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A B S T R A C T   

The modeling of miRNA-mRNA interactions holds significant implications for synthetic biology and human 
health. However, this research area presents specific challenges due to the multifaceted nature of mRNA 
downregulation by miRNAs, influenced by numerous factors including competition or synergism among miRNAs 
and mRNAs. In this study, we present an improved computational model for predicting miRNA-mRNA in
teractions, addressing aspects not previously modeled. Firstly, we integrated a novel set of features that signif
icantly enhanced the predictor’s performance. Secondly, we demonstrated the cell-specific nature of certain 
aspects of miRNA-mRNA interactions, highlighting the importance of designing models tailored to specific cell 
types for improved accuracy. Moreover, we introduce a miRNA binding site interaction model (miBSIM) that, for 
the first time, accounts for both the distribution of miRNA binding sites along the mRNA and their respective 
strengths in regulating mRNA stability. Our analysis suggests that distant miRNA sites often compete with each 
other, revealing the intricate interplay of binding site interactions. Overall, our new predictive model shows a 
significant improvement of up to 6.43% over previous models in the field. 

The code of our model is available at https://www.cs.tau.ac.il/~tamirtul/miBSIM   

1. Introduction 

MicroRNAs (miRNAs) are short strands of non-coding RNA, typically 
around 21–24 nucleotides in length, tasked with the important role of 
regulating gene expression [1]. Despite their short length, miRNAs play 
a pivotal role in orchestrating various cellular processes by regulating 
protein production, particularly the translation of mRNA into protein. 
Operating within the cytoplasm, miRNAs interact with mRNA molecules 
by attaching to binding sites, leading to the mRNA’s destabilization and 
degradation, thereby actively repressing mRNA levels within the cell 
[2]. This straightforward mechanism enables miRNAs to participate in a 
multitude of cellular functions, ranging from pluripotency and devel
opmental processes to metabolic and cellular pathways, as well as 
influencing the cell cycle. Consequently, dysregulation of miRNAs is 
associated with pathological conditions and has been implicated in 
oncogenesis [3–8]. 

Transcribed in the nucleus, miRNAs initially are in a hairpin struc
ture and are subsequently processed by the Dicer enzyme in the cyto
plasm, resulting in the formation of mature miRNA strands. RNA 
repression is facilitated by the recruitment of an RNA-induced silencing 

complex (RISC), which consists of Argonaute (AGO) nucleases respon
sible for cleaving or destabilizing mRNA molecules [9]. The 
miRNA-RISC complex interacts with mRNA through complementary 
base pairing. Canonical interactions involve a perfect match to the 2–8 
nucleotides at the 5’ end of the miRNA, known as the seed region. These 
interactions are classified into four types (6mer, 7mer-A1, 7mer-m8, 
8mer), each characterized by the length of base pairing and associated 
with the affinity and efficiency of the interaction. Although potential 
binding sites can be found throughout the mRNA strand, interactions 
within the 3’UTR region are particularly effective for miRNA-mediated 
repression [10,11]. 

Due to miRNAs’ pivotal regulatory role, investigating miRNA-mRNA 
interactions is fundamental in understanding their involvement in 
numerous cellular processes, including cellular differentiation, prolif
eration, apoptosis, oncogenesis, pathogenesis, and defense against vi
ruses [12–19]. Deciphering these interactions holds significant value, as 
they can serve as a simple and effective tool in various biotechnological 
and medical applications. Researchers utilize them as biomarkers, 
integrate them into medical drugs, and employ miRNAs in cancer 
treatment [20,21]. Many of these studies require the engineering of 
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effective binding sites for endogenous miRNAs, balancing desired in
teractions while avoiding interference with other signals [22]. Previous 
studies have developed computational models aiming to predict func
tional targets of miRNAs and quantify miRNA-mediated repression, 
albeit with varying success [23–31]. However, capturing these in
teractions and their effects presents challenges, given the multitude of 
known and unknown variables involved. While sequencing transfection 
experiments is commonly used to observe changes in mRNA levels due 
to specific miRNAs, it lacks detailed information on miRNA-mRNA in
teractions. Conversely, techniques such as CLASH mapping (cross-
linking, ligation, and sequencing of hybrids) have primarily identified 
non-canonical miRNA-mRNA interactions with insignificant effects on 
mRNA repression [32]. Furthermore, highly-performing models have 
often been overfitted and case-specific, trained on small-scale experi
mental data. Finally, repression by individual miRNAs tends to be 
modest, resulting in relatively weak signals prone to noise and experi
mental bias [33]. These challenges hinder prediction accuracy and the 
relevance of models. 

Most existing models have simplified the complexity of miRNA- 
mediated repression by employing linear algorithms that incorporate 
various interaction features such as thermodynamics, conservation, and 
sequence context. These models treat binding sites as independent en
tities, assuming that interactions between adjacent sites are insignifi
cant. However, emerging evidence suggests that miRNAs may regulate 
their targets in a cooperative or competitive manner. Studies have 
shown that mRNAs strongly regulated by miRNAs often harbor multiple 
binding sites for the same or different miRNAs [33,34]. Developing a 
model that incorporates binding interactions could lead to a more ac
curate representation of the repression mechanism and improve pre
dictive capabilities. By considering the interplay between binding sites, 
such a model could better capture the complexity of miRNA-mediated 
regulation. 

Each cell type expresses a unique set of miRNAs allowing for cell- 
specific pathway regulation [26,35,36]. Investigating cell specificity in 
the context of miRNA-mediated repression holds promise for enhancing 
our understanding of miRNA-mRNA interactions. Tools like PUMA [37] 
and miTAlos [26] have been developed to categorize subgroups of 
miRNAs and their roles in different cell-specific processes. Similarly, 
researchers have worked on comparing cell-specific miRNA expression 
profiles in both healthy and pathologic tissues, such as cancerous tu
mors, heart disease and many more, in the aim of characterizing 
diseased tissue. However, while efforts have been made to identify 
cell-specific miRNA expression patterns, predicting miRNA-mediated 
repression quantitatively in a cell specific context has not been thor
oughly addressed until now. Since different cells harbor distinct sets of 
active miRNAs, they may possess unique mechanisms or signals that 
allow different subsets of miRNAs to function optimally. These hidden 
signals could influence the importance of features and lead to biased 
models trained on specific cell types. Consequently, the development of 
cell-specific repression models has the potential to enhance prediction 
accuracy and shed light on the cell-specific attributes of miRNA-mRNA 
interaction. 

Here, we investigate the importance of cell-specific repression 
models and present a novel miRNA-mediated repression model that 
integrates miRNA binding site interactions for the first time. Our find
ings support the importance of considering binding site distribution, 
resulting in an improved predictive model. 

2. Results 

mRNA levels within a cell dictate protein translation, thereby 
influencing cellular processes and functionality. As miRNAs contribute 
to mRNA regulation through silencing mechanisms, investigating their 
interactions holds significant value. Here, we aim to develop a compu
tational model that predicts miRNA-mediated repression and improves 
upon the performance of existing models. We approach this objective in 

three ways, as illustrated in Fig. 1. First, we establish a basic model that 
incorporates elements from previously published models and tools. 
Recognizing the ongoing emergence of new studies and data, it is 
essential to continuously update computational models to attain a better 
understanding of miRNA activity and to enhance model performance. 
While individual studies may focus on specific aspects of miRNA-mRNA 
interaction, our goal is to integrate these elements into a comprehensive 
model, capturing as many variables involved in the mRNA silencing 
process as possible. 

