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Abstract: The intestinal microbiota is important for the nutrient metabolism of fish and is significantly
influenced by the host’s diet. The effect of ryegrass and commercial diets on the intestinal microbiota
of grass carp was compared in this study. In comparison to ryegrass, artificial feed significantly
reduced the microbial diversity in the intestine, which was measured by a decrease in the observed
OTUs, ACE, Shannon, and the InvSimpson index. Although grass carp fed with ryegrass and artificial
feed shared a dominant phyla Firmicutes and Proteobacteria, the microbial composition was clearly
distinguishable between the two groups. In grass carp fed with ryegrass, Alphaproteobacteria,
Gammaproteobacteria, and Actinobacteria predominated, whereas Bacilli was significantly higher in
the artificial feed group due to an increase in Weissella and an unassigned Bacillales bacteria, as well
as a significant increase in a potential pathogen: Aeromonas australiensis. Grass carp fed with ryegrass
exhibited a more complex ecological network performed by the intestinal bacterial community, which
was dominated by cooperative interactions; this was also observed in grass carp fed with artificial
feed. Despite this, the increase in A. australiensis increased the competitive interaction within this
ecological network, which contributed to the vulnerable perturbation of the intestinal microbiota.
The alteration of the microbial composition through diet can further affect microbial function. The
intestinal microbial function in grass carp fed with ryegrass was rich in amino acids and exhibited
an increased energy metabolism in order to compensate for a low-nutrient diet intake, while the
artificial feed elevated the microbial lipid metabolism through the promotion of its synthesis in the
primary and secondary bile acids, together with a notable enhancement of fatty acid biosynthesis.
These results indicated that diet can affect the homeostasis of the intestinal microbiota by altering the
microbial composition and the interspecific interactions, whilst microbial function can respond to a
variation in diet.

Keywords: Ctenopharyngodon idella; ecological network; homeostasis; microbial function

1. Introduction

The intestine is the most important organ of digestion and absorption in fish, and
it is also a complex ecosystem as it harbors an extremely diverse and complex microbial
community [1–3]. It is widely acknowledged that the intestinal microbiota performs
critical functions for the host, such as the production of digestion-related enzymes, vitamin
synthesis, pathogen protection, and immune maturation [4–6]. The microbiota in the
intestine provides a large number of fermented metabolites for the host, particularly
herbivores [7–9]. The intestinal bacterial community is a complex micro-ecological system
that is significantly influenced by several factors, including the nutritional components
of the host’s food [6,10]. Since fishmeal is scarce, plant protein is frequently utilized
in aquafeed; however, this may lead to intestinal inflammation and microbial dysbiosis
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in fish [11–13]. The number of species, their abundance, and their intricate microbial
interactions play a critical role in the homeostasis of the intestinal microbiota [14]. The
microbial interactions in the intestine are widely acknowledged to be dynamic in order
to connect trillions of bacteria into a sophisticated ecological network [9,15,16]. Intestinal
microbiota includes more than 100 times as many genes as the host, enabling it to encode a
diverse range of enzymes with a variety of different metabolic capabilities [17]. Numerous
studies have shown that the intestinal microbiota can act as an additional metabolic organ,
contributing significantly to the host’s amino acid, glucose, energy, and lipid metabolism
by producing fermentation by-products [18–21].

The herbivorous grass carp (Ctenopharyngodon idella) is China’s most productive fresh-
water fish. Numerous studies have characterized the grass carp’s intestinal microbiota [22–25]
and cellulase-producing bacteria, which assists in the digestion of fish that are fed a high-
fiber diet [7,8,26]. However, the existing knowledge about the bacterial community in the
intestine is about the composition and function of microbial communities in grass carp;
however, little is known about species-species interactions within the bacterial community.
Our previous research looked at the microbiota in different parts of the intestine of grass
carp, and we discovered that intricate interspecific interactions could boost the efficiency
of the bacterial community fermentation [16]. It is widely acknowledged that the overuse
of plant protein can disturb the interspecific interactions and result in a disorder of the
intestinal bacterial community in fish.

