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ABSTRACT

The toxic effects of compounds on environment, hu-
mans, and other organisms have been a major fo-
cus of many research areas, including drug discov-
ery and ecological research. Identifying the potential
toxicity in the early stage of compound/drug discov-
ery is critical. The rapid development of computa-
tional methods for evaluating various toxicity cat-
egories has increased the need for comprehensive
and system-level collection of toxicological data, as-
sociated attributes, and benchmarks. To contribute
toward this goal, we proposed TOXRIC (https://toxric.
bioinforai.tech/), a database with comprehensive tox-
icological data, standardized attribute data, practical
benchmarks, informative visualization of molecular
representations, and an intuitive function interface.
The data stored in TOXRIC contains 113 372 com-
pounds, 13 toxicity categories, 1474 toxicity end-
points covering in vivo/in vitro endpoints and 39
feature types, covering structural, target, transcrip-
tome, metabolic data, and other descriptors. All the
curated datasets of endpoints and features can be
retrieved, downloaded and directly used as output
or input to Machine Learning (ML)-based prediction
models. In addition to serving as a data reposi-
tory, TOXRIC also provides visualization of bench-
marks and molecular representations for all end-
point datasets. Based on these results, researchers
can better understand and select optimal feature

types, molecular representations, and baseline algo-
rithms for each endpoint prediction task. We believe
that the rich information on compound toxicology,
ML-ready datasets, benchmarks and molecular rep-
resentation distribution can greatly facilitate toxico-
logical investigations, interpretation of toxicological
mechanisms, compound/drug discovery and the de-
velopment of computational methods.
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INTRODUCTION

Identifying the toxicity of compounds is necessary to ex-
plore their harmful effects on humans, animals, plants, and
the environment (1). The toxic effects are classified into var-
ious toxicity categories, including carcinogenicity, hepato-
toxicity, ecotoxicity, irritation and corrosion. The toxicity
evaluation of compounds plays an important role in many
areas of research. For example, during drug discovery and
development, unexpected toxicities are the most significant
reasons for hindering drug candidates from reaching the
market (2–4). Many marketed drugs have even been with-
drawn due to toxicity concerns. Potential toxicities should
be extensively evaluated in the early stage of drug develop-
ment (4). In ecotoxicity testing, the toxic effect of a com-
pound is measured on both environment and organisms,
such as fish, insects, microorganisms, wildlife, and plants
(5,6). Elucidating the potential ecotoxicity in exploration of
materials is critical.

In order to identify the toxicities of compounds, many
evaluation approaches have been developed, including con-
ventional in vivo, in vitro, and computational methods. Due
to the advantages of low cost, fast speed, and high ac-
curacy, computational methods based on a large amount
of toxicological data have been widely explored, including
rule-based models (7), read-across (8), QSAR (Quantita-
tive structure-activity relationship) (9) and Machine Learn-
ing (ML)-based methods (1,10). More importantly, toxicity
evaluation results can be presented before the synthesis of
compounds with computational methods (4,11).

However, the major challenge in developing computa-
tional methods is the low accessibility of sufficient, reliable,
and standardized toxicological and related attribute data
(3,4). Despite an abundance of online databases providing
access to large amounts of toxicology data (12–16), there is
an increasing demand for high-quality and ML-ready toxi-
cology, attribute datasets and benchmarks. We classified the
existing online toxicological databases into four categories,
toxicity category-centric, toxic feature-centric, compound-
centric and ML task-centric. The toxicity category-centric
and toxic feature-centric databases focus on specific toxic-
ity categories/endpoints or toxic-related feature data (tox-
icogenomic data, etc.). The compound-centric databases
provide multiple toxicological information, while most of
them serve only to retrieve multiple toxicities and chemi-
cal information of compounds, or the downloadable toxic-
ity datasets are not curated in ML-ready format. For toxic-
ity evaluation, it is necessary to integrate and curate data of
multiple toxicity categories and feature spaces. In addition,
depending on different toxicity categories, different compu-
tational methods may apply. Methods applicable to certain
types of toxicity endpoints may not work properly (or not
work at all) for others (1). The benchmarks also have a crit-
ical role in facilitating progress in ML methods. According
to the benchmark results, researchers can select an appro-
priate feature type and baseline model for different predic-
tion task. There have been two ML task-centric databases
that provide benchmarks for ML, Therapeutics Data Com-
mons (TDC) (17) and MoleculeNet (18) databases, which
are platforms to provide datasets, ML tasks, benchmarks,
and other information for various fields of study, such as

drug combination and biophysical-related studies. Neither
is a database directly focused on toxicology, nor does it
provide data retrieval. Thus, there is an urgent need for
a database to retrieve comprehensive toxicology, attribute
data and system-level benchmarks (19–21).

To address this issue, we propose TOXRIC (TOXi-
cology Resources for Intelligent Computation) database
(https://toxric.bioinforai.tech/), which aims to collect, cu-
rate, and disseminate comprehensive, reliable, and stan-
dardized datasets of toxicity categories and feature types.
The data stored in TOXRIC contains 113,372 compounds,
13 toxicity categories, 1,474 toxicity endpoints covering in
vivo/in vitro endpoints, 6 feature spaces and 39 feature types,
covering structural, target, transcriptome, metabolic data,
and other descriptors. The toxicity values and features of
each compound can be quickly retrieved and downloaded.
All the curated datasets of endpoint and feature type can
be downloaded and used directly as output or input to ML
models for toxicity prediction. TOXRIC also provides mul-
tiple benchmark results and spatial distribution of molecu-
lar representations for all toxicity endpoints. Based on these
visualization results, researchers can better understand and
select appropriate feature types, molecular representations,
and baseline algorithms for each toxicity endpoint predic-
tion task. TOXRIC offers an effective and user-friendly web
interface to take full advantages of the wealthy data and
available information. The detailed description of datasets,
rapid search/batch search of toxicological data, download
of the information on individual compound or datasets, vi-
sualization of benchmark results and molecular representa-
tions are freely available to all users through the TOXRIC
web.

