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Abstract

Background: Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an
effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a
comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model,
analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine.

Methods: The expression profile of several pCPC isolates was compared with humans using both FACS and RT-
gPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an
intracoronary (IC) infusion of vehicle (CON), 25 x 10° pCPC (25 M), or 50 X 10° pCPC (50 M). Animals were followed
up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling
(left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical
comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of '®F-FDG-
labeled pCPC was also performed 4 h after infarction in a different subset of animals.
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clinical trial (NCT02439398).

administration

Results: Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their
human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling
showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left
ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 + 10.0% in CON, 46.5 + 74% in 25
M, and 50.2 +£4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a
significantly higher myocardial salvage index in both treated groups (0.35+ 0.20 in CON; 061 +0.20, p=0.04,
in 25M; and 0.63+0.17, p=0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC
administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in
the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product.

Conclusions: IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe,
and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the
paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI

Keywords: Cardiac progenitor/stem cells, CPC, Acute myocardial infarction, Swine model, Allogeneic, Intracoronary

Background

Heart-derived stem/progenitor cells (CSC/CPC) have been
reported to improve functional recovery after myocardial
infarction in large animal preclinical studies. The two
main heart-derived cell populations have been previously
studied: c-kit+ CPC [1-3] and cardiosphere-derived cells
(CDC) [4-6]. These studies suggest that heart-derived
cells could have a potential therapeutic capacity to reduce
the burden of heart disease, still the number one cause of
death worldwide [7]. Several groups have reported encour-
aging results in the first clinical trials conducted with au-
tologous CSC/CPC in both ischemic and non-ischemic
cardiomyopathy [8, 9].

The beneficial effects of CSC/CPC were initially attrib-
uted to their potential to engraft and differentiate to-
wards different cell types. There is nonetheless
insufficient data of in vivo transdifferentiation of trans-
planted CSC/CPC into relevant numbers of functional
reparative cells in injured tissues [10, 11]. There is a
growing body of evidence supporting that tissue repair is
predominantly mediated by paracrine factors or extracel-
lular particles secreted by CSC/CPC. This complex com-
bination of secreted factors promotes survival of
myocardial cells at risk and stimulates neovasculariza-
tion, resulting in durable benefits despite the short sur-
vival of transplanted cells [11-14].

The use of an allogeneic therapy could expand CSC/
CPC indications to acute myocardial infarction (AMI).
Allogeneic cardiac-derived cell products offer a readily
available, off-the-shelf alternative that can therefore be
administered early after the ischemic event, opening the
door to therapy in the acute stage. This possibility has
been tested in a variety of preclinical studies and
indications [1, 6, 15] that recapitulate the pioneering

experience with mesenchymal stem cells [16]. Allogeneic
approaches obviate the need for endomyocardial biop-
sies, allow better quality control of cell production (from
donor’s screening to pre-freezing and post-thawing ster-
ility and viability), and minimize the potential
inter-individual variability and expansion failures of au-
tologous cell cultures. The positive impact on produc-
tion costs may also facilitate future clinical introduction
of this therapy into a clinical routine [17]. Moreover, au-
tologous stem cells harvested from cardiac patients may
have compromised regenerative capacity, because they
have been subjected to the same risk factors associated
with ischemic heart disease. To elucidate the importance
of these concerns, a recent meta-analysis has compared
autologous and allogeneic cell therapy in heart disease,
finding a similar effectivity from both cell types, which
leads the authors to recommend an allogeneic focus for
future trials based on the logistical advantages of these
cells [17, 18].

Human c-kit+ CPC (hereafter referred to as CPC) have
been previously characterized as a mesenchymal stem
cell (MSC)-like population [19] with a significant
Treg-mediated immunomodulatory capacity when intro-
duced in an inflammatory environment, such as the one
encountered immediately after AMI [19, 20]. In addition,
the retention of allogeneic CPC is enhanced through
interaction with NK cells [21]. Together, these two fea-
tures represent an additional potential advantage of allo-
geneic over autologous CPC therapy.

Preliminary clinical trials [22, 23] conducted with allo-
geneic cardiac-derived cell products for AMI have re-
ported robust safety and feasibility of this therapy, the
primary endpoint in a small STEMI trial [24], but have
failed to show effectivity.
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Finally, while extensive dose-response studies have
been performed using MSC in clinical trials [25, 26],
quantitative data with heart-derived cell products are
scarce and limited to preclinical trials [15, 27, 28]. Ro-
dent studies identified a therapeutic range with a flat
dose-response, with low doses being ineffective and high
doses proving harmful [27]. Large animal studies report
that intracoronary CDC optimal dose lies within the 7.5
to 10 million cells range [28]. Our prior results adminis-
tering 25 x 10° cells via the infarct-related artery in ab-
sence of toxicity [1] support the preclinical evaluation of
a higher dose performed in the present work.

