciferase

reporter) or PSA-Luc, were gifted from Dr Fan Feng in
the Beijing 302nd hospital. The androgen (an agonist of
AR), dihydrotestosterone (DHT; a common endogenous
androgen; cat. no. S4757), was purchased from the Selleck
Corporation [12]. DHT was dissolved in DMSO and diluted
using the phenol red-free DMEM (Thermo Fisher Scientific,
Inc.) and supplemented with 10% charcoal-stripped fetal
bovine serum (FBS; Hyclone, Cytiva) for cell-based experi-
ments [13, 14].

2.2. Dual-Luciferase and Reverse Transcription-Quantitative
(RT-Q) PCR Assays. LNCaP cells were transfected with
empty vectors, TPX2 or siRNA targeting TPX2, cotrans-
fected with the aforementioned luciferase reporters (PSA-
Luc or ARE-Luc), and the cells were harvested for 24 h fol-
lowing transfection, for the subsequent luciferase assays.
Luciferase experiments were performed using a kit pur-
chased from the Promega Corporation, following the
instructions provided by the manufacturer and the protocols
provided by Cui et al. and Gao et al. [4, 15] Moreover, the
expression levels of PSA or TPX2 were examined using
qPCR. The RNA samples from clinical specimens were
extracted using a PARIS™ kit (Thermo Fisher Scientific,
Inc.), and the RNA samples were reverse transcribed using
Multiscribe™ Reverse Transcriptase (Thermo Fisher Scientific,
Inc.) agent. qPCR was subsequently performed according to
the protocol described in the referenced studies [16, 17].
GAPDH was used as the loading control, and the expression
levels of PSA or AR were normalized to the levels of GAPDH
mRNA. Primers used in the qPCR experiments were as fol-
lows: TPX2 forward, 5′-ACCTTGCCCTACTAAGATT-3′
and TPX2 reverse, 5′-AATGTGGCACAGGTTGAGC-3′;
GAPDH forward, 5′-GCACCGTCAAGGTGAGAAC-3′
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Figure 1: TPX2 enhanced the transcription factor activation of AR in LNCaP cells. LNCaP cells were cotransfected with empty vector,
TPX2, or siTPX2 with luciferase reporters (ARE-Luc or PSA-Luc) and harvested for luciferase experiments. The activation of ARE-Luc
(a) or PSA-Luc (b) was shown as mean ± SD. P < 0:05.

2 Journal of Oncology



and GAPDH reverse, 5′-TGGTGAAGACGCCAGTGGA-3′;
and PSA forward, 5′-GTGACG TGGATTGGTGCTG-3′
and PSA reverse, 5′-GAAGCTGTGGCTGACCTGAA-3′.

2.3. Cell Culture and Colony Formation Experiments. LNCaP
cells were cultured in DMEM containing 10% FBS (Hyclone;
Cytiva) at 37°C in 5% CO2. For the colony formation exper-
iments, LNCaP cells were transfected with plasmids and har-
vested and seeded into the 6-well plates (Corning) at ~2,000
cells per well. After seeding the cells into the 6-well plates,
cells were cultured in DMEM with 10% FBS. Cells in the

plates were cultured for 3-4 weeks, and the colony formation
assays were carried out following the methods described by
Feng et al. [18]

2.4. Immunoprecipitation and Western Blot Analyses.
LNCaP cells transfected with plasmids (FLAG, FLAG-AR,
or FLAG-TPX2) or treated with the aforementioned agents
were harvested for Western blot analysis [19]. The complex
of FLAG-AR/TPX2 or FLAG-TPX2/AR was separated from
the system and the FLAG-AR, FLAG-TPX2, and TPX2 or
AR in the complex were examined using the corresponding
antibodies (Abcam). The protein samples were prepared,
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Figure 2: TPX2 enhanced the mRNA or protein expression of AR’s down gene PSA in LNCaP cells. LNCaP cells were transfected with
plasmids (control, TPX2, or siTPX2). Then, cells were harvested for qPXR or Western blot experiments. The mRNA level of PSA was
examined by qPCR and shown as mean ± SD (a). The protein level of PSA or TPX2 was examined by Western blot, and the results were
shown as the images of Western blot (b) or the quantitative results of the images (c–e). ∗P < 0:05.
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and Western blot analyses were performed following a stan-
dard protocol. The expression levels of AR, PSA, PTX2, or
GAPDH were examined using the corresponding antibodies
(Abcam). GAPDH was used as the internal loading control.