Second, we investigate whether these models exhibit cell-specific 
attributes by comparing the performance of models trained on the 
same cell type to those trained on different cell types. Since miRNA 
profiles and activities vary among different tissues, we anticipate that 
transcripts may encode cell-specific information regarding miRNA- 
mRNA interactions. As feature selection and model training heavily 
rely on the training dataset, if indeed features encompass cell-specific 
signals we expect models trained on the same cell type to better pre
dict miRNA-mediated repression compared to models trained on 
different cell types. 

Third, we develop a binding site interaction model, which extends 
the basic model with a correction step incorporating target site coop
erativity or competition. Here, we aim to further improve our model by 
proposing that interactions between binding sites may augment 
repression. Sites may act cooperatively to facilitate more efficient 
binding and destabilization of the mRNA [38,39]. 

2.1. The experimental data of miRNA based mRNA repression is noisy 

Transfection experiments measuring differential gene expression 
currently represent the best method for recording mRNA silencing due 
to miRNA, yet they come with several disadvantages. Foremost among 
these is the limited information they provide, as they only measure 
changes in mRNA levels. However, this simplistic measurement over
looks the complex interplay of factors contributing to mRNA regulation. 
Notably, changes in mRNA levels observed in these experiments cannot 
always be attributed solely to the transfected miRNAs. Studies have 
indicated that siRNA-independent effects may also influence mRNA 
levels, particularly in miRNA transfection experiments. It has been 
shown that when clustering differential mRNA expression, sets from the 
same group of experiments or the same transfection protocol clustered 
strongly together [30,40]. Further complicating matters, 
transcriptome-wide responses are strongly correlated with aspects such 
as AU content and 3’UTR length, leading to global expression changes 
that are dependent on experimental context and resulting in batch ef
fects [23,41–44]. Additionaly, it has been suggested that the transfected 
miRNAs may cause derepression of mRNAs by competing with active 
endogenous miRNAs on the finite pool of silencing complex elements 
[42,45]. These effects are particularly pronounced when looking at fold 
changes, as these tend to have a low signal, resulting in low correlations 
between fold changes across different experiments and batches. 
Analyzing transfection dataset performed by the same experimental 
protocol and group, we see a mean correlation between repetitions of 
r = 0.582 overall (Fig. 2; r = 0.672 for the HeLa cells, r = 0.455 for the 
HEK293FT cells [46]) which range between 0.123 and 0.909. Even 
when experimental biases are attempted to be corrected, the limitations 
of training and assessing model performance on this type of data must be 
acknowledged. Moreover, miRNA-mediated repression is highly 
dependent on cellular context, including factors such as the number of 
mRNAs, miRNA concentrations, and the pool size of available AGO 
proteins [47]. As these parameters are dynamic, it is important to 
recognize the inherent limitations of computational models in capturing 
such complexities. The correlations reported in this study thus represent 
an upper bound on the correlations achievable with experimental data. 
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2.2. Integrative model outperforms previous models 

miRNA-mediated repression holds an important regulatory role, as 
such we aim to investigate the relationship between miRNA and po
tential binding sites upon the mRNA. To that end, we used published 
transfection datasets to train a linear regression model that predicts 
miRNA-mediated repression given a miRNA and a mRNA. 

Our study utilized two main sources of data. The first source con
sisted of transfection data from HeLa and HCT116 cells published by 
Agarwal et al. [30]. These datasets encompassed various experiments 
and publications, which were processed to mitigate bias introduced by 
batch effects and different experimental contexts. The second data 
source comprised transfection data from HeLa and HEK239FT cells 
published by McGeary et al. [46]. Unlike the previous dataset, this batch 
was smaller in size and derived from a single experimental protocol, 
purportedly offering a higher signal-to-noise ratio (SNR) compared to 
previous experiments. Each cell expression data was divided into 
training and test sets, enabling performance analysis of all models on 
both the same cell type and data source, as well as on different cell types 
and data sources, as depicted in Fig. 1. 

First, for each (miRNA, mRNA) pair, we conducted a search for po
tential binding sites by examining complementary base pairing to the 
seed region of the miRNA, adhering to the pairing rules of canonical 
interactions. Subsequently, we filtered the pool of potential sites by 
retaining only those located in the 3’UTR and the last third of the ORF, 

as previous studies have demonstrated that sites in other regions have 
minimal impact on mRNA repression [10,11,46]. To isolate the contri
bution of each site to the mRNAs’ repression, the training data consisted 
solely of (miRNA, mRNA) pairs with a single potential canonical binding 
site, following the aforementioned guidelines [31]. 

A feature table was then generated given the site information (see 
model features in methods section). Here, we combined features from 
several published models to create a vastly integrative model, in the aim 
of adding information that most accurately depicts the in-cell repression 
mechanism (Table 1). Many of these features are considered traditional 
in computational biology, including thermodynamic features, sequence 
features, and evolutionary features used in models such as TargetScan 
[30], miRmap [27], TarPmiR [24] and MIRZA-G [23]. In an effort to 
enhance prediction sensitivity, we incorporated features proposed by 
Bergman et al. [31], which emphasize the importance of ORF binding 
sites and potential interactions between the miRNA-AGO complex and 
the active ribosome. Additionally, we expanded our feature list by 
including biochemical features calculated using predictive tools devel
oped by McGeary et al. [46]. One of these features, Kd, represents the 
affinity between the mRNA binding site and flanking nucleotides and the 
miRNA, estimated using a CNN algorithm. This feature has been shown 
to exhibit a high correlation with miRNA-mediated repression. 

Finally, the model was trained on each training set using elastic net 
regularization (see model training in methods section). Given that both 
the type of miRNA-mRNA canonical interaction and the region of 

Fig. 1. Study Schematic. Starting with a miRNA-transfection dataset we partition our data into 2 groups: training set and test set, each with distinct miRNAs and 
mRNAs. The training set is then split to (a.) (miRNA,mRNA) couples that have a single potential target site, and (b.) (miRNA,mRNA) couples with multiple potential 
target sites. The first set (a.) is used to train the (d.i.) cell-specific models and (d.ii.) Integrative model (similar models with slight modifications to remove bias). The 
second set (b.) is then used together with the trained Integrative model (d.ii) to optimize the miBSIM. Finally, all models are evaluated (f.) based on their performance 
on the test set (c.). 

Fig. 2. Experimental Bias When Measuring mRNA Levels. Repression variance between repetition of transfection experiment, for each miRNA transfected (Eq. 1). 
(A) HeLa cells mRNA expression fold change following Transfection of 14 miRNAs. (B) HEK293FT cells mRNA expression fold change following transfection of 12 
miRNAs. (C) Histogram of the repression correlations for both HeLa and HEK293FT cells. Both transfection experiments performed and published by McGeary 
et al. [46]. 
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interaction have been shown to impact repression, each model is specific 
to these parameters, resulting in eight formulas (2 regions: {ORF, 
3’UTR}, and 4 seed types: {6mer, 7mer-A1, 7mer-m8, 8mer}). There
fore, each submodel was trained to target a specific site type based on 
the region of the site and its canonical sequence. In the final model, 
potential canonical binding sites are searched for each (miRNA, mRNA) 
pair. The model then calculates the predicted repression of each site 
based on these characteristics and sums the contribution of each site to 
determine the total effect on the mRNA. 