MATERIALS AND METHODS

Data collection and curation

TOXRIC provides toxicological data, feature, and chemi-
cal data for each compound. The chemical data include six
commonly used identifier types and several physicochemi-
cal properties. Toxicological data provide toxicity values on
multiple toxicity endpoints, which can be used as the label
data for ML models. The feature data provide representa-
tions of compounds, which can be taken as input to ML
models.

Curation process of toxicological and chemical data.
TOXRIC collects four toxicology groups, 13 toxicity cat-
egories and 1474 endpoint datasets across >15 species.
The four groups include toxic effect, target organ toxi-
cology, applied toxicology, and other toxicology datasets.
According to the groups, relevant literatures and publicly
available databases are retrieved. The main sources include
ToxCast/Tox21 (22,23), LTKB (24), DILIrank (16), Liver-
tox (25), ChemIDplus (26) database, and studies by Jain et
al. (10), Wu et al. (3), Jiang et al. (27), etc. All the sources
are commonly used for toxicity prediction (28–33). In addi-
tion, the 13 categories contain both in vitro and in vivo toxic-
ity endpoints. Among them, Acute Toxicity and Ecotoxicity
contain the in vivo endpoints across different species under
specific exposure times and doses. Hepatotoxicity, Develop-
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mental and Reproductive Toxicity, Carcinogenicity, Respi-
ratory Toxicity, and Clinical Toxicity are in vivo endpoints
without specific exposure conditions. ToxCast&Tox21 As-
say, CYP450, Cardiotoxicity and Endocrine Disruption are
based on in vitro cytotoxicity assays under specific exposure
conditions (34).

The curation process of toxicology data consists of three
parts: compound screening, data source integration, and
unit standardization. First, the compounds of all data
sources are extracted, which is usually represented by dif-
ferent identifiers. The identifiers are matched to PubChem
CID and Canonical SMILES. Duplicate compounds are re-
moved according to Canonical SMILES. Then, salts and
solvents are removed, followed by counterions, large or-
ganic compounds (Da ≥ 2000), mixtures, and inorganic
compounds. This is implemented in accordance with a pro-
tocol previously developed by Jain et al. (10) and Jiang et al.
(27). To distinguish the salts, compounds containing metal
atoms and involved in the USAN Council’s list of phar-
macological salts (https://www.ama-assn.org/system/files/
2019-04/radicals-and-anions-list.pdf) are removed, follow-
ing the protocol developed by Bento et al. (35). Next, a
unique identifier, TAID, is assigned for each compound in
TOXRIC. Relevant chemical information of compounds
is integrated into the database. In addition, the endpoint
datasets with <10 samples are removed.

Second, in order to avoid compatibility issue, the toxic-
ity values for all endpoints except hepatotoxicity are col-
lected from a single reliable source. Hepatotoxicity induced
by compounds is a significant problem in toxicology. To ex-
pand the amount of hepatotoxicity data, we collect toxi-
city values from seven sources, including LTKB database,
DILIrank database, Livertox database, and four literatures
(28,36–38). For compounds with inconsistent toxicity val-
ues from multiple sources, the true result can only be de-
termined when more than 80% of the sources belong to
the same toxicity value. Otherwise, the toxicity of the com-
pound is considered ambiguous, and the compound will be
removed.

Third, the datasets provided in TOXRIC include classi-
fication and regression datasets. Toxicity values in classifi-
cation datasets are binary values of 0 or 1 with no units,
indicating toxic or non-toxic class. Toxicity values in regres-
sion datasets (Acute Toxicity and Ecotoxicity) are quan-
titative results, containing LD50, LDLo, TDLo, LC50,
etc. Datasets from different sources use different units,
including (mg/kg), (gm/kg), (ug/kg), (ng/kg), (uL/kg),
(mL/kg) and (mg/L). The units of the endpoints tested in
some typical species are listed in Supplementary Table S1.
We standardized the units in two steps. First, all the units
are converted to (mg/kg) for Acute Toxicity or (mg/L) for
Ecotoxicity to get version-1 of both datasets. The curated
data of Ecotoxicity is in (mg/L) unit. Then, the formula for
converting other units to (mg/kg) is as follows.

1 (mg/kg) = 10−3 (g/kg) = 106 (ug/kg)

= 109 (ng/kg) (1)

1 (L/kg) = 103 (mL/kg) = 106 (uL/kg) (2)

TV (mg/kg) = VC (L/kg)
MV

× MW × 103 (3)

The units of (gm/kg), (ug/kg) and (ng/kg) are converted
to (mg/kg) through Eq. (1). The units of (uL/kg) and
(mL/kg) are converted to (L/kg) through Eq. (2), and then
(L/kg) is convert to (mg/kg) through Eq. (3). In Eq. (3),
TV stands for toxicity value, VC stands for volume con-
centration, MV stands for molar volume, MW stands for
molecular weight. MV and MW of compounds are ob-
tained from PubChem using the Python PubChemPy pack-
age (https://pubchempy.readthedocs.io/en/latest/). Second,
to facilitate the development of ML prediction models, the
dimensionless values are introduced. The units are stan-
dardized into (−log(mol/kg)) or (−log(mg/L)) to get the di-
mensionless values (32). Then the version-2 of the datasets
with dimensionless values can be obtained. On TOXRIC
website, version-1 of regression datasets with toxicity val-
ues in (mg/kg) or (mg/L) unit is provided for retrieval, and
both version-1 and version-2 are available for download.

Curation process of feature data. Multiple feature types
of these compounds are computed and curated, includ-
ing seven molecular fingerprints, target protein, three tran-
scriptome profiles, metabolic reaction, two categories of
drugs, and 25 descriptors collected from the Chemical
Checker (CC) database (39). Seven common molecular fin-
gerprints are computed by RDKit to represent the struc-
ture of compounds. Target proteins of compounds are col-
lected from DrugBank (40) and BindingDB (41) database
in text format. Category information are collected from
DrugBank database. The 328 192 reaction equations of
9598 compounds are obtained from NICEdrug.ch (42), a
database for systems-level analysis of drug metabolism. The
InchIKey identifier is used to match the compounds be-
tween TOXRIC and NICEdrug.ch.