Diets not only provide nutrients to fish and the intestinal microbiota, but they also
influence fish health by modulating the intestinal microbiome. The objective of this study
was to investigate the response of grass carp’s intestinal microbiota to ryegrass and a
commercial diet that is high in plant protein by evaluating the variation in composition,
interspecific interactions, and metabolic functions of the intestinal bacterial community.
Thus, the findings of this study may provide an in-depth understanding of the alteration of
intestinal microbiota in grass carp in response to dietary variations, providing a theoretical
basis for intervening in the intestinal microbiota to maintain grass carp health.

2. Materials and Methods
2.1. Sample Collection

The grass carp were raised in artificial ponds (area, 200 m2; depth mean, 1.5 m) in
the Institute of Special Aquaculture, Yichun, China. The grass carp, in two ponds, were
fed with ryegrass (GF group: 12.73% protein, 1.38% lipid, and 26.52% fiber of total dry
matter) and a commercial diet, provided by Tongwei Co., Ltd., Chendu, China (CF group:
30% protein (mainly plant protein from soybean meal, cottonseed meal, and rapeseed
meal), 5% lipid, and 10.13% fiber). The fish were fed to apparent satiation twice a day (8:30
and 16:00) for one month without antibiotics. Grass carp fed with ryegrass (n = 8, weight
mean, 316.45 ± 32.62 g) and a commercial diet (n = 8, weight mean, 357.81 ± 68.31 g) were
collected after 3 h of feeding in the morning. In each group, twelve fish in one pond were
chosen randomly from among more than 20 caught fish, and the other fish were returned.
Before dissection, the skin surface of the grass carp was sterilized with 70% ethanol to
reduce contamination, and then the digesta from the middle intestine was collected and
stored in sterile freezing tubes under −80 ◦C. The experimental protocols of grass carp
handling and sampling have been approved by the department of Laboratory Animal
Science, Nanchang University (Approval Number: NCU-208-2021).

2.2. Illumina Sequencing of Bacterial 16S rRNA Gene

PowerFecal™ DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) was
used for DNA extraction of digesta samples. Amplification of the 16S rRNA V3-V4 region
was performed as described previously with barcoded fusion primers of 341F and 805R [27].
High-throughput sequencing was performed using the Illumina HiSeq platform at Novogen
Co., Ltd., Beijing, China. All the sequencing data can be found in the Sequence Read Archive
(SRA) database at NCBI under accession number PRJNA880788.
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2.3. Bioinformatics and Statistical Analysis

The raw sequences were sorted into different samples according to the barcodes by
using the BIPES pipeline, followed by a quality-control step to remove any low-quality
amplicon sequences by VSEARCH [28]. The clean sequences were then clustered into
operational taxonomic units (OTUs) with a 99% sequence similarity and annotated using
the Ribosomal Database (rdp_16s_v16_sp). A total of 1,369,277 effective sequences and
1201 OTUs were generated from all samples. Alpha diversity and the relative abundance of
taxa analyses were calculated by R software v 4.1.3. The Wilcoxon test was used to test the
α-diversity index, and the relative abundance of taxa using R software. Treemap was used
to visualize the significantly abundant OTU’s, the annotated taxonomy, the P-value, and
the relative abundance, in which the size of the bubbles indicated the relative abundance of
the raw read counts [29]. Principal coordinates analysis (PCoA), based on the Bray–Curtis
dissimilarity analyses, were employed to visualize the bacterial community structure and
the differences in the bacterial community was calculated by Permutational analysis of
variance (PERMANOVA) based on the Bray–Curtis distance [30].

Using abundance profiles of the individual OTUs, a molecular ecological network
analysis was performed to evaluate bacterial species-to-species interactions within a com-
munity (http://ieg2.ou.edu/MENA (accessed on 15 July 2022)). A Random Matrix Theory
(RMT)-based approach was used for an ecological network construction and topological
role identification [31]. The network was visualized using Circos and Cytoscape 3.9.0.
Based on a modularity property, each network was separated into modules by the fast
greedy modularity optimization. According to values of within-module connectivity (Zi)
and among module connectivity (Pi), the topological roles of different nodes can be cate-
gorized into four types: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors (Zi ≤ 2.5, Pi > 0.62),
module hubs (Zi > 2.5, Pi ≤ 0.62) and network hubs (Zi > 2.5, Pi > 0.62).