In terms of cell dosage, 25 x 10° and 50 x 10° pCPC
were selected considering cell sizes and taking as a
reference previous works with CDC. CDCs are re-
ported to be ~20um in diameter [5, 28], and the
maximum dose of CDC that can be safely adminis-
tered in acutely infarcted swine is 12.5x 10° [28].
However, pCPC used in this study are between 13
and 14 pm in diameter [1]; so, we hypothesized that a
greater amount of cells could be administered safely.
Moreover, any signal of danger during injection would
be detected in the present work.

We therefore used a large animal model to investigate
homing of radiolabeled allogeneic porcine cardiac cell
(pCPC) populations in the ischemic myocardium and to
explore dose-dependent effects on structural and func-
tional infarct remodeling using serial, comprehensive
MRI imaging. These pCPC have been obtained and ex-
panded following equivalent protocols as their human
counterparts (CPC) [20, 21]. Our results indicate that
pCPC administration via the infarct-related coronary ar-
tery, at a previously defined optimal time window [1], is
safe and associated with beneficial dose-dependent func-
tional and structural improvement in the infarcted por-
cine heart.

Methods

Isolation and culture of pCPC

The isolation and culture of swine CPC (pCPC) were
performed as previously reported [1]. pCPC were ex-
panded over three passages (Additional file 1) and then
cryopreserved in a medium with 5% of dimethyl sulfox-
ide (DMSO). A second expansion was performed to ob-
tain the final product, used for in vivo administration.

Characterization of pCPC

pCPC were characterized by flow cytometry, real-time
quantitative PCR (RT-qPCR), and enzyme-linked im-
munosorbent assay (ELISA). The migration-promoting
capacity of conditioned medium (CM) was also evalu-
ated. These procedures are detailed in Additional file 1.
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Flow cytometry

The expression of pCPC surface markers was analyzed
by flow cytometry, using the antibodies indicated in
Additional file 1.

RT-qPCR and genomic PCR

Total RNA was isolated from two different batches of
pCPC (pCPCO01 and 03). Reverse transcription quantita-
tive PCR (qPCR) was carried out using TagMan probes
(Invitrogen) in triplicate for each sample and each gene.
For the detection of male swine genomic sequences (Y
chromosome), genomic DNA PCR was carried out using
previously described primers and indicated conditions.

ELISA

Using pCPC- and CPC-conditioned medium prepared in
parallel with the concentrations of monocyte chemo-
attractant protein 1 (MCP-1 or CCL2), insulin-like
growth factor 1 (IGF-1), transforming growth factor 1
(TGF-B1), stromal-derived factor la (SDF-la or
CXCL12), and hepatocyte growth factor (HGF) were
measured with ELISA kits (R&D Systems Inc., Minneap-
olis, MN), according to the manufacturer’s instructions.

Transwell migration assay

pCPC- and CPC-conditioned media were evaluated, fol-
lowing standard methods, for their capacity to induce
migration of MonoMac-1 cell line (DSMZ) in Boyden
chambers with 5 um pores. The migration index was cal-
culated as the ratio between the number of migrated
cells in response to different stimuli (mean of the dupli-
cates minus background) and the cells migrated in the
absence of a stimulus (background).

'8F-FDG labeling of pCPC

"E_-FDG uptake was optimized for labeling 2% of the
total cell dose to be administered. Aliquots of 0.5 x 10°
cells were labeled using a dosage of 100 uCi of *F-FDG
by incubation 60 min at 37 °C in glucose-free Dulbecco
modified Eagle medium (DMEM) supplemented with 5%
human serum albumin. Cells were then washed twice
with phosphate-buffered saline (PBS) and resuspended
in warm DMEM for implantation. Supernatant and pel-
let (cells) radioactivity were measured in a dose calibra-
tor. A trypan blue viability test was performed to
calculate cell viability before and after radiolabeling.

Large animal model experimentation

A total of 28 infarcted female large white swine were
used for the dose-response study, 6 healthy swine for
the acute safety, and 7 additional infarcted swine for
biodistribution analysis. The studies performed are
summarized in Fig. 1 and detailed in Additional file 1
(Fig. 1a, b).
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Fig. 1 Large animal studies. Experimental workflow. a Flow chart illustrating the study design in large white swine. b AMI induction, treatment
and sacrifice timetable, AMI indicates acute myocardial infarction. pCPC, cardiac stem/progenitor cells isolated from large white swine. LAD, left
anterior descending coronary artery; CMR, cardiac magnetic resonance; PET, positron emission tomography
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Statistical analysis

Data are presented as means + standard deviations. Dif-
ferences between the groups were identified and com-
pared using the Kruskal-Wallis and Mann-Whitney U
tests, and intragroup comparisons were performed with
the Wilcoxon paired samples test. Values of p<0.05
were considered significant. All p values were the results
of two-tailed tests. Calculations were performed using
the SPSS 18.0 statistical package for Windows (SPSS
Inc., Chicago, IL).