To assess the performance of the different models, a test set was 
extracted from each cell type. Each test set comprised a unique set of 
mRNAs and miRNAs, not shared with the training set. This process 
involved Bootstrap resampling, repeated 100 times, resulting in 100 
different models per cell type. Each model was trained on a unique 
random subgroup of miRNAs and mRNAs, and then used to predict 
miRNA repression on its corresponding test set (only (mRNA, miRNA) 
pairs with at least one 7–8nt site in the 3’UTR were included [30,31]). 
The performance of each model was assessed using the Pearson corre
lation coefficient (r2) between the measured repression and the repres
sion predicted by each model on the test set (Fig. 3). To determine 
whether our integrative model improved upon our previous model, we 
compared the performance (Pearson r2) of each integrative model to the 
Bergman et al. [31] model trained on the same subset. Given that 
different experimental contexts introduce different dataset biases [30], 
models were tested on the same type of cell sourced from the same 
dataset. 

Integrating models and tools created by different research groups 
and data sets provides a more comprehensive and accurate representa
tion of the miRNA silencing process. As such, adding even a small 
number of features has the potential to improve the performance of the 
model. Upon comparing performances of previous models for each 
dataset, we found that our models exhibited comparable performance or 
improved upon existing models by up to ~10% on the model trained on 
McGeary HEK293FT cells (Fig. 3; p = 0.0287 p = 3.46e-13 p = 0.0603 
for the McGeary HEK293FT set, the Agarwal HeLa set and the Agarwal 
HCT116 set respectively). 

To assess our model on a foreign dataset, each of the 100 submodels 

was tested on the remaining datasets, with the exception of the McGeary 
HeLa dataset to prevent bias due to same cell type as well as bias toward 
the biochemical features which were trained on said set (Fig. 3C). 
Comparing the performances of the Bergman et al. models to the Inte
grative model (Pearson r2), we found that our models were either 
comparable to previous models with minimal improvement and insig
nificant differences (less than 2% improvement for the models trained 
on Agarwal HeLa set and tested on the Agarwal HCT116 set p = 0.997, 
and the models trained on Agarwal HCT116 set and tested on the 
McGeary HEK293FT set p = 0.100) or significantly improving previous 
models by up to ~40% (p = 1.12e-15 p = 4.27e-8 for the models trained 
on the McGeary HEK293FT sets and tested on the Agarwal HeLa set and 
Agarwal HCT116 set respectively, p = 3.20e-18 for the models trained 
on the Agarwal HeLa set and tested on the McGeary HEK293FT set, 
p = 5.79e-9 for the models trained on the Agarwal HCT116 set and 
tested on the Agarwal HeLa set). 

Finally, we trained a model on the complete Agarwal HeLa dataset (i. 
e. 100% of the Agarwal HeLa dataset was used to train model) and tested 
its performance on the Agarwal HCT116 cells and McGeary HEK293FT 
cells (Fig. 3D). The integrative model exhibited the most predictive 
performance, yielding results comparable to or higher than those of the 
Bergman et al. model, achieving a correlations of 0.384 and 0.437 for 
the Agarwal HCT116 cells and McGeary HEK293FT cells, respectively. 
This marks a 5.42% and 0.31% improvement over the Bergman et al. 
model. Given that the quantity and quality of data define the upper limit 
of machine learning model’s performance, and considering the overlap 
between the current Integrative model and the previous Bergman et al. 
model, even a small improvement may aid in exposing new intricate 
relevant biological aspects contributing to the repression mechanism. 

When assesing the contribution of the novel biochemical features: 
Kd, and occupancy (occ), we obsereved that these features were robustly 
selected across 3’UTR sites. In many casesn they ranked among the 20 
highest selected features for the model (based upon the frequency cho
sen in the cross-validation sets, Fig. 4, Table 2). Reasoning that features 
robuslty selected would be the most predictive, their placement among 
the more classic features emphasizes their contribution. It’s noteworthy 
that although features related to affinity already exist in the feature set 
we trained, the Kd and occupancy features are based on a unique set of 
biochemical experiments, thus adding novel information to our feature 
set. Additionally, it’s important to highlight that the occupancy feature 
is predicted using the Kd feature, making them dependent on each other. 
Therefore, in most cases, only one of the two features was selected for 
inclusion in the model. 

2.3. Cell specific models improve predictability 

Creating cell specific models has the potential to improve prediction 
power, as different subgroups of miRNAs are active in different tissues. 
To evaluate the performance of cell specific models for each validation 
set, we compared models trained on the same cell type as the test to 
those trained on a different cell type. Model performance was assessed 
based on the Pearson correlation between the measured repression and 
the repression predicted by the model, and compared using a right-tailed 
Wilcoxon signed-rank test. 

It is well known that models trained on a comprehensive number of 
features may be prone to overfitting. Managing this through feature 
selection may help create models that are not overfitted to the data yet 
are more relevant to certain cell types. If our features include miRNA- 
mRNA interaction signals that are cell-specific, we may develop more 
robust models that dipict miRNA interaction more accurately. To 
minimize experimental bias, this analysis was conducted solely on the 
McGeary datasets, as they were generated using the same process and by 
same group. Features were then processed by filtering out any features 
that have a bias towards a certain cell type (Supplementary Table S1). 
Finally, since the four sets differ in the number of transfected miRNAs, 
the number of potential target sites varied greatly as well, ranging 

Table 1 
Features Used in Integrative Model.  

Category Feature Previous Model 

Thermodynamics ΔG Binding/ΔG Binding Seed miRmap 
ΔG Duplex/ΔG Duplex Seed 
ΔG Open 
Seed Pairing Stability TargetScan 
Structural Accessibility 
MicroRNA Recognition Elements Bergman et al. 

Biochemical Kd miRNA-mRNA Affinity Biochemical+
Steady State Occupancy 

Sequence AU Content TargetScan 
3’ Pairing miRmap, TarPmiR 
Distance Score TargetScan 
Relative Distance TarPmiR 
Nucleotides in miRNA and target site TargetScan 
Regions Length 
Nucleotide Frequency MIRZA-G 
Non-Canonical Sites TargetScan 
Target Abundance 
PUM Sites Bergman et al. 
RNA Binding Proteins 

Evolution phastCons/phyloP: Seed/Site/Flank miRmap 
phyloP 2-6 
Binomial/Exact Probability 

Translation CAI Bergman et al. 
Amino acid charge 
Slow amino acids 
Typical Decoding Rate 
tAI 
Ribosomal density  
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between a little under 22k canonical sites for the McGeary HEK293FT 
cells, and over 209k canonical sites for the Agarwal HeLa cells. Since 
training size difference impact model training, we found its best to 
compare an adjusted training size for each cell type, using 50% of the 
mRNAs and miRNAs as the training set for the McGeary HeLa cells, vs 
70% for the McGeary HEK293FT cells, resulting in an estimated 5.7k 
sites. 

In our comparison, we obsereved that both McGeary HeLa cells and 
HEK293FT cells showed better results when evaluated on the same cell 
type (Fig. 5). These results were significant for the both the HeLa cells 

and HEK293FT cells (p < 10-15, p < 0.05 respectively) leading to a 
notable ~15–70% improvement in Pearson r2. Given the value in 
creating cell specific models and understanding the differences between 
them, further investigation may contribute to a deeper understanding of 
miRNA functionality. 

