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Abstract: Precise localization is critical to safety for connected and automated vehicles (CAV). The
global navigation satellite system is the most common vehicle positioning method and has been
widely studied to improve localization accuracy. In addition to single-vehicle localization, some
recently developed CAV applications require accurate measurement of the inter-vehicle distance
(IVD). Thus, this paper proposes a cooperative localization framework that shares the absolute
position or pseudorange by using V2X communication devices to estimate the IVD. Four IVD
estimation methods are presented: Absolute Position Differencing (APD), Pseudorange Differencing
(PD), Single Differencing (SD) and Double Differencing (DD). Several static and dynamic experiments
are conducted to evaluate and compare their measurement accuracy. The results show that the
proposed methods may have different performances under different conditions. The DD shows the
superior performance among the four methods if the uncorrelated errors are small or negligible (static
experiment or dynamic experiment with open-sky conditions). When multi-path errors emerge due
to the blocked GPS signal, the PD method using the original pseudorange is more effective because
the uncorrelated errors cannot be eliminated by the differential technique.

Keywords: connected and automated vehicle; GNSS; V2X; inter-vehicle distance; pseudorange;
cooperative localization

1. Introduction

Connected and automated vehicles (CAVs) promise many benefits for future mobility,
including reducing traffic congestion, enhancing vehicle safety and improving energy
efficiency of transportation system [1–3]. As an essential function of CAVs, robust and
accurate localization has been widely studied in recent years.

In general, the accuracy requirements for CAV localization can be divided into four
levels, i.e., road-level, lane-level, decimeter-level and centimeter-level. Road-level local-
ization provides basic applications or services due to its rough positioning, for example,
store or hospital navigation [4]. Lane-level localization can benefit more driving situations,
further improving driving safety by lane-selection, and reduce energy consumption by eco-
driving [5]. Decimeter-level localization is required for L2-L3 advanced driving assistance
system (ADAS) applications [6], which are related to vehicle driving safety, e.g., active
obstacle avoidance. A fully autonomous vehicle may require higher position estimation
accuracy (centimeter-level) because of the complex driving conditions to ensure it stays in
its lane or a safe distance from other vehicles.

The most common vehicle localization method is the global navigation satellite sys-
tem (GNSS), which estimates the vehicle location from pseudorange measurements of
multiple satellites. The existing errors of the pseudorange, for example, satellite clock error,
ionospheric delay and multipath error, make GNSS fulfill only the road-level localization
applications [7]. To achieve higher positioning accuracy for CAVs, a variety of techniques
have been proposed, including combining measurements of additional sensors (Inertial
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Measurement Unit) [8], differential GNSS techniques (Real Time Kinematic) [9], Coopera-
tive Map Matching (CMM) [10], Simultaneous Localization and Mapping (SLAM) [11] and
so on.

In addition to single-vehicle localization, some safety-critical CAV applications, e.g.,
vehicle platoon, require accurate measurement of the inter-vehicle distance (IVD) [12–14].
The simplest IVD estimation method is differencing the vehicles’ position directly. However,
its accuracy is highly dependent on the localization accuracy of a single vehicle. Using
onboard millimeter-wave radar and lidar is another approach, but its perception range is
limited [15].

Recently, cooperative localization methods have been proposed as alternative solutions
to improve the positioning accuracy by sharing localization information between two or
more sources (vehicles and infrastructures) through emerging vehicular communication
technologies [16–19]. There are two typical cooperative localization methods, i.e., ranging-
based and non-ranging based. The ranging-based methods use the signal strength variation
or the transmission time to estimate the IVD, including Radio Signal Strength (RSS) [20],
Time of Arrival (TOA) [21], Round Time Trip (RTT) [22] and Time Difference of Arrival
(TDOA) [23–25]. However, these techniques usually require additional hardware or pre-
deployed infrastructures, which may incur more cost. In addition, the high vehicle speed
may also introduce noise or errors to the estimated distances.