The transcriptome profiles are collected from three data
sources, LINCS L1000 (43), Open TG-GATEs (44) and
DrugMatrix (45) databases. Data from the LINCS L1000
database contains the expression levels of 978 landmark
genes under compound perturbations (not covering the
complete transcriptome). In LINCS database, the expres-
sion profiles are measured by the L1000 method, which con-
tains only 1058 probes for 978 landmark transcripts and 80
control transcripts. The remainder of the transcriptome is
inferred using the landmark transcript measurements, and
81% of the inference is accurate according to the study by
Subramanian et al (43). Level 5 data is obtained from the
LINCS L1000 database, including the gene expression with
multiple doses and times. A unique transcriptional profile
of each compound is obtained using the moderated z-score
(MODZ) approach, and the z-scores are weighted and aver-
aged according to Spearman correlations. Transcriptional
profiles of compounds in primary human hepatocytes (in
vitro) and rat kidney and liver organs (in vivo) are collected
and curated from the Open TG-Gates database. DrugMa-
trix (45,46) is produced by the U.S. National Toxicology
Program, containing transcriptomic profiles of more than
200 compounds tested in vivo in rat tissues such as liver and
125 compounds in the in vitro rat hepatocytes. The microar-
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ray data is obtained from GEO. In the microarray data, the
gene symbols are converted to EntrezID through the an-
notation file, and the original probes are batch normalized
by RMA using R package affy (47). The expression ma-
trix is obtained by averaging the duplicate probe and dupli-
cate gene. The missing values are filled using interpolation.
Differential expression results are then calculated. Finally,
data of different doses and exposure times are weighted av-
eraged.

In addition, 25 features are collected from CC database
(39). Different from other original features, the feature vec-
tors provided by CC are 128-dimensional embedding pro-
cessed by the node2vec algorithm. Among the CC descrip-
tors, the 2D fingerprint is involved, which is different from
the seven fingerprints provided by TOXRIC. The latter is
the original feature of molecular structure, and each bit rep-
resents the presence or absence of a particular substruc-
ture. In contrast, the CC descriptors provide feature embed-
ding, which transform features from the original space into
a new low-dimensional space. Every dimension has no ac-
tual meaning. And the missing values of the original feature
are filled by the similarity principle.

Benchmark construction

TOXRIC provides ML tasks and benchmarks for all the
endpoint datasets. The ML tasks include classification and
regression tasks. Tested on these tasks, TOXRIC provides
two benchmarks on 36 feature types and four typical ML
algorithms on all endpoint datasets.

The endpoint datasets can be used as label data for ML
models, while the feature datasets can be used as input. Four
typical ML algorithms widely used for toxicity prediction
are evaluated (48), including eXtreme Gradient Boosting
(XGB) (49), Random Forest (RF) (50), Support Vector Ma-
chine (SVM) (51) and Deep Neural Network (DNN) (10).
XGB and RF are two advanced ensemble learning algo-
rithms, which are representative of sequential ensemble and
parallel ensemble, respectively. Both algorithms have per-
formed well in small to medium datasets. SVM constructs
a hyperplane or a set of hyperplanes to classify data points
and is effective in high-dimensional spaces. DNNs consist
of several sequential hidden layers, and have been reported
to outperform most other ML methods in predicting molec-
ular properties in large-scale datasets. In contrast, in most
small or medium datasets, classical ML methods perform
better than DNN with less hyperparameter tuning (52). In
the benchmark construction of TOXRIC, XGB, RF and
SVM are implemented in scikit-learn or XGB python mod-
ule with the default configuration. DNN model is followed
by Jain et al (10).

To evaluate the performance of benchmarks, Root Mean
Squared Error (RMSE), R2 or F1 metrics are computed ac-
cording to five-fold cross-validation. The mean and stan-
dard deviation are reported. RMSE reflects the average er-
ror between the predicted values and the ground-truth la-
bels. Lower RMSE and higher R2 value represents higher
prediction performance in regression datasets. As most of
the endpoint datasets are imbalanced, F1 metric is chosen to

evaluate the performance in classification tasks. The higher
the F1 value, the higher the prediction performance.

TOXRIC provides two types of benchmarks. For the
benchmarks on feature types, 36 features are tested using
XGB algorithm. Among them, target proteins are encoded
as one-hot-encoded vectors. In the training datasets of dif-
ferent feature types, samples with missing features are re-
moved. And the endpoint datasets with the sample numbers
<10 are removed. For the benchmarks on different algo-
rithms, four algorithms with the same input are tested. Ac-
cording to the benchmark results of feature types, two fin-
gerprints (PubChem fingerprint and RDKit2D descriptor)
provided the highest average prediction performance. Tak-
ing the concatenation of these two types of fingerprints as
input data, the performance results of XGB, RF, SVM and
DNN algorithms are evaluated.

Molecular representation evaluation

TOXRIC visually shows the spatial distribution of multiple
molecular representations on the classification tasks. Repre-
sentations in multiple spaces are explored, including seven
original molecular fingerprints, target protein, three tran-
scriptome profiles and three ML-based feature embedding.
The ML-based feature embedding refer to the representa-
tions after representation learning or feature selection by
three ML models, i.e. XGB, RF, and DNN. The represen-
tation of XGB and RF model is based on feature selection.
The top 100 important features are extracted through fea-
ture importance values provided by scikit-learn library (53).
The DNN-based feature embedding is an internal represen-
tation extracted from the output of the last hidden layer of
the above trained DNN. The t-SNE (t-distributed stochas-
tic neighbor embedding) algorithm is applied to generate
and visualize the two-dimensional embeddings of the rep-
resentations. A scatter plot can intuitively show the cluster-
ing effect of each representation on the toxic or non-toxic
classes.