2.4. miRNA site distribution 

Until now, interactions between proximal binding sites have been 
deemed insignificant, leading to the assumption that they act 

Fig. 3. Integrative model performance on test set and foreign data sets. Model performance evaluation. (A) Pearson correlation distribution of submodels 
comparing predicted repression and measured repression on the test set. For each dataset a random 80% of the corresponding mRNAs and miRNAs were taken as a 
training set, and the other 20% as the test set for a total of 100 Bootstrap resamplings. A submodel trained on the training set was used to predict the test sets’ 
repression, and then compared to the measured repression using Pearson r2 correlation. This process was repeated using Bergman et al. model on the same test set. 
The median correlation r2 is shown as vertical line. (B) Model’s mean improvement compared to Bergman et al. model using a right-tailed Wilcoxon signed-rank test 
on Pearson r2 on test set. The difference (in percentage) of each model is shown in each bar. Models with a significant result (p < 0.05) are marked with * . (C-D) 
Model performance evaluation on different cell types. (C) Model’s mean improvement compared to Bergman et al. model using a right-tailed Wilcoxon signed-rank 
test on Pearson r2 on foreign datasets. The difference (in percentage) of each model is shown in each bar. Models with a significant result (p < 0.05) are marked with 
* . (D) Scatter plot of measured repression versus predicted repression of the 2 different datasets (McGeary HEK293FT cells and Agarwal HCT116 cells), when using 
the final Agarwal HeLa Integrative model (trained on 100% of the Agarwal HeLa set). 
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independently, with their cumulative effect being equal to the sum of 
each partial repression. This hypothesis simplifies the development of 
computational tools, as considering binding site interaction adds 
another layer of complexity to an already complex problem. However, 
taking into account binding site interaction may result in a model that 
more accurately represents the silencing mechanism in the cell, partic
ularly considering that most mRNAs are regulated by multiple miRNAs. 

When considering binding site interactions, we expect to observe one 
of the following phenomena: (a) competition, (b) cooperation, or (c) 
indifference. Due to limited resources in the cell, sites may compete for 
AGO-loaded miRNA, resulting in an impact on the mRNA that is less 
than the sum of each potential site’s contribution. This phenomenon has 
been previously reported on a genome-wide scale, under the hypothesis 
that certain mRNAs regulate miRNAs by acting as sponges, redirecting 
miRNA activity [48,49]. Similarly, competition with endogenous miR
NAs has been proposed to affect miRNA transfection experiments, 
leading to an indirect change in mRNA levels in the cell that is not solely 
due to the transfected miRNA repression activity [42,45]. Just as 
competition is prevalent among endogenous and transfected miRNAs, 
and among different mRNAs for the same miRNA, competition may also 
occur among different binding sites for the same (miRNA, mRNA) pair. 
This competition may be exacerbated in cases where weaker sites attract 
the miRNA, diverting them from stronger sites. 

Surprisingly, it has been demonstrated that a short distance between 
binding sites (up to 35 nt spacing) may enable cooperative binding in
teractions, leading to increased repression compared to the sum of each 
potential site [48,49]. Theorizing that this distance influences the 
recruitment of relevant proteins to the local area, enhancing the effec
tiveness of the degradation process by stabilizing the miRNA-mRNA 
complex [33,34,50,51]. This distance may facilitate better allocation 
of resources toward the functional sites area, creating a synergistic effect 
between these sites [29,33]. 

As both competition and cooperation may occur in a distance- 
dependent manner, we opted to investigate the distribution of binding 
site distances in our largest dataset, the Agarwal HeLa cells, and 
compare this distribution to a randomized HeLa genome distribution 
(see random genome generation in methods section). Here, we observe 
that sites tend to have a significantly shorter distance between them 
than expected by chance (Fig. 6; p < 10-325), suggesting a preference for 
the cooperative mode. However, only ~8% of the sites are in a coop
erative allowing distance from one another (<35nt). As suggested 
before, this is a conserved spacing between sites, allowing for optimal 
cooperation [33,34,52]. Therefore, we anticipate that our data will be 
predominantly influenced by competition, with minimal cooperation 
among sites. 

Fig. 4. Importance of biochemical features. Feature importance of the novel biochemical features (Kd, log Kd, occ, log occ) compared to the ranking of the rest of 
the 152 features. Features were ranked according to their feature selection frequency. Presented here the top 20 features for 3’UTR sites for a seed type of 7mer-m8 
and 8mer. An extended list of features presented in Table S1. 
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2.5. miRNA binding site interaction model improves performance 

As it has been suggested in the past, miRNAs binding sites interact 
with each other in various ways. On one hand, there’s evidence sup
porting competition between binding sites on different mRNAs, as well 

as competition between different miRNAs for factors involved in the 
silencing process. Since cellular resources are finite, sites may compete 
for the AGO loaded miRNA. On the other hand, miRNA binding sites 
may cooperate to achieve more efficient silencing, however it requires 
adjacent target sites. Following these guidelines, we presume distance is 

Table 2 
Feature selection frequency of biochemical features across the different models.  

Highlighted are sites where at least one of the features was ranked among the top 20 most chosen features. 

Fig. 5. Cell Specificity Performance. A performance assessment of cell-specific models. Each submodel trained was used to predict the validation sets’ repression 
and compared to the measured repression. Then, we created two groups: the first holds models performances that were trained on the same type of cell as the test set; 
the second holds models performances that were trained on a different type of cell. We compared the two groups’ performances using a right-tailed Wilcoxon signed- 
rank test on Pearson r2 to determine which groups overall performance was better. Here, we compared between models trained on the McGeary HeLa cells, and 
models trained on the McGeary HEK293FT cells. for this analysis, 100 models were trained on 100 subgroups of mRNA and miRNA per dataset. Each model was then 
used to predict repression on its corresponding test set, as well as the 100 test sets of the other cell type. (A) Model performance on the McGeary HeLa cell dataset, the 
models trained on this type of cell outperformed models trained on the HEK293FT cells significantly (p < 10-17). (B) Model performance on the McGeary HEK293FT 
cell dataset, the models trained on this type of cell outperformed models trained on the HeLa cells significantly (p < 0.05). 
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a strong factor in determining the nature of the interaction, as well as the 
affinity of each site to the miRNA. 

To incorporate this interplay, we have added a computational step 
that follows the integrative model’s prediction, which includes neigh
boring sites’ information (see miBSIM training in the methods section). 
For each potential site, we calculate a correction factor, DS, and use that 
to scale the prediction of our integrative model (Eqs. 2–10). This 
correction factor is dependent on the neighboring sites’ predicted 
repression and the distance between the sites. It follows the logic that 
nonadjacent sites will have little to no interaction, as well as sites with 
very low affinity to the miRNA. DS was then optimized using the Hill 
Climbing algorithm on the Agarwal HeLa dataset to adjust the equa
tion’s constants for each of our training sets, starting from 100 different 
starting points (see Hill Climbing algorithm in the methods section). We 
repeated this process for 8 different formulas of DS with slight variations 
among them, all of which follow the concepts mentioned above (Eqs. 
3–10). To allow both competition and cooperation in our model, we 
varied our starting points to include both positive and negative con
stants, which change the correction factor to either enhance the current 
prediction or reduce it. For each training set, the best-performing con
stants were chosen to be evaluated as the final model. 