Functional gene and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were predicted using PICRUSt2 software [32] against a Greengenes reference database
(Greengenes 13.5). The non-metric multidimensional scaling (NMDS) and analysis of
similarity (ANOSIM) were used to evaluate the overall differences in predicted bacte-
rial functional compositions based on the Bray–Curtis distance at KEGG orthology (KO)
level [33]. A two-sided Welch’s t test was used to identify significant different metabolic
pathways in the two groups by software STAMP, with p < 0.05 considered significant.

3. Results
3.1. Diversity and Composition of the Bacterial Community

The bacterial community of grass carp in the GF group displayed a significantly higher
value in the number of observed OTUs, ACE, Shannon, and InvSimpson index when
compared to grass carp fed with the commercial diet (p < 0.05), whereas no significant
differences were observed in chao1 (Table 1). The most observed phylum of the bacterial
communities included Firmicutes (GF: 20.49%; CF: 61.59%), Proteobacteria (GF: 56.59%; CF:
25.42%), Actinobacteria (GF: 10.77%; CF: 2.97%), Fusobacteria (GF: 0.24%; CF: 5.62%), and
Chloroflexi (GF: 3.93%; CF: 1.02%) were detected in the mid-intestine (Figure 1 and Table S1).
Specifically, Alphaproteobacteria (43.84%), Bacilli (16.11%), Actinobacteria (10.77%), and
Gammaproteobacteria (9.51%) took dominance in the middle intestine of grass carp fed with
ryegrass, while the grass carp in the CF group were enriched with classes of Bacilli (55.58%),
Alphaproteobacteria (16.63%), Gammaproteobacteria (7.51%), Fusobacteria (5.62%), and
Clostridia (5.24%) in the intestine (Figure 2 and Table S2).

Table 1. Alpha diversity estimates of the bacterial communities (mean ± S.E.; n = 8) 1.

Groups Observed OTUs Chao1 ACE Shannon InvSimpson

GF 518.88 ± 21.96 b 618.72 ± 16.8 605.7 ± 17.79 b 3.78 ± 0.23 b 16.8 ± 3.49 b

CF 304.13 ± 41.13 a 351.08 ± 51.7 344.53 ± 50.91 a 2.76 ± 0.2 a 5.86 ± 1.35 a

1 Values in the same row with the different superscript are significantly different (p < 0.05).

http://ieg2.ou.edu/MENA
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As shown in Figure 3, grass carp in the GF group were significantly rich in Rhizobiales
(mainly Rhizobiaceae, Rhizobiaceae, and Methylobacteriaceae), Microbacteriaceae from
Actinobacteria, and Bacillaceae_1 from Bacilli (p < 0.05), whereas Weissella from Lacto-
bacillales (Bacilli), Cetobacterium_somerae from Fusobacteriia, Aeromonas_australiensis from
Gammaproteobacteria, and unassigned bacteria from Bacillales (Bacilli) dominated the
bacterial community of grass carp from the CF group (p < 0.05). Additionally, the PCoA
analysis exhibited a clear separation in the bacterial communities between the GF and
the CF groups at the OTU level, and a significant difference was further revealed using
PERMANOVA (p = 0.003, Figure 4).
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Figure 4. Principal coordinates analysis (PCoA) plot based on Bray–Curtis dissimilarity visual-
izing dissimilarities in the intestinal bacterial community of grass carp fed with ryegrass and a
commercial diet.

