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Abstract

Objective: Radiation-induced skin injury remains a serious concern for radiation therapy. Heme oxygenase-1 (HO-
1), the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant and anti-
apoptotic properties. However, the role of HO-1 in radiation-induced skin damage remains unclear. This study aims
to elucidate the effects of HO-1 on radiation-induced skin injury in rats.

Methods: A control adenovirus (Ad-EGFP) and a recombinant adenovirus (Ad-HO1-EGFP) were constructed. Rats
were irradiated to the buttock skin with a single dose of 45 Gy followed by a subcutaneous injection of PBS, 5 ×
109 genomic copies of Ad-EGFP or Ad-HO1-EGFP (n = 8). After treatment, the skin MDA concentration, SOD activity
and apoptosis were measured. The expression of antioxidant and pro-apoptotic genes was determined by RT-PCR
and real-time PCR. Skin reactions were measured at regular intervals using the semi-quantitative skin injury score.

Results: Subcutaneous injection of Ad-HO1-EGFP infected both epidermal and dermal cells and could spread to
the surrounding regions. Radiation exposure upregulated the transcription of the antioxidant enzyme genes,
including SOD-1, GPx2 and endogenous HO-1. HO-1 overexpression decreased lipid peroxidation and inhibited the
induction of ROS scavenging proteins. Moreover, HO-1 exerted an anti-apoptotic effect by suppressing FAS and
FASL expression. Subcutaneous injection of Ad-HO1-EGFP demonstrated significant improvement in radiation-
induced skin injury.

Conclusions: The present study provides evidences for the protective role of HO-1 in alleviating radiation-induced
skin damage in rats, which is helpful for the development of therapy for radiation-induced skin injury.
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Introduction
Radiotherapy offers valuable alternatives to primary sur-
gical approaches for cancer patients. Despite being a
useful modality for cancer therapy, ionizing radiation
may injure surrounding normal tissues [1,2]. Although
the skin is not the primary target, it may be significantly
injured and its function profoundly impaired during
radiation therapy [3,4]. While increased efforts have led
to new treatment schedules that are designed to

maximize antineoplastic effects and minimize skin toxi-
city, radiation-induced skin injury remains a serious
concern, which may limit the duration of radiation and
the dose delivered. In addition, nuclear accidents are
another cause of such skin reactions [5,6]. Thus, the
management of radiation-induced skin damage is critical
for effective radiation therapy.
During radiation exposure, skin tissue damage occurs

instantaneously, mediated by a burst of free radicals.
Irradiated cells produce reactive oxygen species (ROS),
including oxygen ions, free radicals, and peroxides. The
detrimental ROS can further result in damages to
nuclear DNA and alterations of proteins, lipids, and car-
bohydrates [7]. In response to ionizing radiation
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exposure, signal transduction pathways, transcription
factors, DNA repair enzymes and antioxidant enzymes
are activated. Many of these signaling and gene expres-
sion pathways are involved in intracellular metabolic
redox reactions to buffer the ROS [8]. Meanwhile,
inflammatory cells are recruited and fibrogenesis and
angiogenesis are initiated. High-dose ionizing radiation
finally culminates in cutaneous cell death and profound
impairment of skin function [4].
Heme oxygenases (HO) are microsomal enzymes that

catalyse the heme ring into carbon monoxide (CO), free
iron and biliverdin. Biliverdin is rapidly converted to
bilirubin by biliverdin reductase. CO and bilirubin have
been well described as having antioxidant and anti-
inflammatory properties [9,10]. The HO family consists
of three homologous isoenzymes, an inducible HO-1, a
constitutive HO-2 and an HO-3 with low enzymatic
activity [11]. HO-1 is also known as heat shock protein
32 (HSP32), which is strongly induced by various stimuli
including heat shock, metals, cytokines and oxidative
stress [12,13]. In the skin, the expression of HO-1 is
strongly induced by ultraviolet radiation by the genera-
tion of biologically active phospholipid oxidation pro-
ducts. And its expression is most pronounced in the
epidermal layers immediately below the stratum cor-
neum [14]. HO-1 is also involved in skin immunity.
Cutaneous inflammation was enhanced by HO-1 inhibi-
tion and was abrogated by treatment with the HO-1
inducer cobaltic protoporphyrin (CoPP) [15].
Since radiation exposure produces oxidative stress and