Results

Comparative characterization of swine cardiac progenitor
cells

pCPC were isolated and expanded similarly to their hu-
man counterparts tested in the CAREMI clinical trial [1,

23]. To ensure genetic stability in pCPC, karyotype ana-
lyses were performed at different moments of the expan-
sion process. These studies did not reveal any significant
alteration in genetic stability (Additional file 1: Figure
S1A). The same result was obtained for human CPC by
comparative genomic hybridization (CGH), as previously
reported [23].

Cytometric analysis of several pCPC isolates (Fig. 2a)
showed positive expression of CD90 (Thyl), CD105
(endoglin), low expression for swine leukocyte antigen
class I (SLA-I), and negative for CD45, CD86, and swine
leukocyte antigen class II SLA-II. Moreover, pCPC do
not express CD34 nor CD31 (PECAM), recapitulating
the profile described for human CPC [1, 14, 19, 20, 24].
An extended characterization is shown in Additional file 1
for four batches of pCPC and mesenchymal stem cells
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Fig. 2 Phenotypic and functional characterization of pCPC. Comparison with hCPC. a Swine CPC characterization by flow cytometry. Expression of
CD90, CD105, CD45, SLAI, SLAIL, and CD8&6 is shown (empty histogram) and the number of positive cells is indicated (%). Gray-filled area represents
isotype control. b RT-qPCR analysis of PECAM1 (CD31), GATA4, and GATAG expression in the pCPC batches. Ct value for each sample/gene analyzed.
There are no significant differences between the batches used. The average expression normalized to beta-2-microglobulin (32M) is shown. Error bars
represent SD (n=3). ¢ Comparative expression analysis of F11R and CACNG7 membrane makers, in both swine and human isolates; three
independent isolates were compared for each cell type. The assay was performed three times, and data are expressed as mean + SD;
black lines indicate the p value summary (***<0.002, **< 0.02, *< 0.05) (one-way analysis of variance followed by the Bonferroni multiple
comparison test). d Porcine CPC (n=4) secretome characterization by ELISA compared to human CPC (n=3) secretome. The results are
expressed as mean +SD in pg/mL. e Migration assay. Conditioned medium (CM) of human cells (CPC1, CPC3, MSC, and HDF), were
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from bone marrow (BM-MSC) or adipose tissue (ADSC)
(Additional file 1: Figure S1B). Several markers are com-
mon and highly expressed in all cell types: CD29, CD44,
CD90, and CD105 whereas others including CDA40,
SLA-II, and CD86 are barely expressed. CD31, GATA 4,
and GATA 6 genes were confirmed by RT-qPCR show-
ing similar results to those obtained with the CPC from
human origin (Fig. 2b).

Based on complementary previous analyses, both with
CPC [29] and pCPC (Prat et al. 2019, in preparation), an
important global similarity between porcine-derived
CPC and human-derived CPC was established. We then

validated some of the array-based findings analyzing by
RT-qPCR expression of FI1R (F11 receptor) and
CACNG?7 (calcium channel, voltage-dependent, gamma
subunit 7), both proposed as CPC markers [29]. Both
genes demonstrated a similar expression profile, by
RT-qPCR, in pCPC and CPC (Fig. 2c), although with
more variable expression levels between pCPC isolates.
Increasing evidence supports that current cell therapy
approaches improve cardiac function mainly via para-
crine mechanisms, with extracellular particles playing an
important role [30, 31]. In order to provide evidences of
a substantial functional analogy of pCPC with hCPC, we
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first evaluated their secretome, preparing a selection of
cytokines that have been demonstrated to be present in
hCPC secretome at higher levels than in MSC- and
HDF-conditioned medium [14]. We thus compared by
ELISA the production of five proteins by both hCPC
and pCPC, specifically two chemokines (CCL2 and
CXCL2), two growth factors (IGF-1 and HGF), and one
cytokine (TGFb1).

Human CPC secreted significantly higher amounts of
CCL2, IGF-1, TGFB1, CXCL12, and HGF than pCPC
(Fig. 2d); however, the absolute differences may be
accounted for by the use of human-specific ELISA kits
and suboptimal cross-reactivity in pigs.

Finally, we evaluated the capacity of pCPC to stimulate
migration of MonMac-1 cells using conditioned medium
(pCPC-CM) of two different cell lines (pCPC3 and
pCPC5). This activity is related to the capacity of pCPC
to produce and secrete the aforementioned chemokines.
pCPC-CM was compared to CM obtained from human
CPC (CPC1, CPC3), MSC, human dermal fibroblast
(HDF), pMSC from adipose tissue, and immortalized pig
alveolar macrophages (IPAM) (Fig. 2e). pCPC-CM pro-
moted greater migration than pMSC-CM or IPAM.
However, the activity was lower than that observed with
human CPC-CM.