The correction factors DSi were all designed to follow the same logic 

under similar constraints, allowing for either competition or coopera
tion determined by the optimized constants. Starting with all possible 
correction factors DSi (Eqs. 3–10) for 25 out of the 100 training sets 
described in the training process of the Integrative model and evaluating 
their performance, we observe that DS2 and DS3 achieved the best 
improvement on the test set compared to the Integrative model, while 
the other models resulted in lower and sometimes negative improve
ments perhaps due to overfitting (Fig. 7A). Both DS2 and DS3 consider 
information from all neighboring sites, which might point to a more 
complex network of interactions between sites, favoring or possibly 
avoiding certain binding site grouping patterns. Most interestingly, DS8, 
which divides the interactions into 2 subgroups and therefore might 
capture a cooperative interaction among adjacent sites and competitive 
interaction among distant sites, did not perform well. It is possible that 
in this case the model was overfitted, reasoning that in this case 5 pa
rameters were needed to be optimized and perhaps the training set size 
was insufficient. In addition, only ~8% of sites among our data account 
for proximate sites; as such it is possible there was not enough repre
sentation among the chosen training set to accurately optimize proxi
mate parameters. 

Taking into account the suggested correction factor, we focused on 
developing DS3 as its initial results were the best when considering 

Fig. 6. miRNA Target Site Distance Distribution and miBSIM Schematic. (A) Nearest canonical target site distance distribution of the Agarwal HeLa training 
dataset compared to a randomized HeLa genome. For each target site, the nearest site’s distance was calculated, resulting in this distribution. Only miRNA-mRNA 
pairs with multiple sites were considered for this analysis. Here we compared between the distance distribution of sites upon the Agarwal HeLa genome and the 
subsequent 74 miRNAs, to the distance distribution of a randomized HeLa genome and same miRNA set via Wilcoxon rank sum test. The median distance of the real 
genome was significantly shorter compared to the randomized genome (p < 10-325). (B) Parameters used in the correction factor DS equation (Eqs. 3–10). We based 
our model following the idea adjacent binding sites will interact, and this interaction may be contingent on the distance between the sites D, as well as the current 
sites nominal repression S and the neighbor sites’ nominal repression S’. We modeled DS assuming that nonadjacent sites will have negligible interaction between 
them, as well as sites that have little to no repression and affective interaction with the miRNA. (C) Guiding principles behind the miBSIM, illustration of the 
interaction between adjacent sites. We expect to see one of the three following interactions between adjacent sites 
: a. competition, binding sites will compete for the limited resources and therefore the total effect will be less than the sum of each predicted site. b. cooperation, 
binding sites will cooperate guiding resources to the most optimal site and increasing local stability allowing for greater repression than the sum of each predicted 
site. c. independence, sites will act independently from one another, multiple sites increase the probability of repression but will not influence each other, hence the 
repression will be the sum of each sites predicted contribution. 
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outliers. For this correction factor, we optimized constants for all 100 
training sets. Assessing the miBSIM on the test sets, we observed a me
dian improvement of 1.02% compared to the integrative model (Fig. 7B; 
p = 4.21e-6 using a right-tailed Wilcoxon signed-rank test on Pearson 
r2). When assessing all 100 optimized models on foreign datasets, we 
achieved a median improvement of 0.290%, 1.33%, 1.69% on the 
McGeary HeLa, McGeary HEK293FT and Agarwal HCT116 sets respec
tively (Fig. 7C; p = 1.31e-5, p = 9.39e-17, p = 1.06e-12 using a right- 
tailed Wilcoxon signed-rank test on Pearson r2). Albeit significant, 
these improvements are relatively small. This might arise from the fact 
that multiple sites do not represent the majority of (miRNA,mRNA) pairs 
in our sets, as 57.1% of the Agarwal HeLa dataset is comprised of mRNAs 
that have a single miRNA binding site and these will not be affected by 

the correction factor. Repeating this analysis including only (miRNA, 
mRNA) pairs with multiple sites has increased the improvement of 
miBSIM compared to the integrative model on foreign data by 0.876%, 
2.47%, 2.65% on the McGeary HeLa, McGeary HEK293FT and Agarwal 
HCT116 sets respectively (Fig. 7D; p = 3.41e-9, p = 3.84e-17, 
p = 2.20e-13 using a right-tailed Wilcoxon signed-rank test on Pearson 
r2). Moreover, binding site interactions might explain very little of the 
repression variance. As such, we will not see a large change in perfor
mance due to the contribution of said interactions. 

When observing the constants selected by the optimization process, 
we notice that the final constants varied. While the constant scaling 
repression strength,c1, was consistently selected to be positive across all 
sets, the constant scaling distance,c2,was mostly negative (Eq. 5, 

Fig. 7. miBSIM’s training Performance. miBSIM (DS3, Eq. 5) was trained on the Agarwal HeLa set, using the same training and test partitions as used previously to 
train the Integrative model (totaling in 100 different training and test sets). For each training set we optimized our constants c1 and c2 using Hill climbing (see Hill 
climbing algorithm in methods section), starting from 100 different uniformly distributed starting points: c1 [− 0.75,0.75], c2 [− 15000, 15000]. The final model for 
each training set was chosen as the best performing constants. (A) Improvement upon Integrative model for alternative correction factors (Eqs. 3–10) on the test set. 
Here we assessed 25 different training and test sets. This step was used to choose the final miBSIM model (DS3) and to understand the nature of our data. (B) 
Comparison between the Integrative model’s performance to miBSIM’s performance on the test set. The miBSIM performance was significantly higher using a right- 
tailed Wilcoxon signed-rank test on Pearson r2 (p = 4.21e-6), with a median improvement of 1.02%. (C) Improvement upon Interactive model on foreign datasets. 
Comparing the Integrative model’s performance to the miBSIM’s performance on each set using a right-tailed Wilcoxon signed-rank test the miBSIM significantly 
improved the Integrative model’s performance (p = 1.31e-5, p = 9.39e-17, p = 1.06e-12 for the McGeary HeLa cells, the McGeary HEK293FT cells and the Agarwal 
HCT116 cells respectively). (D) Improvement upon Interactive model on foreign datasets considering only (miRNA,mRNA) pairs that had multiple sites. Comparing 
the Integrative model’s performance to the miBSIM’s performance on each set using a right-tailed Wilcoxon signed-rank test the miBSIM significantly improved the 
Integrative model’s performance (p = 3.41e-9, p = 3.84e-17, p = 2.20e-13 for the McGeary HeLa cells, the McGeary HEK293FT cells and the Agarwal HCT116 cells 
respectively). (E) Trends in model’s constants optimization. Frequency of sign(ci) for all optimized DS3 models. Blue/Red bars indicate positive/negative constants 
chosen for the final model. 
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Fig. 7E). Examining the optimized formula, we see that these trends 
indicate a negative effect between binding sites, which becomes stronger 
as the distance between sites is larger. Although competition between 
sites has been less investigated, our optimization process might suggest 
this interplay among binding sites. However, this does not necessarily 
mean that proximate sites do not cooperate. Site cooperativity has been 
shown to occur mainly within 13–35 nt spacing between sites [33,34, 
52]. Since only ~8% of our dataset’s sites have a neighboring site with a 
distance under 35 nt, it is possible that the training set had a bias toward 
competitive interactions that occur at larger distances (Fig. 6B,C). 