consequently leads to skin injury, we reasoned that HO-
1 overexpression would ameliorate the radiation-induced
skin damage. In this study, we constructed a control
adenovirus (Ad-EGFP) and a recombinant adenovirus
(Ad-HO1-EGFP) that can overexpress rat HO-1. Subcu-
taneous injection of this Ad-HO1-EGFP infected cells in
the epidermis and dermis, and ameliorated radiation-
induced skin injury by reducing oxidative stress and
suppressing apoptosis. These results will help the devel-
opment of curative measures for radiation-induced skin
injury.

Materials and methods
Construction of recombinant adenovirus
The rat HO-1 (GenBank accession no. NM012580) cod-
ing region was amplified by PCR using a pair of primers:
(forward) 5’- ATGGAGCGCCCACAGCT-3’ and
(reverse) 5’- TTACATGGCATAAATTCCCACTG -3’
and rat HO-1 cDNA. The coding region of the rat HO-
1 gene was initially cloned into the pIRES2-EGFP vector,
and the sequence of HO-1-IRES-EGFP was then sub-
cloned into pShuttle-CMV. Adenoviruses expressing
HO-1-IRES-EGFP and the control EGFP were generated
using AdEasy™ Adenoviral Vector System (Agilent

Technologies, Santa Clara, CA) per the manufacture’s
protocols. In brief, Shuttle plasmid DNA was linearized
using PmeI, and treated with alkaline dephosphatase.
The fragment was purified and recombined with
pAdEasy-1 in BJ5183 cells. Positive clones were selected
and transformed into XL10-Gold supercompetent E. coli
cells. The confirmed recombinant adenovirus plasmids
were each digested with PacI. Plasmids were then trans-
fected into HEK-293A cells. Adenovirus expressing HO-
1-IRES-EGFP or EGFP was propagated in HEK-293A
cells and purified by CsCl gradients by ultracentrifuga-
tion. Titer of the viral solution was determined by
Adeno-X Rapid Titer kit (Clontech, Mountain View,
CA). These viruses were stored at -80°C prior to injec-
tion. Rats were given subcutaneous injection of Ad-
EGFP or Ad-HO1-EGFP at an amount of 5 × 109 PFU
suspended in 200 μl phosphate-buffered saline (PBS)
after radiation exposure.

Animals and treatments
Male SD rats (4 weeks old) were purchased from Shang-
hai SLAC Laboratory Animal Co., Ltd. (Shanghai,
China). Rats were anesthetized with an intraperitoneal
injection of ketamine (75 mg/kg) and xylazine (10 mg/
kg), and the hair on rat buttock skin was shaved using a
razor. Rats were immobilized with adhesive tape on a
plastic plate to minimize motion during irradiation
exposure. A 3 cm thick pieces of lead was used to shield
the rats and localize the radiation field (3 cm×4 cm). A
single dose of 45 Gy was administered to the treatment
area of each rat at a dose rate of 750 cGy/min using a
6-MeV electron beam accelerator (Clinac 2100EX; Var-
ian Medical Systems Inc, CA). This dose was selected
because it can significantly induce skin injury. After irra-
diation, rats were randomly divided into three groups: 1)
rats were administered with a subcutaneous injection of
200-μl volume PBS; 2) with a subcutaneous injection of
5 × 109 genomic copies of Ad-EGFP in a 200-μl volume;
3) with a subcutaneous injection of 5 × 109 genomic
copies of Ad-HO1-EGFP in a 200-μl volume. Skin reac-
tions were followed at regular intervals using the semi-
quantitative skin injury scale from 1 (no damage) to 5
(severe damage), as previously described [16]. All the
protocols and procedures were approved by the Animal
Experimentation Ethics Committee of the Soochow
University.