In summary, these results show that pCPC appear to
have a weak immunogenic profile with negative expres-
sion of SLA-II and low expression of SLA-I (equivalent
to HLA expression in human CPC), which may support
their in vivo application in allogeneic setting. Addition-
ally, phenotypic analysis of surface membrane markers,
genes expression, and migration assays in pCPC show
strong similarities to their human counterparts.

Safety and biodistribution analyses after intracoronary
pCPC administration in infarcted swine

The intracoronary (IC) administration of different doses
of allogeneic pCPC (25 x 10°cells, # =11 [25M group];
50 x 10° cells, n=7 [50M group]) or vehicle (n=7;
CON) was analyzed. Three animals died during infarct
induction due to refractory arrhythmias. Infarction was
successfully induced in 25 surviving animals, as demon-
strated by increased cTnl values 24 h after balloon infla-
tion. No differences were seen between the groups in
any MR-derived parameters on day O (pre-injection,
Table 1), thus confirming that both AAR and infarct
sizes (which ranged from 23.4 to 27.3% and from 13.4 to
16.7%, respectively), and their effects on functional pa-
rameters (LVEF, EDVi, and ESVi) were comparable in all
groups prior to pCPC or vehicle injection. Administra-
tion of pCPC or vehicle was performed 7 days after in-
farction, without major adverse cardiac events during or
after injection in any group (Fig. 3a, b). Moreover, slight
increases in cTnl were observed in the treated groups
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after intervention (Fig. 3a) but remained within a clinic-
ally acceptable range. One animal belonging to group 50
M showed TIMI2 coronary flow after injection but re-
covered after nitroglycerine administration (400 pg). One
animal belonging to the 25M group died during
follow-up, 4 weeks after pCPC injection. Necropsy in
this animal did not show significant lesions in any organ;
no cause of death could be identified.

Measurements of plasma cytokines revealed that six out
of nine cytokines (ie., IFNy, IL-4, IL-8, IL-10, and
IL-12p40) were undetectable, which could be related to
the detection limit of commercially available swine im-
mune reagents. In contrast, IL-1p, IL-6, and TNF-a levels
were detected. No significant difference was found for
IL-1P in any of the groups. However, the pro-inflamma-
tory cytokines IL-6 and TNF-a were significantly in-
creased 24 h after infusion of 50 x 10° allogeneic pCPC. In
contrast, intracoronary administration of vehicle (CON
group) and 25 x 10° pCPC did not cause any significant
changes in these pro-inflammatory cytokines over time
(Fig. 3c and Additional file 1: Table S1).

To study cell homing and biodistribution in the in-
jured myocardium, a separate group of infarcted animals
(n=7) received an IC infusion of ®*F-FDG-labeled pCPC
(50 x 10°cells/animal) and biodistribution analysis was
performed using PET-CT at 4h after administration
(Fig. 3d—f). PET results indicated that a substantial frac-
tion (18%) of the transferred *F-FDG-labeled pCPC was
detected in the heart, followed by uptake in the bladder
(11%), lungs (4—6%), and liver (4%) and low level in the
spleen (< 1%). These data show cardiac tropism, coron-
ary clearance, and substantial myocardial tissue retention
of pCPC, indicating their safety and suitability for coron-
ary injection.

Dose-response after IC pCPC administration in infarcted
swine

Cardiac function parameters derived from CMR studies
are presented in Table 1. Interestingly, early after trans-
plantation, there was a significant decrease in edema in
both treatment groups (Fig. 4) 1 week after pCPC injec-
tion (the percentage of edema at a mid-ventricular slice
decreased from 27.3 + 8.4% to 15.0 £ 4.2%, p = 0.009, in 50
M animals; from 25.2 + 6.6% to 14.2 + 54%, p = 0.002, in
25M animals). In contrast, in CON animals, this change
was not significant (edema decreased from a pre-injection
value of 23.4 + 5.9% to 18.7 + 4.4%, p = 0.128).

The analysis of the evolution of the studied cardiac
function parameters (Table 1) indicated significant de-
creases in LVEF from baseline to day O (7 days after in-
farction and just before IC pCPC or vehicle injection),
followed by a progressive recovery from this time point
to 10 weeks, that proved significant only in the 50 M
group (preinjection 40.5 + 6.54%, 10 weeks 50.2 + 4.9%, p
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=0.021). Similarly, ventricular volumes increased signifi-
cantly from baseline to 1 week after myocardial infarc-
tion in all groups, followed by a trend towards recovery
in both cell treatment groups, so that in the 50 M group,
EDVi and ESVi at 10 weeks were not significantly differ-
ent (p=0.128) from pre-infarction values, while dilata-
tion further increased in CON animals. Treatment
effects (defined as the difference between pre-injection
and 10 weeks values) are shown in Fig. 5a—c. The change
in LVEF was much greater in 50 M animals compared to
25M and CON (ALVEF was 9.7+ 6.9% in 50 M, 4.9 £
34% in 25M, and 4.1+3.8% in CON, as shown in
Fig. 5a). The changes in LVEF in the 50 M group were
accounted by a trend towards less dilatation (Fig. 5b) but
most predominantly by a significant (p = 0.025) decrease
in ESVi with volumes approaching pre-infarction ranges
(Fig. 5c¢). Interestingly, the magnitude of ESVi changes
over this period showed improvements in both treated
groups, reflecting also a slight reduction in the 25 M

group.