3.2. Ecological Network Analysis

A circos plot displayed a classified composition and species-species interactions within
the bacterial community (Figure 5A), which consisted of different OTUs from 27 bacterial
classes (Table 2). The GF network represented 441 OTUs and 2946 edges (gray edges: 2099;
red edges: 847), and the CF network displayed 252 OTUs and 856 edges (gray edges: 592;
red edges: 264). The gray and red edges indicated the positive and negative interactions
between two OTUs. The GF network recorded major OTUs (≥20) from Actinobacteria
(69 OTUs), Alphaproteobacteria (66 OTUs), Clostridia (41 OTUs), Gammaproteobacteria
(40 OTUs), Acidobacteria (29 OTUs), Deltaproteobacteria (25 OTUs), and Bacilli (23 OTUs),
whereas the major OTUs from Alphaproteobacteria (47 OTUs), Bacilli (46 OTUs), Actinobac-
teria (40 OTUs), and Gammaproteobacteria (35 OTUs) were observed in the CF network.
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In the ecological network, an RMT-based approach was employed to delineate sep-
arate modules. Strikingly, in Figure 5B, the ecological network within the bacterial com-
munity of the grass carp fed with ryegrass consisted of 9 modules (≥5 nodes), and 4
larger sub-modules with ≥ 30 nodes were G1 (105 OTUs), G2 (86 OTUs), G3 (87 OTUs),
and G4 (36 OTUs). Similarly, the CF network also had 9 modules with more than 5
nodes, and 5 sub-modules with ≥ 30 nodes were observed including C1 (53 OTUs), C2
(50 OTUs), C3 (30 OTUs), C4 (36 OTUs), and C5 (37 OTUs). Negative interactions were
observed dominantly within the G3 and C5 sub-modules, whilst many negative edges
were recorded between C1 and C5, or C3 and C5 sub-modules. Each specie performed
different topological roles in the ecological network, in which most of the nodes were
peripherals and several nodes performed as module hubs or connectors (Figure 6). As
shown in Table 3, the GF network recorded 7 module hubs in G1 (3 OTUs), G2 (2 OTUs)
and G4 (2 OTUs) sub-modules, among which these nodes were from Alphaproteobacteria
(OTU_891, OTU_901 and OTU_911), Actinobacteria (OTU_568), Chloroflexi (OTU_756),
Erysipelotrichia (OTU_376), and Gammaproteobacteria (OTU_153). In CF network, 4
module hubs (OTU_149, OTU_549, OTU_892 and OTU_1171) and 3 connectors (OTU_376,
OTU_522 and OTU_894) were observed in C2 (3 OTUs), C3 (1 OTU) and C4 (3 OTUs)
sub-modules, among which these nodes were from Alphaproteobacteria (OTU_892 and
OTU_894), Actinobacteria (OTU_549), Clostridia (OTU_1171), Erysipelotrichia (OTU_376),
Gammaproteobacteria (OTU_149), and Planctomycetia (OTU_522).
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Table 2. The composition of the ecological network.

Index GF CF

Acidobacteria 29 3
Actinobacteria 69 40
Alphaproteobacteria 66 47
Anaerolineae 9 3
Bacilli 23 46
Bacteroidia 4 1
Betaproteobacteria 16 7
Caldilineae 14 5
Chloroflexia 2 0
Clostridia 41 16
Cytophagia 4 0
Deltaproteobacteria 25 6
Epsilonproteobacteria 1 0
Erysipelotrichia 3 3
Flavobacteriia 0 1
Fusobacteriia 3 3
Gammaproteobacteria 40 35
Gemmatimonadetes 1 0
Methanomicrobia 4 0
Methanobacteria 2 2
Negativicutes 3
Oligoflexia 2 3
Planctomycetia 1 6
Spartobacteria 2 1
Sphingobacteriia 3 0
Subdivision3 2 0
Verrucomicrobiae 4 1
Unassigned 68 23
Total number of OTUs 441 252
The number of modules (≥5 OTUs) 9 9
The number of module hubs 7 4
The number of connectors 0 3
The number of gray edges 2099 592
The number of red edges 847 264
Total number of edges 2946 856
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Table 3. Topological roles of intestinal microbiota in grass carp.