Fluorescent Imaging of Ad-HO1-EGFP in vivo
Before injection, rats were anesthetized with an intraper-
itoneal injection of ketamine (75 mg/kg) and xylazine
(10 mg/kg). A viral load of 5 × 109 genomic copies of
Ad-HO1-EGFP (200 μl) or 200 μl of PBS was subcuta-
neously injected into buttocks of SD rats, respectively.
To visualize infected cells, three days after the injection,
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the rats were anesthetized and imaged using a Kodak
In-Vivo Multispectral Imaging System FX. Then, rats
were sacrificed, frozen-cut sections of buttock skin were
visualized under a fluorescent microscope.

Immunohistochemistry
Skin tissues were fixed in 10% neutral buffered formalin
and later embedded in paraffin. Three micrometers thick
paraffin sections were deparaffinized and heat treated
with citrate buffer, pH 6.0, for 7 min following an epitope
retrieval protocol. Endogenous peroxidase was blocked
with 3% hydrogen peroxide for 15 min at room tempera-
ture, and tissue non-specific-binding sites were blocked
with skimmed milk powder at 4% applied for 30 min.
Sections were then incubated with the HO-1 antibody
(Santa Cruz Biotechnology) for 1 h (dilution 1:200) and
mixed with skimmed milk powder at 2% again to reduce
unspecific staining. Biotinylated secondary antibody was
then added for 30 min. Avidin-biotin-peroxidase complex
(Dako LSAB2 system, DAKO Co., Carpinteria, CA) was
added and color was developed using 3-3’-diaminobenzi-
dine. Counterstaining was done with hematoxylin. All
steps were performed at room temperature. Omitting the
primary antibody from the procedure on the protocol
was used as a negative control.

RNA extraction, reverse transcription- (RT)-PCR and real-
time PCR
Total RNA from skin tissues was extracted with Trizol
(Invitrogen, Carlsbad, CA) and reversely transcribed into
cDNA using an oligo(dT)12 primer and the Superscript
II reverse transcriptase (Invitrogen). SYBR green dye
(Takara Bio Inc., Shiga, Japan) was used for amplifica-
tion of cDNA. mRNA levels of SOD-1, endogenous HO-
1, Catalase, GPx2, FAS, FASL and the internal standard
b-Actin were measured by RT-PCR and real-time quan-
titative PCR in triplicate using a Prism 7500 real-time
PCR machine (Applied Biosystems, Foster City, CA).
The primer sequences were listed in Table 1.

Malondialdehyde (MDA) concentration measurement
After excision, fresh skin samples were homogenized
with 50 mM phosphate buffer (pH 7.4). Then,

homogenates were centrifuged at 12,000 × g for 10 min
at 4°C. Supernatants were separated and kept at -20°C
until MDA measurements were performed. Protein con-
centration supernatants were determined according to
Lowry assay [17] using bovine serum albumin as a
standard.
Tissue MDA levels were determined by thiobarbituric

acid (TBA) reaction. The optical density (OD) was mea-
sured at a wavelength of 532 nm. The assay depended
on the measurement of the pink color produced by the
interaction of barbituric acid with MDA generated as a
result of lipid peroxidation. The colored reaction with
1,1,3,3- tetraethoxy propane was used as the primary
standard. The MDA levels were determined by the
method of Yagi et al. [18]. MDA levels were expressed
as a nanomol per milligram of protein (nmol/mg
protein).

SOD activity measurement
Activity of SOD was measured using commercial avail-
able kit purchased from Nanjing Jiancheng BioEngineer-
ing (Nanjing, China). SOD activity measurement was
based on the instructions of the colorimetric method.

Terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) assay
Five μm skin sections were deparaffinized in xylene and
hydrated in decreasing concentrations of ethanol, and
terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) assay was performed following manu-
facturer’s instructions (Keygen, Nanjing, China). Ten
random fields from 4 slides per group were examined.
The TUNEL-positive brown nuclei within the skin were
counted. The data were expressed as the mean number
of apoptotic cells/high power field.

Statistical analysis
Data were expressed as the mean ± standard error of
the mean (SEM) of at least three independent experi-
ments. Standard error bars are included for all data
points. The data were first analyzed with the Kolmo-
gorov-Smirnov test for data distribution normality and
then analyzed using Student’s t test when only two

Table 1 Primer sequences for RT-PCR and real-time PCR analysis

Gene Forward primer Reverse primer Product size (bp)

b-Actin 5’- CCCATCTATGAGGGTTACGC -3’ 5’- TTTAATGTCACGCACGATTTC -3’ 150

endogenous HO-1 5’-CAGAAGGGTCAGGTGTCCAG-3’ 5’- GAAGGCCATGTCCTGCTCTA -3’ 262

SOD-1 5’- GCCAATGTGTCCATTGAAGA -3’ 5’- CAATCACACCACAAGCCAAG -3’ 168

CAT 5’ - CACTGACGTCCACCCTGAC -3’ 5’- GACTCCATCCAGCGATGATT -3’ 242

GPx2 5’ - CCTCGCTCTGAGGAACAACT-3’ 5’- TGCCCATTGACATCACACTT -3’ 220

FAS 5’- AGCTGCTCCAGTGCTGGTAT -3’ 5’- CATAGGTGGCAGGCTCTCTC -3’ 232

FASL 5’-AGACCACAAGGTCCAACAGG-3’ 5’- CAAGTAGACCCACCCTGGAA-3’ 244
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groups were present, or assessed by one-way analysis of
variance (ANOVA) when more than two groups were
compared. For ordinal data, the Mann-Whitney test was
used. Statistical analysis was performed using SPSS soft-
ware (Release 17.0, SPSS Inc.). Data were considered
significant if P < 0.05.

Results
The infection and expression of Ad-HO1-EGFP after its
subcutaneous administration
To illustrate the therapeutic role of HO-1 in radiation-
induced skin injury, a recombinant adenovirus (Ad-
HO1-EGFP) and a control adenovirus (Ad-EGFP) were
constructed (Figure 1A). To examine adenovirus
mediated HO-1 gene expression and distribution in vivo,
Ad-HO1-EGFP (5 × 109 genomic copies) was

subcutaneously injected into buttocks of SD rats. After
3 days, EGFP gene expression was observed using a
Kodark in vivo imaging system. Highly intensive EGFP
expression was observed in the Ad-HO1-EGFP-injected
buttock of SD rat, compared to the PBS-injected but-
tock. Interestingly, as shown in Figure 1B, fluorescence
could be observed in the surrounding skin regions of
the injection site (dotted circle), suggesting that Ad-
HO1-EGFP could spread and infect surrounding skin
cells. To further investigate the distribution of EGFP
expression in skin tissues, frozen-cut sections of the but-
tock skin were observed under a microscope. As shown
in Figure 1C, EGFP expression was observed in dermis
of Ad-HO1-EGFP-injected rats, but not in that of the
PBS-injected rats. Nevertheless, it is unclear whether
Ad-HO1-EGFP infected the epidermis of rats because

Figure 1 The distribution and expression of Ad-HO1-EGFP in rat skin. (A) Schematic diagram of the recombinant Ad-HO1-EGFP vector and
the control vector (Ad-EGFP). (B) In vivo imaging of EGFP expression in SD rats. Rats were injected subcutaneously with 5 × 109 genomic copies
of Ad-HO1-EGFP or equivalent volume of PBS. Three days after injection, the expression of EGFP was visualized. The dotted circle indicates the
injection region. (C) The expression of EGFP was imaged from frozen-cut sections and observed under a fluorescent microscope (× 40). (D)
Immunohistochemistry analysis of HO-1 expression in rat epidermis and dermis (× 200).
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the stratum corneum displayed strong fluorescence,
even in the control group. EGFP expression was found
to persist for at least two weeks (data not shown).
Immunohistochemistry was used to confirm the expres-
sion of HO-1 in rat skin tissues. As shown in Figure 1D,
the expression of HO-1 was more pronounced in dermis
(hair follicles and sebaceous glands) than in epidermis, 3
days after Ad-HO1-EGFP administration.