Myocardial salvage index (MS], Fig. 5g), obtained from
area-at-risk measurements on T2W images (Fig. 5e) and
final infarct size determinations on corresponding
mid-ventricular slices (Fig. 5f), was 0.35 £ 0.20 in CON,
significantly lower than in treatment groups (MSI = 0.61
+0.20, p=0.04, in 25M; MSI=0.63+0.17, p =0.01, in
50 M), suggesting a cardioprotective effect of the admin-
istered cells (Fig. 5g). This functional improvement,
however, was not accompanied by statistically smaller
scar sizes (Table 1) when the three groups were com-
pared, despite a clear trend towards smaller infarct sizes
in the 50 M group at 10 weeks (5.9% + 4.1% versus 8.7%
+52% in the 25M group and 8.3% +2.8% in CON).
Within groups, however, infarct size decreases were sig-
nificant in both CON and 50 M groups (p < 0.05).

Assessment of scarred and viable myocardium

After euthanasia, engraftment of transplanted male
pCPC cells was inferred from the analysis of Y chromo-
some sequences (from the administered cells) in female
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recipient swine. No male sequences were amplified in
any of the samples studied at 10 weeks after pCPC treat-
ment (Additional file 1: Figure S2A), suggesting that
most of the beneficial lasting effects must be due to the
pCPC-mediated paracrine effects and not to the stable
engraftment or any derived progeny [11].

Pathological analysis of cardiac samples from all an-
imals found no evidence of teratoma formation in any
case (Additional file 1: Figure S2B). Overall, at the
time of euthanasia, inflammation was limited, necrosis
mild, and calcification mostly absent, except for one
CON animal. Interestingly, post-infarction fibrotic
scars, which were graded severe in CON [4], were
scored as slight [1] or mild [2] in 25 M and 50 M, re-
spectively (p =0.031). In CON swine, this fibrosis con-
stituted a wide, well-formed band, while scar tissue in
cell-treated animals was less organized with collagen
fibers interspersed with variably sized clusters of vi-
able cardiac myocytes (Fig. 6a).

Finally, morphometric evaluation of angiogenesis be-
tween the groups found no differences in the total amount
of vessels, but the distribution of vessel sizes was signifi-
cantly different between the groups (p = 0.031, Fig. 6b, c).
Post hoc comparisons showed this difference to be related

to a greater representation of medium-sized vessels in
cell-treated groups, suggesting a more mature angiogenic
response compared to CON; the difference was statisti-
cally significant (p = 0.008) in the 50 M group (Fig. 6b).

Acute and sub-acute toxicity

For safety studies, according to the regulatory require-
ments, healthy non-infarcted female swine received allo-
geneic pCPC, without any immunosuppressive regimen,
in order to assess immediate or short-term adverse ef-
fects or toxicity of the administered cells. Animals re-
ceived 35 x 10° allogeneic pCPC (1 =6) via IC infusion,
the highest dose of human CPC that was evaluated in
the CAREMI clinical trial [23, 24]. Coronary flow was
not affected by pCPC infusion (TIMI=3 in all cases,
both before and after cell administration). No
ST-segment elevations or cardiac events were observed
during injection. cTnl increased slightly after interven-
tion but remained within clinically acceptable values that
are attributable to the percutaneous intervention
(Fig. 7a). No hyperenhanced areas were identified on
follow-up DE-CMR examinations (Fig. 7b). Three weeks
after cell administration, histological analysis showed no
signs of toxicity (Fig. 7c) or inflammatory process against
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allogeneic cells, both of which, if present, might suggest
a strong immune rejection of infused allogenic cells [4,
32]. These findings in healthy immunocompetent ani-
mals further support the safety of IC allogeneic pCPC
treatment for acute myocardial infarction.

Discussion

Myocardial infarction and its associated hemodynamic
overload trigger a compensatory left ventricular hyper-
trophy that eventually evolves into maladaptive remodel-
ing. Although current treatments have dramatically

decreased the incidence of AMI-related deaths, paradoxic-
ally, this has contributed to an epidemic of chronic ische-
mic heart disease [7]. Due to the limited success of
traditional therapies, research in stem cell-based therapies
has intensified as an alternative that could counteract
deleterious heart remodeling. Since 2001 [33], numerous
pre-clinical and clinical trials have rendered disparate and
mostly insufficient results [34]. A report based on individ-
ual patient data from several randomized controlled trials
concluded no statistically significant benefit, in terms of
clinical events or changes in LV function after the IC
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administration of several modalities of cell therapy [35].
Several factors influencing response must be considered,
related not only to the patient’s clinical condition and
immunocompatibility profile [19] but also to the manufac-
turing procedure. For example, the use of low oxygen ten-
sions seems to influence both the yield and the genetic
integrity and functionality of expanded cells in different
cell lineages [36, 37].