2.5. Cellular Subfractionation Assay. LNCaP cells were trans-
fected with plasmids and treated with the solvent control or
10nmol/L DHT for 30min and harvested for the cellular sub-
fractionation experiments following the methods described in
the previous publication [20]. The accumulation of AR or
TPX2 in the nucleus or the cytoplasm was examined using
the corresponding antibodies (Abcam). Lamin A was used as
the control for the nucleus subfraction, whereas β-actin was
used as the control for the cytoplasm subfraction. western
blotting images were quantitatively analyzed using the ImageJ
software (National Institutes of Health) [21].

2.6. Chromatin Immunoprecipitation (ChIP) Sequencing.
ChIP analysis was performed following a protocol provided
by the ChIP kit (Upstate Biotechnology, Inc.) or Yang
et al. [22] Briefly, LNCaP cells were transfected with plas-
mids and treated with solvent control or 10nmol/L DHT
for 20min. Subsequently, cells were harvested for ChIP
experiments, and immunoprecipitation was performed
using anti-AR or anti-TPX2 antibodies. RT-qPCR amplifica-
tion was performed using DNA extracted from the immuno-
precipitation and primers flanking the PSA promoter. The
primers used to examine the recruitment of AR or PTX2
to AREI in the promoter region are as follows: ARE forward,
5′-CCTAGATGAAGTCTCCATG-3′ and reverse, 5′-AA
CCTTCATTCCCCAGGACT-3′.

2.7. In Vivo Tumor Model. LNCaP cells were transfected
with plasmids and seeded into the subcutaneous position
of male nude mice (age, 4-6 weeks) to form tumor models
[23]. Tumor tissues were harvested 6-8 weeks after injec-
tions. Tumor volumes were measured by tumor length ×
tumor width × tumor width/2. Tumor weights were mea-
sured using a precision balance.

2.8. Statistical Analysis. Statistical analyses were performed
using the Bonferroni correction with two-way ANOVA,
using the SPSS statistical software (version 8.0; IBM Corp).
P < 0:05 was considered to indicate a statistically significant
difference.

3. Results

3.1. TPX2 Enhances the Transcription Factor Activation of
AR. The effects of TPX2 on the transcription factor activa-
tion of AR were examined. As displayed in Figure 1, overex-
pression of TPX2 enhanced the activation of luciferase
reporters (ARE-Luc and PSA-Luc; Figures 1(a) and 1(b))
induced by DHT, a common endogenous androgen. More-
over, knockdown of TPX2 decreased the activation of lucifer-
ase reporters induced by DHT. Subsequent overexpression of
TPX2 also enhanced both the mRNA and protein expression
levels of PSA (Figure 2(a)), target gene of AR; however, knock-
down of TPX2 also decreased both the mRNA and protein
expression levels of PSA (Figures 2(b)–2(e)). Results are
displayed as both Western blot analyses (Figure 2(b)) and
quantitative results (Figures 2(c)–2(e)). Therefore, results of
the present study indicated that TPX2 enhanced the transcrip-
tion factor activation of AR.

3.2. TPX2 Interacts with AR. Subsequently, the protein-
interaction between AR and TPX2 in LNCaP cells was
examined. As displayed in Figure 3, FLAG-TPX2 interacted
with AR (Figure 3(a)), and the re-IP data demonstrated that
FALG-AR also interacted with TPX2 in LNCaP cells
(Figure 3(b)). Therefore, results of the present study demon-
strated that TPX2 modulated the activation of AR via pro-
tein-interaction.

3.3. TPX2 Promotes the Accumulation of AR in the Nucleus
and the Recruitment of AR to the Promoter Region of the
Downstream Gene, PSA. To further examine the effects of
TPX2, both subcellular subfractionation and ChIP assays
were performed in the present study. As demonstrated in
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Figure 3: TPX2 interacted with AR in LNCaP cells. LNCaP cells were transfected with FLAG, FLAG-TOX2 (a) or FLAG, FLAG-AR (b) and
harvested for the IP assays. The results were shown as images of Western blot.