HO-1 overexpression decreased the production of MDA
and the induction of antioxidant enzymes
Since radiation-induced ROS results in oxidative damage
in lipids, DNA and proteins, cellular defenses have been
proposed to play important roles in protecting the skin
cells against oxidative stress and reducing the progres-
sion of skin injury [19,20]. To test whether overexpres-
sion of HO-1 affects the radiation-induced lipid
peroxidation, the concentration of MDA in the skin tis-
sues after radiation with 45Gy was measured. As shown
in Figure 2A, MDA levels were significantly decreased
in tissues infected with Ad-HO1-EGFP, compared with
the control group (P < 0.05), whereas infection of Ad-
EGFP did not reduce the production of MDA. This indi-
cated that HO-1 overexpression attenuates radiation-
induced lipid peroxidation.
A series of enzymes is involved in counteracting oxi-

dative stress in cells, including superoxide dismutases
(SOD), Catalase and Glutathione peroxidase (GPx). We
found that 45Gy irradiation strongly upregulated mRNA
expression of SOD-1, GPx2 and endogenous HO-1, and
that overexpression of HO-1 significantly attenuated
expression of these enzymes, compared with PBS-
injected group (Figure 2B and 2C). Interestingly, radia-
tion inactivated the expression of Catalase, relative to
control skin tissues. The effect of HO-1 overexpression
on SOD activity was also measured. Consistent with
SOD-1 mRNA level, radiation increased the SOD activ-
ity, and Ad-HO1-EGFP injection counteracted this
increase (Figure 2D). These results suggested that HO-1
overexpression significantly attenuates radiation-induced
intracellular ROS accumulation, thereby reducing the
need for skin cells to elicit an oxidant-induced response.

HO-1 overexpression inhibited the apoptosis of skin cells
To investigate the effect of HO-1 overexpression on cell
apoptosis in the rat skin, we measured the mRNA levels
of the key apoptosis-related genes. The cell death recep-
tor Fas/CD95 and Fas/CD95 ligand (Fas-L) are comple-
mentary receptor-ligand proteins that initiate extrinsic
apoptotic pathway [21]. After 45 Gy radiation, mRNA
levels of FAS and FASL showed a marked elevation in
skin tissues, suggesting an initiation of the apoptosis
cascade. Administration of Ad-HO1-EGFP inhibited the
expression of Fas and FASL, compared with the PBS- or

Ad-EGFP-injected group (Figure 3A and 3B). Consis-
tently, results from TUNEL assay showed significantly
lower apoptotic cell death in Ad-HO1-EGFP treated
group, compared with the PBS-treated rats (Figure 3C).
These results indicated that HO-1 overexpression
reduces radiation-induced apoptosis in skin cells.

HO-1-overexpression ameliorated radiation-induced skin
injury
To determine whether adenovirus mediated HO-1
expression could attenuate radiation-induced skin injury,
we performed an experiment using a single dose of 45
Gy delivered to the buttock skin of SD rats followed by
a subcutaneous injection of Ad-EGFP or Ad-HO1-EGFP
(5 × 109 genomic copies). The rats in the control group
were injected with equivalent volume of PBS. Injuries of
skin tissues were graded on a scale of 1 (no damage) to
5 (severe damage). Cutaneous damage was noticed 4
days after irradiation. Skin injury reached a maximum
15-18 days after irradiation, and then the skin wounds
began to heal. Radiation-induced skin injury was signifi-
cantly less severe in the Ad-HO1-EGFP-injected group,
compared to the PBS-treated rats 19 days post irradia-
tion, while the Ad-EGFP-administrated rats showed
similar skin tissue damage with that of the control
group (Figure 4).