The allogeneic adult heart-derived swine cells used in
the present work were isolated, like their human coun-
terparts in the CAREMI clinical trial, by a positive
immunomagnetic selection of c-kit. The evolution of
c-kit expression was similar to that previously described
for human CPC: c-kit was detectable in the first passage
in all batches (around 12%), but in later passages
(P2-P6), c-kit expression was undetectable. Previously,
other authors have reported a similar loss of c-kit ex-
pression during cell expansion and culture of cardiac
mesenchymal cells [38] and cardiac progenitor cells [39].

Our study was designed to first test bioequivalence of
allogeneic pCPC and CPC and second to evaluate safety

biodistribution and dose response of pCPC in a random-
ized preclinical study performed with blinded outcome
assessment in a relevant large animal model. First, aim-
ing to limit the deleterious effects of oxidative stress,
concomitant to the ex vivo cell expansion [36, 37] (gen-
etic instability, senescence, and reduction of therapeutic
properties), pCPC were cultured in forced low O, ten-
sion (3%), equivalently to CPC in CAREMI [23, 24]. This
protocol renders the required CPC/pCPC numbers with
less culture passages (higher duplication rate) and with
less signs of aging/senescence [14, 19, 24]. Here, we
demonstrate that pCPC show a substantial phenotypic
and functional profile similarity to CPC. Therefore, from
this perspective, pCPC/CPC are obtained in optimized
conditions, probably non-directly comparable with the
majority of the other clinical trials.

Furthermore, there is no definitive approach to
optimize both survival and biological effect of trans-
planted cell populations. Preliminary work with pCPC
established that the intracoronary injection of allogeneic
cardiac progenitor cells (25 x 10°) in infarcted pigs is
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safe, both on the same day or 1 week after experimental
infarction, although the biological effects on limitation
of left ventricular remodeling were stronger when ad-
ministration was delayed 1 week after infarct induction
[1]. Comparable results have been found using MSC in
the rat AMI model [40]. Therefore, we used the same
administration scheme for this advanced preclinical
study. Interestingly, pCPC administration in infarcted
swine induced a clear and significant reduction (45%) of
edema in both pCPC-treated groups compared with the
CON group, analyzed 1 week after pCPC administration.
Myocardial edema has functional relevance because the
extent of edema correlates with the transmural extent of
infarction, hindering myocyte contractility [41]. Recently,
it has been reported, both in humans and swine, that
myocardial edema presents a bimodal pattern. The first
wave is transient (24 h) and strictly attributable to reper-
fusion; then, immune infiltration starts and a slower but
progressive wave develops peaking 1 week after infarc-
tion. It is thought that this second wave parallels the ini-
tiation of the healing process [41, 42]. pCPC were
administered 1 week after AMI, aiming for a better

survival upon transplantation. Based on the recent new
view of myocardial edema development and impact, we
can conclude that pCPC administration may well inter-
fere with further edema expansion, which could be re-
lated to better functional preservation.

The doses of pCPC evaluated in this work (25 M, 50
M) are among the highest reported in cardiac-derived
progenitors IC administration in swine, which range
from 5x10° to 12.5x10° [2, 4], although higher
amounts have been injected transendocardially (up to
150 x 10° CDC) [15]. It has been always assumed that
retention of transplanted cells is more efficient using
intramyocardial administration, since the coronary circu-
lation cannot efficiently wash out the cells. Some re-
ports, however, have described an unexpected rapid
venous washout, rendering a similar retention by the
two methods [43, 44]. Another route that has been pro-
posed to safely administer high cell doses is the intraper-
icardial administration [45, 46], but few reports have
evaluated this approach to date, and mostly in a chronic
setting. In this scenario, we opted for IC administration
since it does not cause unnecessary heart damage and is
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widely available in most hospitals. A flat dose-response
relationship has been previously described in infarcted
rats with IC doses of 0.75-3 x 10° CPC, showing similar
functional beneficial effects 35 days after administration
[27]. In contrast, we did find a dose-dependent improve-
ment in functional parameters.

Doses greater than 25 x 10° CDC have been reported
to be deleterious in prior large animal studies [5], in-
creasing ¢Tnl in a dose-dependent manner. In the
present study, we report the beneficial effects of both
25 x 10° and 50 x 10° heart-derived cells. The main dif-
ference between that study and ours that could account
for the different results lies in the infusion protocol.
While Johnston et al. report an optimization of the solu-
tion (cells and vehicle) that they are injecting, no men-
tion is made to the infusion protocol. We, on the other
hand, use a micro-aggregate filter with a pore size of
40 p and inject at 2 mL/min during 3 min, followed by a
3-min rest period to allow for cell extravasation. The in-
jection cycle was repeated to the total dose depending
on the group. With this infusion protocol, we were able
to administer our intended doses without cTnl reaching
clinically significant increases, as shown in Fig. 3a (spe-
cifically, post-infusion c¢Tnl values were 0.2 + 0.2 ug/L in
CON, 0.3+0.7 pug/L in 25 M, and 0.3 + 0.5 pg/L in 50 M
animals). Moreover, and independently of the dose used,
MSI was doubled in both treated groups compared to
control animals. MSI has been recently reported to allow
for a 46 to 65% decrease in sample size in cardioprotec-
tion trials, when compared to infarct size alone [47].