Online database implementation

TOXRIC is built with a separated frontend and backend
framework. The backend is implemented using the Spring-
boot framework, and the frontend uses VUE framework.
NGINX is used as a reverse proxy, enabling strong perfor-
mance at scale. All the data are stored and managed using
MySQL, and Elasticsearch is deployed as the search engine.
Elasticsearch is a distributed, highly scalable, high real-time
search and analysis engine. It can quickly search and ana-
lyze large amounts of data due to the advantage of the hori-
zontal scalability. All the online data visualizations, includ-
ing the bar charts and pie charts of statistics and bench-
mark results, are supported by ECharts 4.0 (54), an open-
sourced JavaScript library for the rapid construction of in-
teractive visualization. Software development tools include
Python 3.8.5, PubChemPy 1.0.4, RDKit 2022.03.2, scikit-
learn 0.24.2 (53), xgboost 1.4.2, and tensorflow 2.5.0. The
website has been tested thoroughly to ensure functionality
across multiple operating systems and web browsers.
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DATABASE CONTENT AND USAGE

Data summary and analysis

The latest release of TOXRIC contains and catalogs toxi-
cology information on 113 372 compounds, 13 toxicity cat-
egories and 1474 toxicity endpoints of more than 15 species.
In addition, 39 feature types of these compounds are com-
puted or curated. Importantly, all the datasets stored in
TOXRIC are ML-ready and can be used directly as input
or output to ML models.

The 13 toxicity categories contain a different number of
endpoints (Figure 1A). ToxCast&Tox21 Assay contains the
largest number of endpoints (1381 endpoints), followed by
Acute Toxicity (59 endpoints) and Endocrine Disruption
(12 endpoints), while other toxicity categories contain less
than 5 endpoints. The number of compounds in each toxic-
ity category is counted (Figure 1B). Acute Toxicity contains
the largest number of compounds (79 725 compounds), ac-
counting for 59.68% of all compounds, followed by CYP450
(16 280 compounds), accounting for 12.19%. Developmen-
tal and Reproductive Toxicity contains the least number of
compounds (218 compounds), accounting for 0.16%. As
shown in Figure 1C, each compound has multiple end-
point results (label data). Statistical results show that 10
668 compounds have only one endpoint, while 345 com-
pounds have more than 180 endpoint results, which are
distributed in Acute Toxicity and ToxCast&Tox21 Assay
datasets.

In the feature space, TOXRIC collects and calculates
six feature spaces related to toxicity prediction, includ-
ing molecular fingerprint, target protein, category of drug,
transcriptome profile, metabolic reaction, and CC descrip-
tor. For compounds, structural data is always available,
while transcriptome data is scarce, covering only 2587 com-
pounds, as shown in Figure 1D. Features of molecular fin-
gerprints, transcriptome profiles, and CC descriptors are in
a common vector format. The length of the feature vec-
tors is between 128 (CC descriptor) and 15 406 (transcrip-
tome profile in Open TG-GATEs) components. Among
the features, RDKit2D descriptor, three transcriptome pro-
files and 25 CC descriptors consist of continuous values,
while other features are composed of binary discrete val-
ues. More statistical results are shown on Statistics page on
TOXRIC website.

Web design and interface

TOXRIC offers an effective and user-friendly web interface
to take full advantage of the wealthy data, benchmarks and
molecular representation distribution. Users can query the
toxicological data, features, and chemical information of
compounds in the search box of the Home page or on
the Search page. The Data Collection page provides an
overview of the toxicological and feature datasets, and the
Statistics page shows the statistical results of the datasets.
The Benchmark&Representation page displays visualiza-
tion of benchmarks and molecular representation distri-
bution. The Download page provides links to download
data of all the endpoint and feature type datasets. Users
can contribute their toxicology data on Contribute page. A
detailed step-by-step tutorial of TOXRIC (Supplementary

Data) and contact information is readily accessible on the
Contact&About page.

Data browsing. On the Home page, the number of datasets
of both toxicity categories and feature spaces is displayed in
the form of two-layer concentric circles. The inner layer and
outer layer represent toxicity category and feature space re-
spectively. When clicking on the dataset field, users will be
linked to the corresponding dataset description on the Data
Collection page.

On the Data Collection page, three types of entries
can be browsed, i.e. toxicity category, feature space and
external database links. The basic information of the
toxicity category dataset, toxicity endpoint, and fea-
ture type dataset is provided, including dataset descrip-
tion, number of compounds, sources and feature dimen-
sion. The interactive filter located on the left side of
the pages allows users to explore the endpoint and fea-
ture type datasets. Users can click the details button to
query the detailed information of the selected datasets.
On the detail information page, all compounds con-
tained in a dataset are listed in the form of a molecu-
lar graph (Figure 2A). Clicking on a specific compound
will open the compound information page that displays
affluent chemical, toxicological, and feature data of the
compound.

The Statistics page describes some statistical results of
datasets provided by TOXRIC in pie and bar charts, includ-
ing the number of compounds for the toxicity categories and
feature datasets, the number of endpoints/types for toxic-
ity categories and feature spaces, and the number of com-
pounds with multiple labels and features.

Data retrieval. The toxicological information of com-
pounds can be quickly searched in the search box of the
Home page or on the Search page. The search box accepts
both complete or partial keywords of TAID, name, IUPAC
name, PubChem CID, SMILES, InChIKey and InChI iden-
tifiers. Fuzzy search is allowed. If the typed terms can match
multiple compound entities in the database, a list of suitable
suggestions will be provided. The query keyword is high-
lighted in red. In addition to searching for individual com-
pound, TOXRIC also provides a batch search for a list of
compounds on the Search page. After selecting an identi-
fier, users can enter a compound list or upload an EXCEL
or TXT file to query the information of the compounds.

The compound information page consists of three sec-
tions, i.e. chemical information, toxicity category, and fea-
ture space. The chemical information section provides seven
commonly used identifier types and physicochemical prop-
erties of compounds (Figure 2B). In the toxicity category
section, a list of toxicity values of 13 toxicity categories is
provided in tabular format (Figure 2C). Users can view the
toxicity values of various endpoints by selecting a toxicity
category. Below is a list of feature spaces (Figure 2D). The
targets, categories, and metabolic reactions of compounds
are listed in text format to be queried, while the feature vec-
tors of transcriptome profiles, molecular fingerprints, and
CC descriptors should be downloaded to use because the
length of the vectors is too long to display. Users can down-
load the toxicity endpoints or feature types of a compound
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Figure 1. The statistical results of data stored in TOXRIC. (A) The number of endpoints for toxicity categories. (B) The number of compounds for toxicity
categories. (C) The number of compounds with multiple toxicity endpoints. (D) The number of compounds for feature spaces. More statistical results are
shown on Statistics page on TOXRIC web.

by clicking on the download button in the upper-right cor-
ner. Below the feature list, the top 10 GOBP (Gene Ontol-
ogy Biological Process) and KEGG pathway enrichment re-
sults of compounds’ target proteins are displayed in a bub-
ble plot (Figure 2E).