Discussions
There is increasing evidence indicating that HO-1 is
involved in the pathogenesis of many diseases. HO-1 is
a stress-responsive enzyme that can be induced by var-
ious oxidative agents and has recently emerged as a cru-
cial mediator of antioxidant forces and tissue-protective
actions. The physiological importance of HO-1 has been
confirmed in HO-1 knockout-mice and in a HO-1-defi-
cient human case, both of which showed a reduced cel-
lular resistance to oxidative stress [22-24]. Due to this
documented protective activity of HO-1, we constructed
an adenovirus construct that was used to overexpress
HO-1 in rats aiming at testing its role in radiation-
induced skin damage. We found that subcutaneous
injection of the recombinant adenovirus ameliorates
radiation-induced skin injury in rats most likely via sup-
pression of oxidative stress and inhibition of cutaneous
cell apoptosis.
Radiation exposure to tissues generates ROS and oxi-

dative stress, which will trigger inflammatory response
and cell death in affected areas. The ROS is known to
oxidize fatty acids generating highly toxic lipid peroxides
that lead to apoptotic cell death [25]. There is a well-
established antioxidant enzyme system in eukaryotic
cells which protects cells from oxidative damages. For
instance, SOD is a primary antioxidant enzyme that
converts superoxide to hydrogen peroxide, which can be
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subsequently detoxified into water and oxygen by cata-
lase and GPx [26]. SOD-1 is the predominant form of
three SOD enzymes, and GPx2 is a member of the sele-
nium-containing antioxidative enzyme family, acting
directly as an antioxidant and an inhibitor of lipid per-
oxidation [27]. In the present study, we demonstrated
that injection of Ad-HO1-EGFP reduced radiation-
induced skin MDA levels indicating that HO-1 attenu-
ates radiation-induced lipid peroxidation. Furthermore,
we found that radiation-induced expression of SOD-1,
GPx2 and endogenous HO-1 was significantly down-
regulated in tissues of the rats that were injected with
Ad-HO1-EGFP. This suggests that HO-1 inhibits anti-
oxidative responses from the skin cells to radiation
insults. Note that overexpression of SOD-1 has been
described to likely induce cell apoptosis [28], which may
be associated with accumulation of toxic hydrogen per-
oxide produced by SOD that cannot be further

detoxified by catalase and GPx. In this context, reduced
SOD-1 expression supports a protection action of HO-1
on radiation-induced skin injury. However, radiation
induced a suppression of catalase expression in our
model system, which is in contrast to the expression of
other antioxidant enzymes, and HO-1 over-expression
had no effects on this suppression. A previous study by
Chang et al. also reported that UVB radiation inhibited
catalase activity in skin cells that was gradually recov-
ered [29]. The underlying mechanisms for radiation-
induced inactivation of catalase in skin cells merit
further investigation. Taken together, these results indi-
cate that overexpression of HO-1 attenuates oxidative
stress and inhibits progression of skin injury.
Skin apoptosis is considered to be a vital indicator for

skin injury [30]. The mechanisms by which apoptosis
occurs in radiation-induced skin injury may provide an
insight into the development of future radiation therapy.