Treatment Topological Roles OTUs Module Number Phylogenetic Associations

GF

Module hubs OTU_376 1 Erysipelotrichia
Module hubs OTU_568 4 Actinobacteria
Module hubs OTU_891 2 Alphaproteobacteria
Module hubs OTU_756 2 Chloroflexi
Module hubs OTU_153 4 Gammaproteobacteria
Module hubs OTU_901 1 Alphaproteobacteria
Module hubs OTU_911 1 Alphaproteobacteria

CF

Module hubs OTU_549 3 Actinobacteria
Module hubs OTU_1171 2 Clostridia
Module hubs OTU_892 2 Alphaproteobacteria
Module hubs OTU_149 2 Gammaproteobacteria
Connectors OTU_522 4 Planctomycetia
Connectors OTU_894 4 Alphaproteobacteria
Connectors OTU_376 4 Erysipelotrichia

3.3. Functional Predictions of Intestinal Microbiota with PICRUSt2

The NMDS analysis exhibited a clear distinction in the functional composition of the
intestinal microbiota between the GF and the CF groups at a KO level, and an analysis
of similarity (ANOSIM) further confirmed the remarkable differences in the bacterial
functional composition between the GF and the CF groups (p = 0.007, Figure 7). To study
the microbial metabolic function, the KEGG functional categories were analyzed, including
amino acid metabolism, carbohydrate metabolism, energy metabolism, lipid metabolism,
and protein families metabolism (Figure 8). A significant difference in 47 pathways and
6 protein families, which are involved in nutrient metabolism, were observed between
the GF and the CF groups (p < 0.05). In particular, the bacterial communities in the grass
carp fed with ryegrass was significantly rich in 13 pathways in amino acid metabolism,
6 pathways in carbohydrate metabolism, 3 pathways in energy metabolism, 5 pathways
in lipid metabolism, and 2 protein families related to metabolism (p < 0.05). The dietary
commercial diet notably promoted bacterial metabolic function including 7 pathways in
amino acid metabolism, 6 pathways in carbohydrate metabolism, 2 pathways in energy
metabolism, 6 pathways in lipid metabolism, and 4 protein families related to metabolism
in grass carp (p < 0.05).
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4. Discussion

The importance of intestinal microbiota in host health has been highlighted in recent
decades, owing to its benefits to nutrient metabolism and immune maturation [4,34,35].
It is widely accepted that diets can influence the composition of the intestinal bacterial
community because microbes require nutrients and energy from the food consumed by
hosts [36]. Grass carp feed on aquatic weeds in the wild, and previous research found that
grass carp fed a Sudan grass diet were rich in Firmicutes, Proteobacteria, Fusobacteria,
and Actinobacteria in the intestine [37]. In the current study, Proteobacteria, Firmicutes,
and Actinobacteria were found to be the most prevalent phyla in the intestines of grass
carp fed with ryegrass. Grass carp, the most important aquaculture species in China, are
primarily fed an artificial diet rich in plant protein. Previous research has shown that
commercially formulated feed can significantly alter the structure of the intestinal bacterial
community in grass carp, resulting in a decrease in microbial biodiversity [37]. Indeed,
the current findings show that the artificial feed reduced diversity, and the proportion
of Alphaproteobacteria and Actinobacteria, while increasing Bacilli. Furthermore, in this
study, grass carp fed a high plant protein diet had a significantly higher proportion of
Aeromonas australiensis from Gammaproteobacteria. Aeromonas are Gram-negative microbes
that live in aquatic environments and have been identified as an opportunistic pathogen
for fish [38,39]. Previous research has suggested that Aeromonas sp. infection can cause
intestinal inflammation and mucosal barrier function damage in grass carp [40,41], crucian
carp [42], and Nile Tilapia (Oreochromis niloticus) [43]. As a result, the significant increase in
A. australiensis, caused by the artificial feed, increased the potential threat to the health of
grass carp in this study.

As species perform similar or complementary functions, competitive and cooperative
interactions occur between different species in the same habitat, for example competition
to occupy more space and to obtain more nutrients [44]. The intestinal bacterial community
can form a complex ecological network based on these interspecific interactions, allowing
the intestinal microbiota to maintain a dynamic homeostasis in the host [14]. The microbial
interactions were clearly degraded in the grass carp fed with an artificial diet due to a
decrease in the microbial diversity, which can have a negative effect on the stability of a
bacterial community because the intestinal microbiota is more easily disturbed by external
factors. A cooperation dominated community is thought to be more stable because coop-
erative interactions are more resistant to population perturbations in spatial conditions,
whereas competitive interactions are more vulnerable to disruption [45,46]. Indeed, the
current findings suggested that cooperation dominated the intestinal bacterial community
of grass carp, whereas the increased percentage of competitive interactions in the group
fed with the artificial diet can be attributed to the significant increase in the opportunistic
pathogen A. australiensis. Despite the fact that the grass carp, in two groups, showed dis-
tinctive submodules in the ecological networks, the networks in this study were primarily
made up of the dominating microbial flora of each group. From an ecological perspective,
connections, and module hubs generalists act as structural and functional keystones and
play a crucial role in sustaining the ecological network [47]. According to the latest findings,
the network’s generalist population was unaffected by the artificial diet. By weakening
interspecific relationships and reducing cooperation in the ecological network, the artificial
diet may collectively have a detrimental influence on the gut microbiota homeostasis.