Finally, the entire Agarwal HeLa set was used to optimize the DS3 
correction factor. When using the final miBSIM model to predict miRNA- 
mediated repression on the McGeary HEK293FT and the Agarwal 
HCT116 sets, we obtained correlations of r = 0.439 and r = 0.389 
(Fig. 8B). Comparing these results to previous model performances, 
including TargetScan 8.0 [30], Bergman et al. [31] and the Integrative 

model, miBSIM outperformed these models, showing a 0.958% and 
0.290% improvement over the Integrative model, a 6.43% and 0.531% 
improvement compared to the Bergman et al. model, and a 35.9% and 
51.6% improvement on TargetScan respectively (Fig. 8A). Following 
these results, we set to investigate how well our model represents 
functional miRNA-mRNA interactions. For this analysis, we used miR
TarBase 9.0 [53], a database of experimentally validated miRNA-mRNA 
interactions. Maintaining only miRNAs and mRNAs present in both the 
test sets and the miRTarBase database, we performed a chi-squared 
enrichment analysis (Fig. 8C). A predicted interaction was defined as a 
miRNA-mRNA repression prediction of under − 0.1, which represents 
the average predicted repression for both test sets. In both cases 
enrichment was significant (p = 2.24e-9, p = 2.70e-65 for the 
HEK293FT and HCT116 cells respectively), and was robust to different 
selections of repression thresholds ranging between including all 
non-zero repression values up until to the 75th percentile of the 

Fig. 8. miBSIM’s final model performance. Final miBSIM model, trained on the complete Agarwal HeLa dataset. (A) Performance comparison of the final miBSIM 
model to previous models: TargetScan 8.0 [30], Bergman et al. [31] and the Integrative model. Results for each model performance tested on McGeary HEK293FT 
and Agarwal HCT116 cells. (B) Scatter plot of measured repression versus predicted repression of the 2 different datasets (McGeary HEK293FT cells and Agarwal 
HCT116 cells), when using the final miBSIM model. (C) Enrichment of validated mRNA-miRNA interactions by miRTArBase [53] in the interactions predicted by 
miBSIM by chi-squared test. Contengency plot of mRNA-miRNA pairs with at least one 7–8nt 3’UTR binding site. True positives and negatives in blue, false positives 
and negatives in red. Only mRNA and miRNAs appearing in both datasets were considered. 
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predicted repression (including only higher predicted repression), mir
roring a larger amount of false negatives. 

3. Discussion 

miRNAs play key roles in post-transcriptional gene regulation, 
including mRNA degradation and translation inhibition. Despite the 
establishment of a basic set of canonical rules, attempts at unveiling and 
modeling the intricate details of miRNA-mRNA interactions remains a 
daunting task. Given their important regulatory functions, their associ
ation with numerous diseases, and their potential in therapeutic engi
neering, understanding all aspects of these interactions is of interest. 

Several models have attempted to predict mRNA repression due to 
miRNA-mRNA interactions. This research area poses specific challenges 
due to the multitude of biophysical factors influencing mRNA down
regulation by miRNAs, including competition or synergism among 
miRNAs and mRNAs. Moreover, experimental biases such as batch ef
fects and low SNR limit model training and performance, as models 
cannot surpass the measured variance. As these models provide a strong 
starting point we created an integrative model, comprising traditional 
and novel features from established models. By integrating these 
models, we aimed to highlight different aspects of the miRNA-mediated 
repression and leverage them for repression prediction. For instance, 
incorporating ORF sites and features used by Bergman et al. [31] 
demonstrated the contribution of binding sites located at the end of the 
coding sequence to repression. Furthermore, the addition of the 
biochemical feature Kd, predicted by the McGeary CNN tool [46], pro
vided another layer of information by estimating the affinity between 
the AGO-loaded miRNA and the binding site’s sequence. Combining 
both the traditional works and these novel models has yielded a more 
robust model capable of predicting miRNA-mediated repression more 
accurately. 

In our attempt of creating cell-specific models, we have demon
strated that models trained on the same cell type as the test data exhibit 
significantly better predictive performance. This finding aligns with the 
idea that different cell types may exhibit preferences for distinct fea
tures, allowing for the optimization of cell-specific miRNA profiles. One 
possible explanation for this phenomenon is the influence of mRNA 
levels within the cell on miRNA activity, thereby affecting the perfor
mance of trained features. A hypothesis proposed by Riolo et al. [48] 
suggests that most mRNA targets act as competitive inhibitors of miRNA, 
thereby reducing overall miRNA activity [49]. Additionally, it has been 
suggested that the regulation of the RISC complex association with 
miRNAs may vary across different cell types, potentially influencing the 
inhibitory potential of specific miRNAs [54]. Similarly, differences in 
miRNA levels may indicate varying levels of competition among present 
miRNAs, including endogenous miRNAs. Moreover, variations in mRNA 
secondary structure, influenced by numerous factors specific to each cell 
type, can directly impact accessibility and thermodynamic features. 
Developing cell-specific models has the potential to enhance predictive 
power and uncover unique interaction characteristics specific to each 
cell type. Consequently, investing in cell-specific models could support 
applications such as cancer subtyping [55] and the development of more 
effective treatments. 

Developing our model further, we have added a computational step 
that includes interactions between miRNAs, considering for the first 
time both the distribution and strength of miRNA binding sites along the 
mRNA. Our model’s improvement upon adding this step suggests that 
binding sites likely operate in a competitive manner, with this signal 
intensifying as sites become further apart. However, capturing binding 
site interaction proved to be challenging, primarily due to the preva
lence of single sites governing the majority of our data, and among the 
multiple sites most tend to have large distances between them. Given 
these hurdles, the observed improvement underscores the value of this 
additional step. Previous research suggests that a cooperative effect is 
more pronounced for targets regulated by multiple distinct miRNAs 

compared to those targeted by identical miRNAs [33]. Further investi
gation into synergistic interplay, potentially incorporating 
non-proficient sites [56], could shed additional light on this phenome
non. Given the initially weak signal and the challenges in accurately 
modelling miRNA activity in vitro, this improvement is particularly 
noteworthy. It’s essential to recognize that the scarcity of high-quality, 
large-scale experiments and the limited scope of studied tissues present 
significant challenges in this field. These constraints impede our ability 
to capture and analyze complex interactions comprehensively and to 
develop cell-specific models. Further advancements in the field that may 
allow for the development of tools capable of predicting the function of 
multiple miRNAs simultaneously, potentially incorporating endogenous 
miRNA site interaction. binding interaction might be more significant 
and crucial to understand miRNA-mediated repression. 

The models developed in this study are expected to help various 
biomedical researchers. Clinicians and researchers studying human 
diseases can utilize this tool to detect meaningful mutations and SNPs 
that may have phenotypic effects related to disease. For example, a 
cancerous mutation in a transcript that affects the interaction with 
miRNAs can significantly increase or decrease the expression of the 
transcript, which can ultimately influence various characteristics of the 
cancer cell (e.g. growth rate, immune system evasion, apoptosis), thus 
directly affecting the survival of the cancer cell. Our models can also be 
utilized by synthetic biologists to introduce novel miRNA-mRNA in
teractions into RNA-based therapies. For instance, through the intro
duction of miRNA binding sites related to non-target tissues (e.g. healthy 
tissues but not cancer tissue), we can increase the specificity of an 
mRNA-based cancer therapy. Finally, our models can be used by bio
physicists and molecular biologists to study genome evolution and 
various intracellular biophysical phenomena. For example, by 
comparing the miRNA site distribution in the genomes of various 
mammals, one can study the evolution of the dynamics of mRNA-miRNA 
interactions. 

4. Methods 

4.1. Repression datasets 

miRNA-mediated repression was derived from normalized expres
sion data, which measures the fold change in mRNA levels following the 
transfection of a miRNA into the cell. 