Figure 2 Quantitative analyses of MDA concentration, SOD activity and relative mRNA levels of the antioxidant enzyme genes. (A)
Relative MDA concentration in rat skin tissues of indicated groups. (B) SOD activity in rat skin tissues of indicated groups. (C) Representative
reverse transcription (RT)-PCR analysis of the antioxidant enzyme genes in indicated groups. (D) Real-time PCR analysis of the antioxidant enzyme
genes in indicated groups (4 animals per group). mRNA levels are presented as means ± SEM (normalized to b-Actin). The men expression level
in PBS-injected control group was arbitrarily set as 100%. * P < 0.05; ** P < 0.01, compared with PBS-injected control group.
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Figure 3 Effects of HO-1 overexpression on radiation-induced skin cell apoptosis. (A) Representative RT-PCR analysis of the apoptosis
pathway genes in rat skin tissues of indicated groups. (B) Real-time PCR analysis of the apoptosis pathway genes in indicated groups (4 animals
per group). mRNA levels are presented as means ± SEM (normalized to b-Actin). The men expression level in PBS-injected control group was
arbitrarily set as 100%. (C) Quantification of mean TUNEL-positive cells/per field are expressed as mean ± SD. * P < 0.05; ** P < 0.01, compared
with PBS-injected control group.

Figure 4 Effect of HO-1 overexpression on the amelioration of radiation-induced skin injury. Rats were irradiated to the buttock skin with
a single dose of 45 Gy followed by an injection of PBS, 5 × 109 genomic copies of Ad-EGFP or Ad-HO1-EGFP (8 animals per group). Skin injury
in these groups was measured using a semi-quantitative score of 1 (no damage) to 5 (severe damage). * P < 0.05, compared with PBS-injected
control group.
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FAS and FASL serve as external pro-apoptotic sensors
of cell damage and transmit the signal to the internal
effectors. Accumulating evidence suggests that radia-
tion-induced skin injury is mediated by Fas and FasL
[31-33]. We found that nonirradiated skin had little Fas
and FasL expression; however, after electron beam expo-
sure, the expression levels of Fas and FasL were strongly
induced, which is in line with a previous report using
ultraviolet radiation [31]. We demonstrated that radia-
tion promoted apoptosis of rat cells in the epidermis
and dermis using the TUNEL assay, and HO-1 overex-
pression resulted in a significant resistance to apoptosis,
evidenced by a diminution of the TUNEL-positive cells.
Thus, the alleviated damage in Ad-HO1-EGFP treated
rats is likely due to less apoptosis of the skin cells. Sup-
pression of apoptosis by HO-1 may contribute to alle-
viating the severity of skin injury induced by radiation.
In recent years, pharmacological interventions have

been reported to reduce toxic radiation reactions. Pre-
treatment with caffeine, a major component of coffee,
delays the progression of radiation-induced skin reac-
tions, but cannot attenuate injury severity [34]. Essential
fatty acids are shown to modulate normal tissue reac-
tions to radiation damages [35]. It was reported that his-
tone deacetylase (HDAC) inhibitors can suppress the
aberrant expression of radiation-induced transforming
growth factor b and tumor necrosis factor a and pro-
mote the healing of skin wounds [36]. In comparison,
adenovirus-mediated gene transfer confers a long-term
effect with high expression levels of the genes delivered
and gene-specific activity. Since ROS are involved in
radiation-induced injury, supplementations of antioxi-
dant enzymes have been utilized to mitigate this injury.
It is well known that detrimental superoxide anion, one
of the major damaging ROS, can be converted to hydro-
gen peroxide by SOD. Yan et al. mitigated radiation-
induced skin injury by AAV-mediated MnSOD (SOD2)
expression using a mouse model [37]. MnSOD has also
been shown to decrease superoxide levels and protect
the bladder from radiation damage [38]. Our results
indicate an alternative to SOD in the treatment of radia-
tion-induced injury. Since HO-1 and SOD-1 exert their
antioxidant actions via different cellular mechanisms,
whether a combination of SOD and HO-1 delivery
could be more effective in reducing radiation-induced
skin damage warrants further exploration.

Conclusions
In summary, subcutaneous treatment with Ad-HO1-
EGFP attenuated radiation-induced skin injury in rats
via suppression of lipid peroxidation and apoptotic cell
death. The present study provides evidences for the first
time showing the protective role of HO-1 in radiation-
induced skin injury in rats. This report contributes to

our understanding of the therapeutic potential of HO-1
for radiation-induced skin injury.
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