4 Journal of Oncology



Figure 4, overexpression of TPX2 enhanced the recruitment
of AR to the promoter region of PSA induced by DHT;
however, knockdown of TPX2 decreased the recruitment of
AR to the promoter region of PSA induced by DHT
(Figure 4(a)). Moreover, the accumulation of AR in the
nucleus was examined using a cellular subfractionation assay.
As demonstrated in Figure 4, AR translocated from the
cytoplasm to the nucleus when induced by DHT. Moreover,
overexpression of TPX2 enhanced the translocation of AR
from the cytoplasm to the nucleus induced by DHT
(Figure 4(b)). In addition, knockdown of TPX2 decreased
the translocation of AR from the cytoplasm to the nucleus
induced by DHT (Figure 4(c)). Therefore, results of the pres-
ent study demonstrated that TPX2 modulated the activation
of AR by promoting the recruitment of AR to the promoter

region of PSA or by promoting the accumulation of AR in
the nucleus of LNCaP cells.

3.4. The Significance of TPX2. The aforementioned results
indicated that TPX2 functions as a positive regulator (coac-
tivator) of AR. To further verify the effects of TPX2, the
expression levels of endogenous PSA or TPX2 were exam-
ined in clinical specimens. As displayed in Figures 5(a) and
5(b), the expression levels of PSA and TPX2 were increased
in prostate carcinoma specimens compared with nontumor
tissues. Moreover, the expression levels of TPX2 were posi-
tively associated with PSA both in cancerous tissues
(P < 0:0001; Y = 10510 ∗ X + 0:2356) and nontumor tissues
(P = 0:0008; Y = 2278 ∗ X + 1:072; Figures 5(c) and 5(d)).
These results further confirmed the effects of TPX2 on AR.
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Figure 4: TPX2 enhanced the recruitment of AR to the PSA’s promoter region or the accumulation of AR in nucleus. LNCaP cells were
transfected with plasmids. The recruitment of AR to PSA’s promoter was examined by ChIP (a). The accumulation of AR in nucleus was
examined by the subcellular fraction (b and c). The results were shown as the images or the quantitative results. ∗P < 0:05.
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Figure 5: The clinical significance of the TPX2-AR axis. (a and b) The mRNA level of TPX2 (a) or PSA (b) in prostate carcinoma or
nontumor specimens was examined by qPCR. (c and d) The relationship between the expression of TPX2 with PSA was shown as
scatter plot images. ∗P < 0:05.
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Figure 6: TPX2 enhanced the in vitro proliferation of LNCaP cells. LNCaP cells were transfected with plasmids and analyzed by the colony
formation. The results were shown as the images of colonies (a) or the quantitative results of colony images (b). The expression level of PSA
or AR in LNCaP cells was examined by Western blot (c). ∗P < 0:05.
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3.5. TPX2 Increases the Proliferation of LNCaP Cells. The
proliferation of LNCaP cells was examined using both
in vitro and in vivo experiments. As shown in Figure 6, over-
expression of TPX2 enhanced the colony formation of
LNCaP cells and enhanced the expression of PSA in LNCaP
cells (Figures 6(a)–6(c)), whereas knockdown of TPX2
decreased the colony formation of LNCaP cells and the
expression of PSA (Figures 6(a)–6(c)). Similar results were
obtained using nude mice as a model. Notably, overexpres-
sion of TPX2 increased the subcutaneous growth of LNCaP
cells and enhanced the expression of PSA in tumor tissues
(Figures 7(a)–7(d)), whereas knockdown of TPX2 decreased
the subcutaneous growth of LNCaP cells and the expression
of PSA (Figures 7(a)–7(d)). These results are summarized as
images of subcutaneous tumors (Figure 7(a)), Western blot-
ting images (Figure 7(b)), tumor volumes (Figure 7(c)), and

tumor weights (Figure 7(d)). Therefore, these results sug-
gested that TPX2 increased the proliferation of LNCaP cells.