Agarwal datasets: normalized transfection data published by Agar
wal et al. [30]. An aggregation of different groups’ microarray data 
processed and normalized by the TargetScan group. Two cell-lines were 
selected from this database: HeLa cells, encompassing 3912 mRNAs and 
74 miRNAs, and HCT116 cells, consisting of 4477 mRNAs and 7 miR
NAs. These sets were used as the training and tests sets for the Bergman 
et al. model [31] respectively. 

McGeary datasets: normalized transfection data published by 
McGeary et al. [46] attained by transfection of synthetic miRNAs fol
lowed by RNA-seq. miRNAs were chosen for their sequence conserva
tion, the availability of data examining their regulatory activities, 
intracellular binding sites, or in vitro binding affinities. Similar to the 
Agarwal datasets, two cell lines were chosen: HeLa cells, comprising 
3958 mRNAs and 17 miRNAs, and HEK239FT cells, comprising 4113 
mRNAs and 12 miRNAs. The HeLa dataset was used to fit the Bio
chemical+ model and train the repression CNN, while the HEK239FT 
cells were used as the test set for the CNN model. Repression of mRNA m 
by miRNA t for this set was calculated in the following manner: 

rm,t = βm,t − βm,t∗ (1)  

Where βm,t [logTPM] is its batch-normalized expression, and βm,t∗ is its 
average expression in all other transfection experiments, this is assumed 
to encompass the mRNA expression baseline [46]. 

mRNA sequences were extracted following the published transcript 
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annotations per experiment from Ensembl database (Agarwal HeLa and 
HCT116 cells, HEK239FT cells), and hg19 NCBI RefSeq database 
(McGeary HeLa cells). 

4.2. Random genome generation 

To assess the distances between proximate sites, we compared dis
tance distribution of the Agarwal HeLa dataset to those of a randomized 
HeLa genome. The process of randomizing the genome involved 
permuting synonymous codons coding for the same amino acids, 
thereby preserving codon frequency while retaining the amino acid 
sequence. Additionally, the UTR regions were randomized by permuting 
their nucleotides, thus preserving nucleotide frequencies within each 
region. 

4.3. Site detection 

Site detection is based on a set of canonical pairing rules comprising 
four different pairings with the 5’ end of the miRNA in the 3’UTR region 
of the mRNA. These rules have been established through previous 
miRNA-mRNA interaction studies and supported experimentally [10,18, 
47,57–60]. The process involves searching the mRNA in the last third of 
the ORF and 3’UTR for one of the following: (i) a complementary 
sequence to positions 2–6 nt of the miRNA (6mer), (ii) a complementary 
sequence to positions 2–6 nt of the miRNA followed by an ’A’ (7mer-A1), 
(iii) a complementary sequence to positions 2–7 nt of the miRNA 
(7mer-m8), or (iv) a complementary sequence to positions 2–7 nt of the 
miRNA followed by an ’A’ (8mer). 

Non-canonical sites, such as interactions with other regions of either 
the miRNA or mRNA, bulges, and mismatches, are abundant in the 
human transcriptome [32]. Given the countless combinations of possible 
interactions, it raises a question of what constitutes a statistically and 
biologically relevant interaction. Many studies have focused on exam
ining alternative binding sites, broadening the scope of binding possi
bilities [32,61–63]. However, these non-canonical interactions have 
been shown to be insufficient for repression and comprise the minority 
of conserved miRNA targets, perhaps caused by incompatible structural 
alignment with the RISC complex or due to the site’s placement in a less 
favorable context [10,11,46,56,58,60,64]. Considering the low 
signal-to-noise ratio (SNR) of the current data, we expect these in
teractions to fall below detection levels. Therefore, we follow earlier 
models, regarding these potential interactions as insignificant and 
focusing solely on canonical interactions [10,30,31,46]. On the other 
hand, ORF sites have the potential to encompass an interesting interplay 
between miRNA activity and ribosomal traversal [11]. Bergman et al. 
showed that models including the last third of the ORF outperform 
models including sites solely in the 3’UTR or considering both sites in 
the entire ORF and 3’UTR [31]. Thus, we included sites in the last third 
of the ORF along with features related to the translation process to better 
represent this region. 

4.4. Model features 

The models incorporateda comprehensive list of thermodynamic, 
conservation, sequence, and translation related features, integrated 
from a number of established models. The base feature set consists of the 
features described by Bergman et al. [31] and were based on previous 
works by TargetScan [30], miRmap [27], TarPmir [24], DIA
NA—microT—CDS [65] and MIRZA-G [23]. Notably, we introduced two 
novel features: the binding efficacy Kd and the site occupancy occ pre
dicted by the Biochemical+ and CNN model [46]. The complete feature 
list appears in Table 1 and extended in the Supplementary (Table S1). 

Thermodynamic features were estimated using the ViennaRNA 
package [66]. Thermodynamic features include binding energy between 
miRNA and mRNA target site, minimum free energy of the 
miRNA-mRNA duplex, the energy needed to keep the RNA strand open 

relative to the RISC complex physical size, seed pairing stability, struc
tural accessibility of binding site, as well as the number of potential 
non-canonical sites based on predicted binding energy to the miRNA. 
We expect features representing weak mRNA folding, high site accessi
bility and features representing strong miRNA-mRNA binding will 
exhibit positive correlations with binding efficacy [56,67–70]. 

Biochemical features, particularly site affinity, Kd, have demon
strated a strong correlation with miRNA-mediated repression. Kd values 
were estimated by a CNN tool published by McGeary et al. [46], which 
looks at the 12nt sequence comprising the target sites and flanking nu
cleotides. Kd values represent the dissociation constant fitted to a set of 
experiments analyzing the interactions between AGO loaded miRNAs 
and a library of RNA sequences. Trained on the McGeary HeLa cells, the 
CNN tool predicts the Kd value for any given miRNA and 12nt sequence. 
Additionally, the Biochemical+ tool [46], also trained on the McGeary 
HeLa cells, estimates the steady-state occupancy, which represents the 
average number of miRNA molecules bound to mRNA. Given that these 
values aim to predict site efficacy, a positive correlation with 
miRNA-mediated repression is expected. 

Sequence features include the miRNA, mRNA and the target sites 
sequence patterns. These features include AU content, length of each 
region, frequency of each base, pairing of the 3’ end of the miRNA 
relative to the target site, distance between the site and the start of the 
region (ORF/3’UTR), number of non-canonical sites, target site abun
dance in a reference set of mRNAs, and number of sites of RNA-binding 
proteins (RBPs). This family of features are the most diverse in terms of 
biological interpretation. For instance, features such as high AU content, 
short region length, and short distance to end of region, often indicate 
higher site accessibility resulting in a positive correlation with binding 
efficiency [11,30,43,44,60,65,67,71,72]. Conversely, other features 
such as non-canonical sites or RBPs, as well as target site abundance, 
may contribute to the destabilization of the mRNA, accelerating the 
degradation process, or act in competition to the examined canonical 
site [30,31,56,73,74]. 

Evolution features hold an important place, as miRNA target sites are 
often highly conserved [10,75]. Our model incorporates two conserva
tion scores: (a) phastCons and (b) phyloP, obtained from [76]. These 
scores, assigned per nucleotide, compare the Homo sapiens genome to 
either 99 or 19 vertebrates using Multiple Sequence Alignment (MSA) 
and a phylogenetic Hidden Markov Model (HMM). Additionally, we 
utilize the binomial probability of the site, based on the binomial dis
tribution, as well as the exact probability using the Spatt program [77]. 
We anticipate that highly conserved sites will facilitate more effective 
interactions with miRNAs, indicative of a selection for a more efficient 
interaction context. 