As additional safety criteria, the comparative evaluation
of the inflammatory status (24 h before and after pCPC
administration) in the three groups (CON, 25M, 50 M)
only showed detectable levels of pro-inflammatory cyto-
kines IL-1B, IL-6, and TNF-a. Of these, only IL-6 and
TNE-a were significantly increased after IC administration
of 50 x 10° pCPC. This could be considered as a “danger
signal” of acute damage, although TIMI flow post-injec-
tion seemed to be unaffected by the infusion and plasma
cTnl levels were considered non-clinically significant. We
cannot discard that, as suggested for CDC administration
[48], a minor fraction of pCPC could be partially en-
trapped in the capillaries (undetectable by angiography)
resulting in a focal acute inflammatory injury. However,
our safety studies in healthy, non-infarcted swine do not
support this possibility. A transient, mild, local immune
reaction in the heart, without histologically evident rejec-
tion or systemic immunogenicity, has been described with
allogeneic CDC in the rat model [6]. Alternatively, these
altered plasma values could be also partly attributed to
pCPC’s intrinsic secretion capacity of chemokines, growth
factors, and cytokines. The role of these factors could be
to promote angiogenesis, cell survival, and the prolifera-
tion and differentiation of cardiac precursors. CPC
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comparative secretome profile has been recently defined,
and TNF-a and IL-1f are highly preferentially secreted by
CPC. In the case of IL-6, it has been found to be secreted
at high levels (~ 20 ng/mL) [14]. Moreover, recent studies
have shown that IL-6 is produced by all major
sub-populations within cardiac explant-derived stem
cells, including those cell subsets with a c-Kit+
phenotype [49]. Therefore, administration of high
doses of pCPC could contribute to a transient incre-
ment of circulating cytokines.

A recent meta-analysis of preclinical studies using only
cardiac-derived progenitor cells has reported an overall
effect of 10.7% improvement in LVEF compared with
placebo [50]. As expected [51], when considering only
large animal studies, CPC therapy elicited only a mean
5.2% (95%CI 3.4-7.1) improvement in LVEF compared
to control animals [50]. In our study, this difference was
within range in the 25M group and higher in the ani-
mals receiving the high cell dose (50 M group). More-
over, beneficial effects were also evidenced in ventricular
volumes, which decreased over time in both groups,
when comparing end study determinations with those
obtained before therapy. Among CMR-derived surrogate
endpoints for clinical trials, MSI (an indicator of myo-
cardium salvage) is receiving increasing interest, as the
field turns to cardioprotection. This parameter gives a
reasonable estimation of the benefit of a therapy, allow-
ing comparisons between different infarct sizes, by de-
creasing the interpatient variability associated with
absolute infarct size measurements [47, 52]. Interest-
ingly, MSI in the present study was increased twofold in
both treated groups, compared to CON, a finding that
was associated to improved functional results in the
treated animals, especially in the 50 M group. Reduced
fibrosis and enhanced angiogenesis were also demon-
strated, but these were not accompanied by any sta-
tistically significant inter-group reduction in scar size.
This could be related with the delayed administration
of pCPC that, although beneficial for cell survival,
could allow the early development of fibrotic signals
that were not timely counteracted. Eventually, com-
bined strategies could help to extract the maximum
benefit of CPC-based treatments.

The functional and physiologic similarities between
pig and human cardiovascular systems and, in particular,
the similar size between pig and human hearts allows for
easy extrapolation of the therapeutic dose. The studies
presented showed functional improvement in infarcted
pigs 10 weeks after IC delivery of 25 or 50 million of
allogeneic pCPC cells, evaluated by cardiac magnetic
resonance imaging and histological assessment. These
results are in line with clinical trial data using a similar
dose of 25 million, if autologous, cardiac-derived pro-
genitors [53]. The results reported in the present work,
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as well as other clinical considerations, set the ground
for CAREMI clinical trial design and approval [23], as a
double-blind, controlled, randomized (2:1), and multi-
center I/II trial, with a dose-escalation phase. The target
dose for CAREMI was fixed at 35 x 10° allogeneic hu-
man CPC. This dose is within the efficacy range tested
in the present study in a homologous model (pCSC in
swine), conservative in terms of safety, and proven to be
safe in non-infarcted animals.