Benchmark and representation distribution display. The
Benchmark&Representation page displays visualization of
two types of benchmarks and a molecular representation
distribution. On the Benchmarks for Feature Types page,
the bar charts intuitively show the predictive effect of 36 fea-
ture types on all toxicity endpoints (Figure 2F). The feature
types include seven molecular fingerprints, a target, three
transcriptome profiles, and 25 CC descriptors. The mean
and standard deviation are showed when the mouse is sus-
pended on the bar. In classification datasets, F1 metric is
used to evaluate the performance of features. For regres-
sion datasets (Acute Toxicity and Ecotoxicity), users can se-
lect RMSE or R2 metric to view the results by clicking the
buttons above the bar chart. Lower RMSE value or higher
R2/F1 value represent higher prediction performance. It
should be noted that if the value of metric is 0, it represents
the number of samples with the feature type at the endpoint
dataset is <10 and no benchmark experiment is performed.
Click on a bar or the title of an endpoint, the correspond-
ing feature or endpoint dataset on the Download page will
open in a new tab. In addition, users can enter the keywords
of required endpoint and feature in the search box at the top
right corner to search.

The Benchmarks for Algorithms page shows the bench-
mark results of four typical algorithms on all toxicity end-
points, i.e. XGB, RF, SVM, and DNN (Figure 2G). Each
picture shows 10 endpoints, slide the mouse on the bar chart
and drag the scroll bar below the chart to view the results of
10 endpoints. The mean and standard deviation are shown
when the mouse is suspended on the bar.

The T-SNE Embedding of Molecular Representations
page shows the clustering effects of multiple representations
in scatter plots on the classification endpoint datasets (Fig-
ure 2H). The representations include 11 original features
and three ML-based representations. The original features
are seven molecular fingerprints, a target, and three tran-
scriptome profiles. The ML-based representations refer to
vectors after representation learning or feature selection by
three typical ML models, i.e. DNN, RF, and XGB.

Downloads. All toxicological and feature data can be
downloaded from the website without login or registration.
Datasets of different endpoints and feature types can be
downloaded separately.

Contribute. In order for the TOXRIC to continue to grow
and expand, we rely on the community to help us through
contributions. Users can contribute toxicology data to
TOXRIC by uploading data in the contribute box on Con-
tribute page or contacting us.
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Figure 2. The web interface of TOXRIC. (A) The details page of a queried endpoint dataset (mouse intraperitoneal LD50, Acute Toxicity category).
(B) Basic chemical information of a queried compound (menadione, TOX-672). (C) The list of toxicity values (Ecotoxicity category) with the queried
compound. (D) The feature list (metabolic reactions) and (E) targets’ enrichment results of the queried compound. Visualization of the benchmarks for
(F) feature types and (G) algorithms on the queried endpoint. (H) Visualization of two representations on CYP1A2 endpoint, i.e. ECFP6 fingerprint,
DNN-based embedding.
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CASE STUDY

Example application

This section describes how to use TOXRIC for toxicity
prediction using the mouse intraperitoneal LD50 dataset
(Acute Toxicity category) as an example (Figure 3). First,
this endpoint dataset can be downloaded on the Download
page as the label data (Figure 3A). By searching the bench-
marks of feature types on the Benchmark&Representation
page, it is found that the MACCS molecular fingerprint
achieves the best performance (RMSE metric) on this end-
point (Figure 3B). Then, the MACCS fingerprint dataset
can be downloaded as the input feature (Figure 3C). The
input and output datasets are ready for toxicity prediction.
By searching the benchmarks of algorithms, the RF algo-
rithm achieves the best performance (RMSE metric) on this
endpoint (Figure 3D). Therefore, in this dataset, RF can be
considered as the baseline for the development of new ML
algorithms. A step-by-step example application for toxic-
ity prediction is provided on Supplementary data and Con-
tact&About page of TOXRIC website. In addition, consid-
ering potential relationships between different toxicity end-
points, the TOXRIC database can be fully utilized to ex-
plore multitask learning (MTL) and transfer learning (TL)
methods (3).

Analysis of benchmark results

For computational prediction, it is of vital importance to se-
lect an appropriate feature type and baseline model accord-
ing to the benchmark results. TOXRIC provides two types
of benchmarks for all endpoints, i.e. benchmarks for feature
types and typical algorithms. Taking the regression dataset
as an example, we compare and analyze the performance of
different feature types. We average the RMSE values on all
regression datasets for each feature type. Molecular finger-
prints show significant performance advantages over other
features. Among them, RDKit2D descriptor has the best
performance (0.8596), and ECFP6 fingerprint has the worst
performance (0.9104). However, in the mammal (species un-
specified) subcutaneous LD50 dataset, ECFP6 has the best
performance, which is 9.55% higher than RDKit2D. It is
observed that there is no optimal feature type that performs
best in all endpoints. In most cases, the RDKit2D descrip-
tor and PubChem fingerprint can achieve better perfor-
mance. Researchers should select appropriate feature types
for different endpoints according to the benchmark results.

Next, the benchmark results of the four algorithms
(XGB, RF, SVM, DNN) are analyzed. In terms of the av-
erage F1 and RMSE values for all datasets, XGB achieves
the best average F1 value and RF achieves the best aver-
age RMSE value. SVM has the lowest average F1 value and
DNN get the worst regression performance. But in some
specific datasets, SVM or DNN can get the best perfor-
mance. For example, in the Endocrine Disruption category,
the F1 value of DNN in the NA-AR endpoint is 0.529,
which is 8.78% worse than the RF (0.616). While in the SR-
ARE endpoint, the performance of DNN is the best (0.514),
outperforming RF by 9.60% (0.371). Thus, the optimal fea-
ture types or baseline models are different in different end-
points. Researchers should select appropriate feature type

or baseline model at each endpoint according to the bench-
marks provided by TOXRIC.