The non-ranging cooperative localization method is a cost-effective solution that di-
rectly uses the pseudorange information of each vehicle to estimate the IVD. However, as
the vehicles are moving relative to each other, the low estimation accuracy of the coopera-
tive localization restrains its application in reality. Some studies have used the developed
wireless communication techniques, e.g., Dedicated Short Range Communications (DSRC),
for pseudorange exchange between vehicles [26]. The exchanged pseudorange informa-
tion is used for IVD estimation by applying multi-source fusion [27–29]. Richter and
Liu both proposed the double-differencing framework to measure the vehicle relative
distance [27,28]. Richter used the particle filter to remove common GNSS errors from the
pseudoranges of both vehicles [27], while Liu used the weighted least squares method [28].
As a result, the estimation accuracy of the IVD is improved. Another study presented by
Golestan et al. proposed a multi-source fusion method to improve the accuracy of IVD
measurement by combining different positioning technologies [29]. Tomic employed the
maximum likelihood convex optimization method [30], and Naseri used the Bayesian
estimation method to improve the accuracy of the distance between two points [31]. In
addition, Guo achieved an infrastructure-free cooperative relative localization by using an
onboard ultra-wideband ranging and communication network [32]. However, the literature
mentioned above all assumed that GNSS errors were small and that no multipath error
existed. Tahir et al. proposed several range measurement methods, including single and
double differencing. The accuracy of the proposed methods is compared by actual field
trails in different mobile environments [33]. In addition, Ansari also proposed a DSRC-
based Vehicle-to-vehicle (V2V) real-time relative localization method and investigated the
benefits of the proposed method [19]. However, no experiments were carried out to verify
the effectiveness of the proposed methods.

Therefore, in this paper, we explore several non-ranging cooperative localization
methods to estimate the IVD for a group of connected vehicles, including Absolute Po-
sition Differencing (APD), Pseudorangs Differencing (PD), Single Differencing (SD) and
Double Differencing (DD). The main contributions of this paper are twofold. First, four
different IVD estimation frameworks are formulated and compared. The weighted least
squares method is employed to reduce the pseudorange errors and noises of each vehicle.
The correlation errors of pseudoranges (i.e., satellite clock error, satellite ephemeris error,
ionospheric error and tropospheric error) are greatly reduced. Second, field experiments,
including static and dynamic, open-sky and GNSS-blocked driving scenarios, were con-
ducted to verify their effectiveness. Among these methods, DD indicated the highest IVD
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measurement accuracy in open sky conditions, while PD showed the best accuracy in
urban driving conditions with shelter.

This paper is organized as follows. Section 2 introduces the main errors of pseudor-
ange and formulates the problem. In Section 3, four IVD estimation methods are presented
by using the pseudorange of each vehicle. Experimental Results and Discussion are given
in Section 4. Section 5 concludes this paper.

2. Problem Formulation of Inter-Vehicle Distance Measurement

This paper focuses on inter-vehicle distance measurement. The non-ranging coop-
erative localization method is a promising approach to achieve accurate IVD estimation.
Figure 1 shows the concept of cooperative positioning by using multi-source information
fusion. The vehicles and infrastructures can communicate with each other and share their
positions through V2X techniques. Note that since the signal of GNSS may be lost in the
environments of building blockings and tunnels, the critical situations that can severely
reduce the complement of GNSS signal are not considered in this paper.
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This paper mainly uses GPS observations to estimate the IVD between vehicles. At any
time t, the pseudorange ρS

V(t) from vehicle V ∈ {v1, v2, · · · , vn} to the receiving satellite S
can be modeled as [26]

ρS
V(t) = RS

V(t) + tS
V(t) + εc(t) + εu(t) (1)

where RS
V(t) =‖ LS(t) − LV(t) ‖ is the true distance between vehicle V and satellite

S, LS(t) =
[

xS(t) yS(t) zS(t)
]T is the position vector of satellite S at any time t,

LV(t) =
[

xV(t) yV(t) zV(t)
]T is the position coordinate vector of the vehicle under

the frame of Earth-Centered-Earth-Fixed (ECEF), tS
V(t) is time delay error between the

receiver and satellite and εc(t) is the correlated error, including the ephemeris error and the
atmospheric error. It is assumed that the correlated errors are equal for different satellites
if the localized vehicles are close. εu(t) refer to the uncorrelated errors, e.g., thermal
noise and multi-path error, which are hard to model because they are affected by the
environment. The first-order Auto-Regression (AR) is the most popular model to describe
the uncorrelated errors as shown in Equation (2).