4. Discussion

Prostate carcinoma is one of the most malignant types of
cancer and poses a great threat to male health [24]. As an
endocrine-dependent malignancy, the AR pathway is nec-
essary for the development and progression of prostate
carcinoma, and the coactivators of AR have been charac-
terized as key regulators of AR activation [25]. Therefore,
discovering and elucidating the coactivators of AR is not
only beneficial to clarify AR-related mechanisms but also
enables more effective therapeutic strategies to be devel-
oped [25]. Results of the presents study indicated that
TPX2 functioned as a newly identified activator of AR
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Figure 7: TPX2 enhanced the in vitro proliferation of LNCaP cells. LNCaP cells were transfected with plasmids and injected into the nude
mice to form subcutaneous tumors. The results were shown as the images of tumor tissues (a), or the quantitative results of tumors
according to the tumor volumes (c), or tumor weights (d). The expression level of PSA or AR in tumor tissues was examined by
Western blot (b). ∗P < 0:05.
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(Figure 8). TPX2 enhanced the transcription factor activity
of AR in a ligand-dependent manner, whereas knockdown
of TPX2 repressed the activity of the AR pathway. More-
over, overexpression of TPX2 promoted the proliferation
of LNCaP cells. Therefore, the results of the present study
indicated that TPX2 plays an important role in the regula-
tion of the AR pathway activation and the proliferation of
LNCaP cells.

It has previously been verified that the TPX2 gene,
located at chromosome 20q11.2, is aberrantly expressed in
several types of cancer, including prostate carcinoma [26].
Results of a previous study suggested that TPX2 enhanced
the proliferation and division of cancerous cells by promot-
ing the amplification of the centrosome or spindle appara-
tus (mitotic spindle) formation [27]. However, TPX2
could also function via other mechanisms. Results of fur-
ther previous studies demonstrated that TPX2 enhanced
the phosphorylation of AKT kinase (AKT) and increased
the expression of alternative factors associated with the pro-
liferation or metastasis of cancerous cells, including cyclin
D1 or matrix metalloproteinases [28–30]. To the best of
our knowledge, the results of the present study were the
first to reveal a novel mechanism underlying the function
of TPX2 in prostate carcinoma. Notably, TPX2 functioned
as a coactivator of AR and promoted the translocation of
AR from the cytoplasm to the nucleus. The cytoskeleton
system is comprised of microtubules and is the basis of sub-
cellular transport and localization of biological macromole-
cules in mammalian cells.

Numerous coregulators of AR have previously been
identified, not only in regulating the activation of the AR
pathway but also in regulating the proliferation of prostate
carcinoma cells. These cofactors often function by directly
modulating the transcription factor activation of AR, for
example: (i) Modulating the interaction between AR and
RNA polymerase II; (ii) modulating the interaction between
AR and DNA; and (iii) modulating the widespread unfold-
ing of chromosomes [31–35]. The translocation of AR in
cells is of great significance to its well-established activity;
however, very few studies have focused on identifying the
specific coactivator that promotes the translocation of AR

from the cytoplasm to the nucleus. Therefore, the present
study extended the present knowledge of TPX2 and pro-
vided a novel theoretical basis for the mechanisms underly-
ing the cofactors of AR.

Moreover, as displayed in Figure 4, TPX2 was examined
both in the cytoplasm and nuclear subfraction of LNCaP
cells. The results obtained from the co-IP experiment indi-
cated that TPX2 could form a complex with AR (Figure 3).
However, the specific conditions required for this complex
and whether alternative proteins are involved require further
investigation. Mass spectrometry will be utilized in future
investigations to analyze these protein complexes [36–39].
Furthermore, TPX2 is considered to be closely associated
with the function of microtubules, which are the basis for
intracellular material transportation and subcellular compo-
nent positioning [40–42]. Thus, future investigations should
focus on determining whether the effects of TPX2 on AR are
dependent on microtubules, and include drugs, such as pac-
litaxel or vincristine [43–45].

5. Conclusion

In conclusion, the present study revealed the interaction
between TPX2 and AR in regulating the proliferation of
prostate cancer cells. The results of the present study not
only expand the current knowledge of TPX2 but also pro-
vide a novel theoretical basis for the development of prostate
cancer treatments.
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