Benchmark results can also verify the quality of train-
ing dataset from an applied perspective. For example, we
average the performance results on seven molecular finger-
prints for each endpoint dataset. In classification datasets,
the average F1 values under two categories (Irritation and
Corrosion, Developmental and Reproductive Toxicity) ex-
ceeds 0.89, indicating the quality of training dataset. Except
for the ToxCast&Tox21 Assay, 21 of 30 endpoints have av-
erage F1 values over 0.5. In ToxCast&Tox21 Assay, 1110
of 1381 endpoints have average F1 values <0.5, which may
be due to the small-sized and class-imbalanced characteris-
tics. There are 514 endpoints with an imbalance rate >9:1,
and even 148 endpoints with an imbalance rate >50:1. The
datasets with poor benchmark results are also provided in
TOXRIC. This may motivate researchers to develop new
prediction methods to solve the problem of small-sized and
class-imbalanced datasets, which are significant issues in
computational toxicology communities.

Characteristics of molecular representations

In addition to the two types of benchmarks, TOXRIC also
displays the spatial distribution of multiple molecular rep-
resentations on the Benchmark&Representation page. The
features of structural, target, transcriptome profile and ML-
based representation are projected to two dimensions in
scatter plots by the t-SNE algorithm. Compared to the rep-
resentations trained by ML models, the original features
can hardly show the clustering effect on all the classifica-
tion tasks. There is a lot of overlap between clusters, indi-
cating that the features cannot well distinguish the classes.
However, for the ML-based feature spaces especially DNN-
based embedding, there is a clear separation of the two
classes in all tasks. After mapping the original features to
the new feature embedding space, the DNN can better learn
the rules in the input data. In addition, the features of target
and transcriptome profiles show completely different distri-
butions from the molecular fingerprints, which may provide
new insights into the representations of compounds for re-
lated studies.

Application scenarios

Application scenarios of TOXRIC includes:

(i) Individual compound searches and downloads
are available for toxicological investigations, in-
terpretation of toxicological mechanisms, and
compound/drug discovery. The toxicity values, chem-
ical information, transcriptional profiles, metabolic
reaction equations, targets and enrichment results of
each compound can be queried through the TOXRIC
website. All the related toxicological and feature data
for an individual compound can be downloaded on
the compound page.

(ii) To help researches better understand the represen-
tation of compounds in different feature spaces,
TOXRIC provides visualization of molecular repre-
sentation distribution of multiple feature types, in-
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can be clicked to download the endpoint dataset. (B) The Benchmarks for Feature Types page. (C) The Download page of feature dataset. The download
button can be clicked to download the endpoint dataset. (D) The Benchmarks for Algorithms page.
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cluding original structure, target, transcriptome fea-
ture and embedding after representation learning of
ML models. The clustering effects of molecular repre-
sentations can help researchers intuitively understand
and interpret the mechanisms of toxicities in different
spaces.

(iii) For development of computational methods in toxic-
ity prediction, TOXRIC provides comprehensive ML-
ready datasets and benchmarks. The ML-ready end-
point and feature type datasets can be downloaded
separately on the Download page and can be used
directly as output or input to ML models for toxic-
ity prediction. The two types of benchmarks can help
researchers select appropriate feature types and base-
line algorithms for each toxicity endpoint prediction
task.

COMPARISON WITH EXISTING DATABASES

There is an abundance of online databases providing
access to large amounts of toxicology data. For ex-
ample, researchers within U.S. Environmental Protection
Agency (EPA)’s National Center for Computational Tox-
icology (NCCT) have developed several research programs,
databases and web-based interfaces (dashboards), includ-
ing the ToxCast program and the affiliated Tox21 program
(22,23), Aggregated Computational Toxicology Online Re-
source (ACToR) (55), DSSTox database (56) and Comp-
Tox Chemistry Dashboard (Dashboard) (57,58), which pro-
vides comprehensive in vitro bioassay data and other chem-
ical information of compounds. We classified the existing
online toxicological databases into four categories, toxicity
category-centric, toxic feature-centric, compound-centric,
and ML task-centric. Some statistics and comparisons of
the databases are listed in Table 1.

Toxicity category-centric databases

Databases in this category target specific toxicity categories
or testing programs of compounds. For instance, EPA’s Tox-
Cast and Tox21 program are engaged in the generation and
analysis of in vitro bioassay data for thousands of chemi-
cals evaluated in high-throughput (HTS) assays. CEBS (13)
collects animal public environmental health data primarily
from National Toxicology Program (NTP) testing program.
EnviroTox (59) aims at ecotoxicity. DILIrank database (16)
focuses on data of drug-induced liver toxicity. The above
databases focus on a single toxicity category, and the data
available in most of these databases are integrated into
TOXRIC.

In addition, The Integrated Chemical Environment
(ICE) database (60) has collected multiple toxicity cate-
gories from multiple sources, including ToxCast data, acute
toxicity, endocrine, developmental and reproductive toxic-
ity. The functions of data retrieval and dataset download are
provided. Whereas the endpoints of the collected datasets
are not further processed and curated into ML-ready for-
mat. TOXRIC not only curated more endpoints into a stan-
dardized format, but also provides multiple curated feature
types and benchmark results of each endpoint dataset.

Toxic feature-centric databases

The toxic feature-centric databases provide toxic-related
omics or other feature data, such as ToxicoDB (67), Drug-
Matrix (45), and Open TG-GATEs databases (61). All of
them are toxicogenomic database that stores gene expres-
sion profiles derived from in vivo, in vitro exposure to com-
pounds. DrugMatrix contains gene expression data of >200
compounds tested in the in vivo rat tissues (e.g. liver), and
125 compounds tested in the in vitro rat hepatocytes. Open
TG-GATEs stores gene expression profiles derived from in
vivo (rat) and in vitro (primary rat hepatocytes, primary
human hepatocytes) exposure to 170 compounds at multi-
ple dosages and time points. Data in ToxicoDB is collected
from the above two databases, which are also collected into
the feature space of TOXRIC. Besides the transcriptome
profiles, TOXRIC provides 39 feature types covering struc-
tural, target, metabolic data and other descriptors.