In this field, the concept of allogeneic-driven benefit
has been recently introduced, and initial results are en-
couraging [6, 54], suggesting that these cells might have
advantages compared with their autologous counter-
parts. Consolidation of the concept would be critical for
off-the-shelf product development in cellular cardiomyo-
plasty. ALLSTAR (NCTO01458405) [22] and CAREMI
(NCT02439398) [23] are the first clinical trials address-
ing the evaluation of allogeneic CDC and CPC, respect-
ively, in the context of adults who have experienced a
large heart attack with residual cardiac dysfunction
(LVEF <45%). These trials have both reported very good
safety profiles but have failed to establish efficacy. Data
on 1-year follow-up from CAREMI demonstrated that
CPC were well tolerated during the acute and sub-acute
phases of infarct, with no immune-related adverse event
reported. In addition, low (and clinically irrelevant)
levels of donor-specific antibodies anti-HLA were only
found in a minority of patients (6.4%). Concerning in-
flammation status, a significantly greater reduction in
C-reactive protein levels, up to 1 month after CPC trans-
plantation, was reported. However no statistically signifi-
cant difference in infarct size, as the only end-point, was
found. In order to demonstrate any positive efficacy re-
sult, the authors propose that further studies should first
evaluate the optimal administration guidelines (including
higher doses of CPC or multiple administrations) and
focus on patients with better-identified risk of adverse
remodeling [24]. On a similar note, available ALLSTAR
interim results regarding phase II primary efficacy end-
points (% of change in infarct size as measured with
c¢MRI from baseline to 12 months) showed no significant
change in scar size between 6 and 12 months. Consider-
ing that the probability that any effect would be ob-
served at 12 months was very low, all patients were
transitioned to annual follow-up. In this case, the inves-
tigators suggested to look at the effects of matched ver-
sus unmatched cells [55].

Another approach that has been proposed is the
combination of MSC and CSC, which in the case of
the CONCERT-HF trial were autologous cells and ad-
ministered transendocardially (NCT02501811) [56].
One cannot ignore, however, the turmoil in the field
of cardiovascular cell therapy following the retraction
of over 30 studies that were the basis for some of the
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early clinical trials [57]. The repercussions are severe
and include, among others, an expression of concern
having been issued regarding some results published
in high-level scientific journals [58], the NHLBI de-
ciding to pause the above-mentioned CONCERT-HF
trial, specifically citing concerns on the scientific val-
idity of the ckit+ literature [59], along with a wide-
spread loss of public confidence and a call for better
science. In our opinion, this should be construed as
an opportunity to improve, rather than a setback, to
conduct better science and, as has been suggested re-
cently, increase studies in large animal models that,
like our own, more closely mimic the clinical in vivo
scenario [57] before jumping to the clinical arena.
Proof of concept large animal studies are, in this set-
ting, vital. These studies may be technically demand-
ing, expensive, or complex, but at the same time,
they are essential to not only improve clinical out-
comes, but also to justify the risks and costs inherent
to clinical trials [60].

The limitations of this study are related to the use of
healthy, young swine to model myocardial infarction,
while the typical patient with this condition is older and
presents with co-morbidities and risk factors that affect
the response to any therapy. We did not conduct any
arrhythmia testing in this study, so we cannot discard
that the animal from the 25 M group that died 5 weeks
after AMI had a fatal arrhythmia. However, several pre-
vious studies have reported no arrhythmogenicity by
cardiac-derived cell products [5, 15], so we do not con-
sider it likely. Moreover, the CAREMI trial did not find
any substantial arrhythmogenic event, among the 55 re-
cruited patients, 6 months after treatment [23, 24]. In
addition, the follow-up of the experiments was short of
necessity. Despite being kept on a restricted calorie diet,
farm swine growth rate prevents longer CMR-based
studies, since the animals do not fit in the magnet bore.
Another limitation is that we did not examine the pro-
duction of extracellular vesicles by pCPC. However, exo-
somes from CDCs have been previously evaluated in an
acute and chronic porcine myocardial infarction [61].
Based on that, it is expected that pCPC cells will also re-
lease exosomes, but we did not specifically look into
them.

Conclusions

Taken together, the results indicate a dose-dependent
benefit of the administered cells (allogeneic pCPC;
1 week after experimental myocardial infarction) on glo-
bal cardiac function. pCPC-treatment of infarcted ani-
mals prevents cardiac remodeling preserving heart
function, as indicated also by the greater MSI. This ef-
fect is associated with a reduced extension and severity
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of fibrosis, facilitating also mature angiogenesis. No ef-
fect on inflammatory infiltration, degree of necrosis, or
calcification was demonstrated. Preclinical safety and ef-
ficacy results supported the CAREMI clinical trial.

Additional file

Additional file 1: Detailed methodology and supplementary

data. Figure S1. Extended characterization of pCPC. Figure S2.
Engraftment and anatomopathological analysis of pCPC transplanted
hearts. Table S1. Plasma cytokine levels before and 24 h after each
treatment. (ZIP 771 kb)
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