εu(t) =
{

aεu(t− 1) + nu(t) static
nu(t) dynamic

(2)

where a is the dimensionless autoregression coefficient 0 or 1; nu(t) is a normally distributed
random variable and obeys the Gaussian distribution, whose mean is zero and variance is
an σ2

u i.e., nu(t) ∼
(
0, σ2

u
)
.
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3. IVD Estimation Method

This section will present four IVD estimation methods under the cooperative localiza-
tion framework, i.e., Absolute Position Differencing (APD), Pseudorangs Differencing (PD),
Single Differencing (SD) and Double Differencing (DD). The parameters and nomenclature
used in this section are listed in Table 1.

Table 1. Nomenclature used in this paper.

Notation Description Notation Description

Dij(t) Vehicle distance vector H Cosine matrix
D̂ij(t) Estimated IVD between ith and jth vehicle εc(t) Correlated errors

eS Unit vector from vehicle to satellite εu(t) Uncorrelated errors
La(t) Position of base station ∆εV(t) Unusual error term
LV(t) Position of Vehicle V x Maximum likelihood estimate

L̂n−1
V (t)

Estimated position of vehicle V for
previous iteration tS

V(t)
Time delay error between the receiver

and satellite
L̂V(t) Estimated position of vehicles V ∆tV(t) Difference of time delay error

lS
vivj

(t)
Pseudorange difference between ith and

jth vehicle ρS
V(t) Pseudorange from vehicle V to satelli S

∆Ln
V Position increment ∆ρai

Pseudorange differences for the vehicle i and
base station a

∆lSaSb
vivj (t)

Pseudorange difference between ith and jth
vehicle for different satellites RS

V(t) True distance between vehicle V and satellite S

3.1. Absolute Position Differencing Distance

Connected vehicle technology enables communication and information-sharing be-
tween vehicles, allowing the vehicle to send its own position and receive the positions of
its neighbors. Thus, we propose the first method to calculate the IVD through differencing
the positions of vehicles directly. That is, the estimated IVD between ith and jth vehicle
can be calculated

D̂ij(t) = ||L̂vi (t)− L̂vj(t) || (3)

where L̂vi (t) =
[

xvi (t) yvi (t) zvi (t)
]T and L̂vj(t) =

[
xvj(t) yvj(t) zvj(t)

]T
are the

estimated position vectors of vehicles vi and vj, respectively. To improve the localization
accuracy of each vehicle, the Weighted Least Square (WLS) is presented to optimize the
vehicle’s position. The position and user clock offset are updated with multiple iterations
until the solution converges according to a defined criterion. At iteration n, the estimated
position L̂n

V(t) is
L̂n

V(t) = L̂n−1
V (t) + ∆Ln

V (4)

where L̂n−1
V (t) is the position of the previous iteration and ∆Ln

V is the position increment at
time t for current iteration n. ∆tn

V refers to the clock deviation and ∆εn
V is the measured noise.

Then, let x =
[

∆Ln
V ∆tn

V
]T , y =

[
∆ε1

V · · · ∆εn
V
]T be a set of noisy measurements

that are linearly related to x, and the maximum likelihood estimate of x is defined as [34]

x̂ = arg max
x

1

(2π)
N
2 |Rn|

1
2

e−
1
2 (y−Hx)TR−1

n (y−Hx)

= arg min
x

(y−Hx)T R−1
n (y−Hx) (5)

=
(

HTR−1
n H

)−1
HTR−1

n y

where H is the cosine matrix describing the measured value and Rn is the covariance matrix
associated with the measurement error. Figure 2 shows the process of the APD-based
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algorithm. As shown, by using the optimized absolute position of each vehicle, the IVD is
calculated by following Equation (3).
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Figure 2. Flowchart of Absolute Position Differencing (APD)-based inter-vehicle distance (IVD)
estimation method.