Compound-centric databases

The compound-centric databases provide comprehensive
chemical and toxicological information on compounds.
EPA’s DSSTox database (launched in 2004) and Dash-
board (launched in 2016) are used as integration plat-
forms that combined the ToxCast/Tox21 programs with
other research efforts. The EPA’s ACToR database con-
tains knowledge extracted from multiple collections and has
been retired now. The above EPA’s databases focus primar-
ily on data from in vitro bioassays. The most widely used
database, Dashboard, provides chemical/toxicology data
retrieval, and compound/assay dataset download. How-
ever, except for ToxCast/Tox21 assay, data on other toxi-
city categories is not organized into datasets for download.
For other compound-centric databases, T3DB database
(15) focuses on information of toxic exposome, includ-
ing detailed chemical and target information of tox-
ins. The eChemPortal database provides free access to
chemicals and associated properties, allowing searches by
compounds and Global Hazard Summary (GHS) clas-
sification. These databases serve only to retrieve multi-
ple toxicities and chemical information of compounds.
There is no curated endpoint dataset. Compared to these
databases, TOXRIC not only provides data retrieval of
compounds, but also provides the curated endpoint and fea-
ture type datasets that can be used directly in computational
methods.

In addition, there are some large chemically-indexed
databases, such as PubChem (62), ChEMBL (63), and
CTD (64), which are not focus on toxicology, but provide
toxicology-related information. However, the toxicological
data provided by them is not organized into dataset. Most
of the information provided for retrieval is the text con-
tent of literatures, and no qualitative or quantitative toxicity
value is provided.

ML task-centric databases

There are two ML task-centric databases, TDC (17) and
MoleculeNet (18), which are platforms to provide datasets,
ML tasks, benchmarks, and other information for various
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Table 1. Statistics and comparison between TOXRIC and existing toxicological databases

Statistics

Database Website Compounds
Toxicity

categories
Feature

types Benchmarks
Latest
update

TOXRIC http://toxric.bioinforai.tech/ 113 372 13 39
√

2022
Toxicity
category-centric

ToxCast (12) https://www.epa.gov/chemical-research/
exploring-toxcast-data-downloadable-
data

9511 1 / × 2022

CEBS (13) https://cebs.niehs.nih.gov/cebs/ >11 000 3 1 × 2017
DILIrank (16) https://www.fda.gov/science-research/

liver-toxicity-knowledge-base-ltkb/drug-
induced-liver-injury-rank-dilirank-
dataset

1036 1 / × 2022

Biosolids list (65) https://www.epa.gov/biosolids 726 1 / × 2022
RepDose (66) https://repdose.item.fraunhofer.de/ 650 1 1 ×
EnviroTox (59) https://envirotoxdatabase.org/ 4016 1 1 × 2021
ICE (60) https://ice.ntp.niehs.nih.gov/ / >5 / ×

Toxic
feature-centric

ToxicoDB (67) https://www.toxicodb.ca/ 286 3 1 × 2020

DrugMatrix (45) https://ntp.niehs.nih.gov/data/drugmatrix/ >600 / 1 × 2005
Open TG-GATEs
(61)

https:
//toxico.nibiohn.go.jp/english/index.html

170 / 1 × 2015

Compound-centric ACToR (68) https://actor.epa.gov/index.html >800 000 9 2 × Retired
CompTox
Chemicals
Dashboard (58)

https://www.epa.gov/chemical-research/
comptox-chemicals-dashboard

>760 000 4 / × 2022

T3DB (15) http://www.t3db.ca/ 3678 / 5 × 2010
SuperToxic (14) http://bioinformatics.charite.de/supertoxic

(does not respond now)
20 000 3 3 × 2008

CTD (64) http://ctdbase.org/about/ >16 300 1 5 × 2022
eNanoMapper(69) https://data.enanomapper.net/ >700 1 5 × 2022
SEURAT(70) http://www.seurat-1.eu/ 220 / / ×
eChemPortal https:

//www.echemportal.org/echemportal/
> 800 000 1 / × 2022

ML task-centric TDC (17) https://tdcommons.ai/ / 8 /
√

2021
MoleculeNet (18) https://moleculenet.org/ 18 120 3 1

√
2018

Note: The list of existing databases is referenced from the study by Lin et al. (71), Jeong et al. (48), Vo et al. (72) and the resources provided by American Society of Cellular and
Computational Toxicology (https://www.ascctox.org/resources).

fields of study, such as ADMET, drug combination, quan-
tum mechanical- and biophysical-related studies. Neither is
a database directly focused on toxicology, nor does it pro-
vide data retrieval. In TDC, the datasets need to be obtained
by calling the functions from Python code, and the bench-
marks need to be obtained after the training process. In
MoleculeNet, the benchmarks of four toxicology datasets
and eight algorithms are provided in bar charts. Neither is
a database provide benchmark for features and representa-
tion distribution. And the toxicology datasets are not cate-
gorized by toxicity categories. Compared to both databases,
TOXRIC focuses on toxicity studies, covering chemical in-
formation, more toxicity categories, and feature types of
compounds, which can be quickly retrieved on the web. The
benchmark results displayed on TOXRIC web are intuitive
and contain more feature types on >1000 endpoint datasets.

Taken together, TOXRIC covers a wider range of toxic-
ity categories and feature spaces. The toxicity values, chem-
ical information, transcriptional profiles, metabolic reac-
tion equations, targets, and enrichment results of each com-
pound can be retrieved through the TOXRIC website. The
endpoint and feature type datasets have been organized into
ML-ready format to be downloaded. The benchmarks for
feature types and algorithms can facilitate the development
of AI-based computational toxicology. The visualization of
molecular representation distributions can help researchers
better understand and interpret the mechanisms of toxici-
ties in different spaces.