Translation features were incorporated both for a window around 
the site (applicable for ORF target sites) and the entire ORF. Included are 
the codon adaptation index (CAI), amino acid charge, typical decoding 
rate (TDR), tRNA adaptation index (tAI) as well as the presence of co
dons the code for Proline and Aspartic Acid as they been shown to halt 
the ribosome. These features may suggest ribosomal traversal affects the 
miRNA-mediated repressions efficiency [11,31,78]. Since ribosomal 
speed has been shown to correlate positively with binding efficiency 
[31], we expect that features contributing to more efficient ribosomal 
translation (such as CAI, TDR, tAI) will correlate positively with binding 
efficiency, while features slowing down the ribosome (such as amino 
acid charge, Proline+, Aspartic Acid+) will correlate negatively with 
binding efficiency. 

4.5. Integrative model training 

We used a linear regression model trained with Elastic-net regula
rization, which offers built-in feature selection and reduces training bias. 
For each type of miRNA binding site, we trained a separate computa
tional model categorized by region (ORF, 3’UTR) and site type (6mer, 
7mer-A1, 7mer-m8, 8mer), resulting in eight unique models per dataset. 
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Because Elastic-net regularization is not deterministic, we conducted 
multiple training iterations and selected the model that performed best 
on the test set. 

4.6. miBSIM training 

To incorporate binding site interaction into our model, we designed 
an additional scaling step that incorporates information about neigh
boring sites. We utilized the same training and test sets as the base 
model, but this time the training set was not filtered, containing multiple 
sites per (miRNA,mRNA) pair. We start by using our basic model to 
predict nominal repression of each site S. Next, we calculate a correction 
factor per site, and multiply it by the nominal site repression S essen
tially scaling it (Eq. 2): 

R = DSi ∗ S (2) 

The correction factor incorporates the nearest binding site of the 
same miRNA as described in Eq. 3: 

DS1 = 1 −
|S′|
c1

e−
D
c2 (3)  

Where S’ is the nearest site nominal repression prediction, D [nt] is the 
distance to the nearest site, c1 and c2 are optimized constants. This 
equation operates under the assumption that distant sites will not 
interact with each other, meaning that the predicted repression is solely 
affected by the features utilized in our basic model. Additionally, weak 
sites will have a low impact on nearby sites, resulting in minimal change 
to the nominal repression. To optimize our correction step, we used Hill 
Climbing to adjust the constants in Eq. 3. Since Hill Climbing is sus
ceptible to converging to a local maximum, we used 100 different uni
formly distributed starting values for the constants. Starting points were 
chosen proportionally to the values they scale, c1ϵ[− 1,1] 
c2ϵ[− 5000,5000], without constraining them through the algorithm’s 
iterations. Starting steps were 0.5500 for c1 and c2 respectively. 

In the effort of finding an equation best fitting target interaction, we 
repeated this process with several additional equations, all following the 
same concept of cooperativity relying on distance and the repression 
strength of other sites as described in Eqs. 4–10. First, we used the same 
concept as described in Eq. 3, but we considered all target sites upon the 
mRNA (Eqs. 4 and 5). Ideally, the constants here would vary for each 
site, perhaps affected by distance, or by repression strength. However, 
such an approach would significantly complicate the model and will 
require extensive computational resources. Therefore, we simplified this 
equation by using a single constant for each parameter, leaving two 
constant c1 and c2 to optimize. 

DS2 = 1 −
∑N

j

⃒
⃒
⃒S′

j

⃒
⃒
⃒

c1
e−

Dj
c2 (4)  

DS3 = 1 −
1
N

∑N

j

⃒
⃒
⃒S′

j

⃒
⃒
⃒

c1
e−

Dj
c2 (5)  

Where N is the total number of target site among this specific (miRNA, 
mRNA) pair. Then, we discarded the neighboring site’s repression, as 
perhaps it’s not the efficacy of the neighboring site that dominates 
interaction between sites but distance: 

DS4 = 1 − c1e−
D
c2 (6) 

Next, we suggest using the relative neighboring sites repression 
strength using the difference between them: 

DS5 = 1 −
|S′ − S|

c1
e−

D
c2 (7) 

Additionally, we suggested using a power formula replacing the 

exponential we used previously: 

DS6 = 1 −
|S′|
c1

D− c2 (8) 

Furthermore, we looked at the strongest potential sites and the mean 
route to that site: 

DS7 = 1 −
maxj|S′|

c1
e−

Dmax
c2 (9)  

Where, maxj|S′| is the highest repression among all neighboring sites 
(excluding current target site), Dmax is the average distance between all 
sites between the current and highest repressed site. 

Finally, we attempted using a more complex algorithm, dividing the 
formula into two correction factors determined by the distance between 
the sites: 

DS8 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
|S′|

c1
e−

D
c2 D < TH

1 −
|S′|

c3
e−

D
c4 TH ≤ D

(10)  

Where TH is a threshold distance. Here, 5 parameters were optimized, 
hence requiring more starting points in the attempt to account for the 
possibility that distance may change the interaction from a competition 
to synergy and vice versa. Although all formulas share similarities, each 
embodies a unique concept. They all aim to leverage the spatial distri
bution of miRNA binding sites to enhance the repression process, 
whether by boosting local affinity to the AGO-loaded miRNA or poten
tially facilitating the transportation of miRNAs from a distant location to 
a site with greater repression potential. Consequently, we trained mul
tiple models, each utilizing a different correction factor, to determine 
the best-performing one. 

4.7. Hill climbing algorithm 

Starting at a given point 
(

c(0)1 , c(0)2

)
and a given performance 

r(0) (the Pearson r correlation of the current predicted repression and 
the measured repression of the training set), we calculate the perfor
mance of c(0)1 ± step. If the performance improved- continue to the next 
point, if not- reduce step size by half and repeat. This is done in iterations 
until no improvements have been made for more than 10 iterations. 
Since here we need to optimize in 2 dimensions, each time we have 
seven points to investigate to find the optimal constants. 

4.8. Performance assessment 

The performances of miRNA-mediated repression models were 
assessed using Pearson correlation, comparing the predicted miRNA- 
mRNA pair log(fold change) to the transfected miRNAs measured log 
(fold change). 

Since the integrative model incorporates feature selection and is 
highly dependent on the training set, we performed a 100-fold cross- 
validation. Cross-validation is asymptotically identical to Akaike infor
mation criterion (AIC) and can demonstrate that there is no overfitting. 
All datasets were randomly partitioned into two disjoint sets: a training 
set, which contained 80% of the mRNAs and miRNAs, and a test set, 
which comprised 20%. This partitioning process was repeated 100 times 
to perform cross-validation. Consequently, each dataset consisted of 100 
different subsets of train-test pairs, allowing for a robust evaluation of 
model performance and feature selection assessment that is not due to 
overfitting. 

It is important to note that although other measurements such as root 
mean square error are commonly used to evaluate linear regression 
models, assessing the biological relevance of a predictive model, 
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specifically for miRNA models, traditionally involves using the Pearson 
coefficient and cross-validation on a set containing no overlap with the 
training data. Additionally, we expect other measurements to yield 
similar results, since the sample data is large enough to properly use 
cross-validation. More importantly, the main models mentioned here
—Bergman et al., TargetScan, Biochemical+ , miRmap, and PUMA—all 
evaluate their performances using Pearson correlation [27,30–31,37, 
46]. Therefore, following their lead, we chose to use these measures, 
which allows for a direct comparison to previous publications. 
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