3.2. Pseudoranges Differencing Distance

In addition to sharing the vehicles’ position, the vehicle can also share its pseudorange
directly through V2V communication. Thus, this subsection uses the pseudoranges to
calculate the IVD.

As shown in Figure 3, there are two vehicles vi and vj, and one base station that can
provide the accurate position information La(t) = [xa(t) ya(t) za(t)]

T . The pseudoranges
of the above three points are ρS

vi
(t), ρS

vj
(t) and ρS

a (t). At any time t, the position of the
vehicle vj, Lvj(t), can be calculated by using the position of the vehicle Lvi (t), that is,

Lvj(t) = Lvi (t) + Dij(t) (6)

where the vector Dij(t) =
[

∆xij(t) ∆yij(t) ∆zij(t)
]T is composed by the distances

between vehicles in the x, y and z coordinates, respectively. The position of the vehicle
vi, the position of the vehicle vj, and the satellite S have the following pseudorange
relationship:

ρS
vi
(t) = ||LS(t)− Lvi (t)||+ tS

vi
(t) + εc(t) + εui (t) (7)

ρS
vj
(t) = ||LS(t)− Lvi (t)−Dij(t)||+ tS

vj
(t) + εc(t) + εuj(t) (8)

ρS
a (t)= ||LS(t)− La(t) ||+tS

a (t) + εc(t) + εua(t) (9)
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Then, the pseudorange differences between the vehicles and satellite are [33]

∆ρai = ρS
a (t)− ρS

vi
(t)=

√
(xs(t)− xa(t))

2 + (ys(t)− ya(t))
2 + (zs(t)− za(t))

2

−
√
(xs(t)− xvi (t))

2 + (ys(t)− yvi (t))
2 + (zs(t)− zvi (t))

2 +
(

tS
a (t)− tS

vi
(t)
) (10)
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Since
xvi (t) = xa(t) + ∆xai(t)
yvi (t) = ya(t) + ∆yai(t)

zvi (t) = za(t)− ∆zai(t) (11)

∆xai(t) = ∆xaj(t)− ∆xij(t)
∆yai (t) = ∆yaj(t)− ∆yij(t)
∆zai (t) = ∆zaj(t)− ∆zij(t)

Equation (10) can be transformed into Equation (12) by using a Taylor series and the
first-order partial derivatives to eliminate nonlinear terms [33].

∆ρai =
xs(t)− xa(t)

RS
a (t)

∆xai(t) +
ys(t)− ya(t)

RS
a (t)

∆yai(t) +
zs(t)− za(t)

RS
a (t)

∆zai(t)− ∆tai(t) (12)

with
RS

a (t) =
√
(xs(t)− xa(t))

2 + (ys(t)− ya(t))
2 + (zs(t)− za(t))

2

∆tai(t) = tvi (t)− ta(t) (13)

∆taj(t) = ∆tai (t) + ∆tvi (t) + ∆tvj(t)

It is assumed that both vehicles could observe the same number of satellites, i.e.,
S = 1, 2, 3 · · ·N. Let

axS =
xs(t)− xa(t)

RS
a (t)

(14)

ayS =
ys(t)− ya(t)

RS
a (t)

(15)

azS =
zs(t)− za(t)

RS
a (t)

(16)

Then,

∆ρ = ψ∆x =

[
ψ1 0N×4

0N×4 ψ1

]


∆xaj(t)
∆yaj(t)
∆zaj(t)
∆tai(t)
∆xaj(t)
∆yaj(t)
∆zaj(t)
∆taj(t)


(17)

Then, we can estimate the IVD between the two vehicles as

D̂ij(t) = ∆D̂aj(t)− ∆D̂ai(t) (18)

where ∆D̂aj(t) and ∆D̂ai(t) are the estimated quantities of ∆Daj(t) and ∆Dai(t), respectively.
That is,

||D̂ij(t)|| =
√

∆x̂ij(t)
2 + ∆ŷij(t)