CONCLUSION AND DISCUSSION

TOXRIC has five core functions, comprehensive data, ML-
ready downloadable datasets, practical benchmarks, infor-
mative visualization of molecular representations, and an
intuitive function interface. To accelerate the development
of toxicity evaluation and compound discovery, TOXRIC
provides comprehensive and standardized toxicological,
feature, and chemical data for toxicity retrieval. To bet-
ter utilize and understand the data, TOXRIC performs a
system-level analysis and displays informative visualization
of benchmarks and molecular representations on all the
toxicity endpoints. TOXRIC offers an effective and user-
friendly web interface to take full advantage of the wealthy
data, ML-ready datasets, benchmarks, and molecular rep-
resentation distribution. Users can retrieve the toxicologi-
cal information of compounds, browse the detailed infor-
mation of datasets, download the curated datasets, view the
results of benchmarks and molecular representation distri-
bution on TOXRIC web.

For data collection, TOXRIC has always been commit-
ted to implementing the FAIR principles (73) to enhance
the findability, accessibility, interoperability, and reusability
of its data. To be findable, all compounds in TOXRIC come
with a unique and persistent identifier, TAID, which is used
to link the toxicology and feature data of each compound.
TOXRIC is freely accessible for academics from a sta-
ble, permanent web address (https://toxric.bioinforai.tech/),

http://toxric.bioinforai.tech/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
https://cebs.niehs.nih.gov/cebs/
https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-rank-dilirank-dataset
https://www.epa.gov/biosolids
https://repdose.item.fraunhofer.de/
https://envirotoxdatabase.org/
https://ice.ntp.niehs.nih.gov/
https://www.toxicodb.ca/
https://ntp.niehs.nih.gov/data/drugmatrix/
https://toxico.nibiohn.go.jp/english/index.html
https://actor.epa.gov/index.html
https://www.epa.gov/chemical-research/comptox-chemicals-dashboard
http://www.t3db.ca/
http://bioinformatics.charite.de/supertoxic
http://ctdbase.org/about/
https://data.enanomapper.net/
http://www.seurat-1.eu/
https://www.echemportal.org/echemportal/
https://tdcommons.ai/
https://moleculenet.org/
https://www.ascctox.org/resources
https://toxric.bioinforai.tech/
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and does not require account creation or logon. TOXRIC
can also be dynamically queried through HTML direct
links. To be interoperable, TOXRIC incorporates identifiers
and physicochemical properties of compounds from Pub-
Chem, and provides external links to PubChem on com-
pound page. Users can click on the PubChem CID to link
to the corresponding compound page of PubChem web-
site. In addition, TOXRIC web provide links to all the re-
lated databases on the External Database Links page. To be
reusable, TOXRIC’s curation paradigms are fully described
in the manuscript. All datasets collected in the database
are described in detail on Data Collection page and can be
reused in downloadable files with machine-readable formats
(.csv) on Download page of the website.

The 1474 endpoint datasets stored in TOXRIC contain
in vivo and in vitro datasets. For the in vivo endpoints,
the ADME process of various pharmacokinetic effects can
be measured. However, live animal experiments are flawed
with ethical, economic, and scientific limitations. Com-
pared with in vivo endpoints, in vitro experiment has ad-
vantages in terms of economy, condition control and safety.
Computational methods can be used to relate in vitro to in
vivo endpoints, i.e. in vitro to in vivo extrapolation (IVIVE)
method (74). The IVIVE is often performed with a toxicoki-
netic (TK) or a physiologically pharmacokinetic (PBPK)
modeling-based reverse dosimetry, to estimate the in vivo
dose required to achieve an in vitro bioactive concentration
in the blood or target tissue (74–76). The bioactive concen-
tration includes point of departures (PODs), activity con-
centration causing 50% maximum activity (AC50), or low-
est effective concentration. In TOXRIC database, there are
a large amount of in vitro data stored in ToxCast&Tox21 As-
say, which uses HTS techniques to study the perturbations
provoked by chemicals to biochemical and biological path-
ways in isolated systems in vitro. Some IVIVE approaches
have been applied to translate in vitro bioactivity concen-
trations from the ToxCast&Tox21 data to the daily human
oral doses (i.e. human equivalent doses, HEDs) (75–78).

Several limitations in the TOXRIC should be elaborated.
First, TOXRIC simply provide both in vitro and in vivo
endpoints, without further distinguishing and linking the in
vitro and in vivo data. In vitro results do not necessary, nei-
ther always, correlate to in vivo. This is an issue that needs
to be taken care of whether using in vitro data for model
building, or using IVIVE methods to extrapolate in vitro
data into in vivo. Second, the data provided by TOXRIC
is still insufficient. There are still many resources involved
toxicology data, such as PubChem, ChEMBL and related
literatures. The NOAEL or LOAEL data should also be in-
tegrated into TOXRIC. For feature spaces, multi-omics in-
tegration will be a core content of TOXRC in the future.
Currently, there is only transcriptome data integrated in
TOXRIC, other omics data should be added. Third, some
datasets show poor performance in benchmarks may be due
to the characteristics such as small-sized samples and class
imbalance. Thus, more data should be collected in these
datasets. At the same time, these characteristics of datasets
should be further analyzed, which will motivate ML scien-
tists to develop new algorithms for this problem.

In the future, we plan to integrate more data from other
resources and literatures into TOXRIC, including more tox-

icity categories, toxicity values, compounds, multi-omics
and multi-views feature types. The data quality will be con-
trolled manually and the data management will follow the
FAIR principles. In addition, the detailed analysis of char-
acteristics of endpoint datasets will be added according to
benchmarks and representation distributions. More visual-
ization tools will be developed to display the characteristics
of datasets. Then researchers can develop better methods to
solve the problems of datasets.

TOXRIC will be continuously updated with new entries,
datasets, and benchmarks to facilitate the development of
compound discovery and toxicity prediction efforts of ML
scientists. We hope that TOXRIC can serve as a compre-
hensive resource for the toxicologists and a benchmark plat-
form for the computational toxicology community to drive
algorithmic and scientific advances.
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