Since the genes of microbes encode several enzymes involved in protein, carbohy-
drate, lipid, and energy metabolism, microbial fermentation plays a critical role in the
host’s nutritional metabolism [35,48,49]. The structure and operation of the gut bacterial
community can adjust to changes in the dietary environment in a similar manner [36].
Due to differences in gene expression across the different microbes in the current study,
dietary ryegrass, and artificial feed, as expected, shaped two distinctly different intestinal
microbiota structures in grass carp. These differences were accompanied by a notable vari-
ation in the metabolic activities of the microbial community. Fish were frequently affected
with the issue of aberrant fat deposition during breeding due to the use of a high-protein



Metabolites 2022, 12, 1115 11 of 14

and a high-fat artificial feed. [50,51]. Evidence in both humans and animals has shown a
robust correlation between obesity and a high Firmicutes ratio [52,53]. Here, compared to
a ryegrass diet, the artificial feed did increase the proportion of Firmicutes in grass carp.
This was followed by an increase in lipid metabolism, specifically an improvement in the
biosynthesis of fatty acids, glycerols, and glycerospholipids, as well as a promotion of the
production of primary and secondary bile acids. However, when grass carp were fed with
ryegrass to supplement their low-nutrient diet, the microbial function related to amino
acid and energy metabolism was more active. Furthermore, it has been demonstrated that
microbial fermentation of complex, non-digestible dietary carbohydrates aids the host in
obtaining useable forms of energy from a plant-based diet [8]. Grass carp are generally
considered herbivorous, but no gene in the grass carp genome encodes an enzyme to digest
cellulose, which comprises the principal component of a plant-based diet [54]. Evidence
has confirmed that the microbial function of metabolizing cellulose plays an important
role in the nutrient metabolism of an herbivore, and the abundant enzymes involved in
the digestion of complex carbohydrates were also observed in the intestinal microbiota of
grass carp [8]. Here, grass carp in the ryegrass diet group displayed a higher proportion of
Actinobacteria, which proved to harbor an increased level of carbohydrate enzyme genes
for the degradation of cellulose [55]. Nevertheless, it was shown that grass carp fed with an
artificial feed, where starch was the predominant source of carbohydrate, had an increased
microbial starch and sucrose metabolism. Additionally, a group of microorganisms that
are interdependent on the effectiveness of fermentation are necessary for the microbial
process of fermentation [9,56]. Therefore, the increased cooperative interaction may en-
courage the microbial fermentation of a ryegrass diet, assisting the grass carp to obtain
more nutrients and energy. However, the microbial function in grass carp fed with the
artificial diet was more susceptible to diseases in this study because of the per durability in
the bacterial population.

The modification of intestinal microbiota is an effective method for keeping fish healthy
because it plays a significant role in the metabolism of nutrients and the host’s health. In fact,
several studies have shown that by managing the homeostasis of fish’s intestinal microbiota
with functional feed additives improves fish health [57,58]. The current study evaluated
the intestinal bacterial communities of grass carp fed with an artificial diet and ryegrass,
and it would serve as a theoretical guide for the control of grass carp intestinal microbiota.

5. Conclusions

Intestinal bacterial community characteristics in grass carp were altered by dietary
ryegrass and artificial feed. An opportunistic pathogen, A. australiensis, was found to
drastically increase in the artificial feed diet. Additionally, artificial feed may impact
the lipid metabolism of grass carp by raising the ratio of Firmicutes and decreasing the
disturbance resistance of intestinal microbiota.
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