2 + ∆ẑij(t)
2 (19)

In summary, Figure 4 shows the process of the PD-based algorithm. By using the
pseudorange between the vehicle and the satellite, the pseudorange differences between
localized vehicle and base station are calculated by following the geometry principle of
Equation (17). Then, the IVD between two vehicles is computed based on the pseudor-
ange differences.
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3.3. Single Differencing Distance

The PD estimates the IVD by using the information of the base station; this subsection
introduces the single differential method to calculate the IVD only using the pseudor-
ange of vehicles. As shown in Figure 5, the SD method estimates the IVD by using the
pseudorange of two vehicles from the same satellite. In this way, the clock difference
between vehicle receivers can be eliminated, as well as the atmospheric delay error. In
general, the atmospheric delay error includes ionospheric delay error and tropospheric
delay error. When the GNSS satellite’s signal passes through the atmosphere, the signal
will be affected by the electron density and water vapor density of the atmosphere. As a
result, the signal propagation speed will change as well as the signal propagation time.
Using the original signal propagation time to calculate the pseudorange will inevitably
cause pseudorange errors.
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Figure 5. Single differencing distance.

As seen in Figure 5, since the satellite is far away from the vehicles, the pseudoranges
of these two vehicles are assumed to be in parallel. Thus, the difference of the pseudoranges
as [33]

lS
vivj

(t) = ρS
vi
(t)− ρS

vj
(t)

= ∆RS
V(t) + ∆tV(t) + ∆εV(t)

(20)

As seen, the common errors are eliminated; however, the unusual error term ∆εV(t)
increases. Since the ranges RS

vi
(t) and RS

vj
(t) are much larger than the distance between

vehicles, we can estimate the difference of the pseudorange by using

∆RS
V(t) =

[
eS
]T
·Dij(t) (21)
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where eS =
LS(t)−Lvi (t)
||LS(t)−Lvi (t) ||

is the unit vector from vehicle to satellite. Assuming there are N

satellites between the vehicles, we can have the following myopic values.
l1
vivj

(t)
l2
vivj

(t)
...

lN
vivj

(t)

 ≈

[
e1]T 1[
e2]T 1

...
...[

eN]T 1


[

Dij(t)
∆tV(t)

]
(22)

From the above equation, we can get the estimated value of Dij(t). Figure 6 shows
the process of SD-based algorithm. First, the pseudorange difference between vehicles
are obtained using Equation (20). Then, the IVD between vehicles Dij(t) is calculated by
following Equation (22) with the triangle principle.
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Figure 6. Flowchart of Single Differencing (SD)-based IVD estimation method.

3.4. Double Differencing Distance

In addition to the SD, we can also use multiple satellites to achieve the IVD measure-
ment. This subsection introduces the method combined the pseudorange information from
two different satellites Sa and Sb, as shown in Figure 7.
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It is assumed that both vehicles can track the satellite Sa and Sb, simultaneously.
According to the SD method in Section 3.3, the difference in the pseudorange differences
for different satellites is

∆lSaSb
vivj (t) = lSa

vivj(t)− lSb
vivj(t)

= ∆rSaSb
vivj (t) + εSaSb(t)

(23)
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where ∆rSaSb
vivj (t) = ∆RSa

V (t)− ∆RSb
V (t) and εSaSb(t) = ∆εSa

V (t)− ∆ε
Sb
V (t). The receiver clock

is eliminated, but the error of the uncorrelated term still increases. Thus, we can have

∆rSaSb
vivj (t) =

[
eSa − eSb

]T
Dij(t) (24)

According to Equation (24), the myopic distance and the relative position between
vehicles can be calculated. For example, selecting a satellite as the reference satellite, the
myopic solution of the double difference matrix can be deduced as follows.

∆lS1S0
vivj (t)

∆lS2S0
vivj (t)

...
∆lSN S0

vivj (t)

 ≈

[
e1 − e0]T 1[
e2 − e0]T 1

...
...[

eN − e0]T 1

Dij(t) (25)

Figure 8 shows the process of DD-based algorithm. Different from the SD method,
the DD algorithm requires the pseudorange between vehicle and satellite. The myopic
distance and the relative position between vehicles can be calculated according to Equation
(24). Then, the distance between the vehicles can be calculated by Equation (25) with the
myopic solution of the double difference matrix.
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Figure 8. Flowchart of double difference (DD)-based IVD estimation method.

4. Experimental Results and Discussion

To evaluate the performance of the proposed four methods, this section will introduce
several static or dynamic field tests.

4.1. Experiment Setup

This paper adopts two vehicle platforms for data collection, one unmanned ground
vehicle (Figure 9a) and one passage car (Figure 9b). Both vehicles are equipped with
NAV982 GNSS/INS receiver, which is configured to provide raw GNSS data at a rate
of 5 Hz for vehicle localization. The receiver’s GNSS active antenna is installed on the
roof of each vehicle. The raw data are stored in the Industrial Personal Computer. In
addition, the two vehicles can share their localization information by using installed V2X
communication devices. A base station (Figure 9c) is also installed in an open sky location,
which can provide its accurate localization. The following sections will introduce the static
and dynamic experimental studies and the analysis of their results.
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Figure 9. Experiment equipment: (a) Unmanned ground vehicle; (b) Passenger car; (c) Base station.

4.2. Static Experiments

The static experiments were conducted in the parking lot of Southeast University,
Nanjing. Six scenarios were tested, i.e., with the vehicle distances of 5 m, 10 m, 15 m, 25 m,
35 m and 50 m. Each scenario was tested for 15 min, and the IVD was measured online. In
addition, the two vehicle platforms could observe the same GPS satellites. To evaluate the
performance of different estimation methods quantitatively, the root means square error
(RMSE) is proposed.

RMSE =

√√√√ 1
T

T

∑
t=1

[
D(t)− D̂(t)

]2 (26)

where D(t) is the true IVD between the two vehicles at time t, D̂(t) is the estimated IVD at
time t, and T is the number of samples during the period.

Figures 10–15 show the results of the static experiments. The weighted least-squares
method is used to ensure the consistency of the vehicle spacing measurement for different
algorithms. Table 2 gives the RMSE for different methods. The estimation accuracy is
mainly affected by the correlated errors (ephemeris error, satellite clock error, atmospheric
delay, etc.) and the uncorrelated errors (multipath effect and receiver thermal noise). In
the static experiment, the uncorrelated errors are almost negligible because the tests are
conducted in the open-sky condition.
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Table 2. The RMSE for different methods in the static experiment.

Ture IVD APD RMSE [m] PD RMSE [m] SD RMSE [m] DD RMSE [m]

5 m 3.93 1.98 2.52 0.85
10 m 3.65 1.75 2.43 0.91
15 m 2.53 1.68 2.39 0.98
25 m 3.24 1.53 2.74 1.03
35 m 3.43 1.64 1.02 0.42
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As observed, the DD shows superior performance among all estimation methods in
all tested scenarios. For example, the IVD errors of DD are smaller than 3 m in all six
tested scenarios as shown in Figures 10–15. The RMSE of DD are all smaller than 1 m,
while those of other methods are larger than 1.5 m. This is mainly because the DD method
could eliminate the correlated errors by using the differential approach, and the errors are
minimized rapidly once the time synchronization is done. In addition, the performance of
DD is stable with the increase in real IVD, e.g., 0.85 m for 5 m IVD and 0.75 m for 50 m IVD.

PD and SD methods can also reduce the correlated errors with the differential tech-
nique; however, their estimation errors may be amplified if uncorrelated errors exist. As
observed from Table 2, the RMSE of PD is between 1.5–2 m, while RMSE of SD is between
2–3 m. Thus, PD has better accuracy than SD. Finally, the APD method shows the worst
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performance among all methods, i.e., with more than 3 m RMSE. Since it cannot eliminate
the uncorrelated errors of pseudorange, the APD is the most unstable method.

4.3. Dynamic Experiments

The proposed IVD estimation methods should be applied to moving vehicles in real
traffic conditions. Thus, this subsection will conduct several experiments for moving
vehicles under different driving conditions.

The passenger car drove forward and pulled the unmanned ground vehicle to keep
the constant IVD. The tested IVDs were 5, 10 and 15 m for the dynamic experiment. Two
driving conditions were tested, i.e., the open-sky condition and the condition with roadside
tree covering. Their trajectories are given in Figure 16a,b respectively.
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Table 3, Figures 17 and 18 show the measured IVD results for both two conditions.
The estimated accuracy is different for different methods. In open-sky conditions, the DD
method shows the best performance. The maximum error of DD was smaller than 3.5 m
as observed in Figure 17, and its RMSE was around 1 m, which is similar to the results of
the static experiment. Similarly, the errors of other methods follow the static experiment
and are sorted by PD, SD and APD. This can be explained by the fact that the uncorrelated
errors, mainly caused by multipath, are small. In addition, the maximum errors of APD
sometimes are larger than the IVD, which may lead to collision if the estimated IVD is used
in the vehicle control.

Table 3. The RMSE of all methods in dynamic experiment.

(a) Open-Sky Condition.

Ture IVD APD RMSE [m] PD RMSE [m] SD RMSE [m] DD RMSE [m]

5 m 3.14 0.98 2.52 0.85
10 m 3.27 1.25 2.05 1.14
15 m 3.53 1.68 2.39 1.25

(b) Roadside Tree Covering Condition.

Ture IVD APD RMSE [m] PD RMSE [m] SD RMSE [m] DD RMSE [m]

5 m 3.86 1.98 2.82 2.35
10 m 5.65 2.29 4.01 3.05
15 m 7.64 3.28 5.97 3.84
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In the roadside tree covering condition (Figure 18), since the direct path of the GPS signal
to the receiver is blocked by the trees, the uncorrelated errors caused by the multi-path increase.
The multi-path may introduce time-varying deviation into the distance measurement; thus
the IVD estimated by SD and DD methods may be amplified. As a result, the PD shows better
performance than DD because the uncorrelated errors, i.e., multi-path and receiver thermal
noise, cannot be eliminated by the differential technique. The RMSE of PD is around 2.5 m,
while DD’s RMSE is three times the results of static experiments (around 3.5 m). It should be
noted that time synchronization should be done to avoid the clock errors in the DD method.
Meanwhile, the estimated errors of SD and APD methods also increase to 4 and 9 m due to
the increase in the multi-path errors. APD is still the most unstable among all methods.

5. Conclusions

This paper develops four inter-vehicle distance estimation methods, i.e., APD, PD, SD and
DD, based on cooperative vehicle localization. The vehicle’s absolute position or pseudorange
are shared among vehicles by using the V2V communication devices. Static and dynamic
experiments were conducted to evaluate and compare their performance. The results show that
the DD method shows superior performance among the four methods if the uncorrelated errors
are small or negligible (static experiment or dynamic experiment with open-sky condition).
When the multi-path errors emerge due to the blocked GPS signal, the PD method using the
original pseudorange is more effective because the uncorrelated errors cannot be eliminated
by the differential technique. In addition, the accuracy of the DD method may be worse if the
uncorrelated errors increase. In dynamic experiments, two different types of field scenarios are
reported, i.e., open-sky and roadside tree covering. The results show that the DD method is
only superior in an open sky environment since it may be more sensitive to the multipath effect.
Using raw pseudorange for IVD estimation is more effective if the multipath effect is observed.

Several future works are planned. First, the effect of communication range, capacity
and delay on cooperative localization will be investigated. Second, the speed of moving
vehicles will affect the performance of the proposed cooperative localization framework. A
robust method to combine more information may be required to increase the IVD estimation
accuracy. Finally, a novel approach that can address the loss of GNSS signal under extreme
environments such as urban forest will also be studied in the future.
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