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Background
Cancer is a genetic disease, but not all genes are related to cancer. By almost universal 
consensus, cancer is now viewed as resulting from changes in some key regulatory 
genes  [1]. At present, researchers have defined several kinds of cancer-related gene 
sets. One widely used kind of gene set is that of cancer driver genes, which are defined 
as genes whose mutations increase net cell growth under the specific microenviron-
mental conditions that exist in the cell in  vivo. This kind of gene can be predicted 
by finding ‘significantly mutated genes’, whose mutation rates are significantly higher 
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than the presumed background somatic mutation rate  [2–4]. However, since it is dif-
ficult to construct a reliable background mutation model [5], selecting gold-standard 
driver genes by frequency-based methods is difficult. Another kind of cancer-related 
genes are so-called ‘cancer genes’, including oncogenes, which function as positive 
growth regulators, and tumour suppressor genes (TSGs), which function as negative 
growth regulators. These genes are directly related to the phenotypes of tumour and 
normal genes and can be predicted by differential gene expression analyses. However, 
some ‘dark’ genes play important roles at the network level but are generally ignored 
by traditional differential gene expression analyses [6, 7].

By using graph theory algorithms, we can find critical vertices to control a network. 
For example, [8] developed a feedback-based framework that provides realizable node 
overrides that steer a system towards one of its natural long-term dynamic behav-
iours; [9] provided a rational criterion for selecting key molecules to control a system 
with a feedback vertex set (FVS);  [10] proposed a network control strategy to find 
driver mutations that drive a regulation network from the normal state to a disease 
state; and  [11] considered applying minimum feedback vertex sets (MFVS) to real 
biologically directed complex networks and found essential proteins in both Drosoph-
ila melanogaster and Homo sapiens organisms.

Given a directed network, a feedback vertex set (FVS) is a set of vertices whose 
removal leaves the remaining network acyclic. The minimum feedback vertex set 
(MFVS) is a kind of FVS that has the minimum size among all possible FVSs. The 
MFVS problem has been proven to be NP-complete  [12]. There already exist many 
algorithms for solving the MFVS problem, including approximation algorithms [13], 
randomized algorithms [14], parameterized algorithms [15] and exact algorithms [16, 
17].

Generally, a network can have multiple MFVSs. Traditional MFVS algorithms ignore 
the differences among possible MFVSs, and the output is usually random. This random-
ness leads to the instability of network analysis methods in practice. To find the best 
output from multiple MFVSs, in this paper, we consider a variation of the MFVS prob-
lem, i.e., each vertex is assigned a weight, and the output is the maximum total weighted 
MFVS. The assigned weight should reflect the significance of the corresponding vertex, 
which may involve some biological data from other studies (for example, in our experi-
ments, we utilize the differential expression value to compute the weights). We define 
this problem as a weighted MFVS (WMFVS) problem.

To solve the WMFVS problem, we modified an exact algorithm from [17], which first 
compresses the original graph  [18, 19] to reduce the number of vertices and arcs and 
then utilizes an integer linear programming (ILP) method for the compressed graph. 
Our WMFVS method can be roughly separated into three parts, i.e., graph compression, 
MFVS size determination and output optimization. The first two parts use the same 
idea as  [17], and the third part uses the modified ILP method to select the maximum 
weighted MFVS.

Furthermore, we consider a variation of the WMFVS method that pays more attention 
to the total weight of an FVS than to its size; i.e., it finds the maximum-weighted FVS. 
We call this method WFVS. In the next sections, we can see that WMFVS has a higher 
precision than WFVS, while WFVS has an advantage in recall.
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Results
Data sets

In this study, we used the directed human protein interaction network  [20] for the 
analyses; it contains 6338 genes (vertices) and 34814 directed interactions (arcs). To 
evaluate the relative prediction accuracies for cancer genes between our methods and 
existing methods, we collected cancer-related gene sets from five public databases: 
ONGene [21], TSGene [22], CGC [23], NCG [24] and MSigDB C6 [25]. Since not all 
genes from the data sets are contained in the directed human protein interaction net-
work, we filtered the common genes in both a certain data set and the network. The 
sizes of these data sets are shown in Table 1.

In the rest of this paper, when we calculate the recall of various methods, we con-
sider only the size of the common gene sets.

Weight definition

To define the weights of genes, we first downloaded the RNA-seq data from 
TCGA [26], which contains gene expression data from 1102 breast tumour samples 
and 113 normal samples. Next, the counts of level 3 RNASeqV2 data were processed 
and transformed before being used for further analysis  [27]. Specifically, we used 
the fold change (FC) value (with the binary logarithm and absolute value) between 
tumour and normal samples as the weight of each vertex (gene). For a specific gene v, 
its weight is calculated by the following formula:

where Ti is the expression value of tumour sample i, Nj is the expression value of a nor-
mal sample j, and n and m are the numbers of tumour and normal samples, respectively. 
Intuitively, a high FC value corresponds to a high possibility of a cancer gene. Thus, it is 
reasonable to use the FC values as the weights of genes.

For the genes that appear in the network but have no expression values in the TCGA 
data (only 143 genes, 2.3% of the network size; these are called weight-loss genes), 
we gave them default weights of 0 rather than ignoring them; thus, if such a gene is 
essential at the topological level, it has the potential to be selected as a cancer gene, 
which may counteract the disadvantage of the traditional differential expression-
based methods in dark gene-revealing and missing-data situations. Finally, all 6338 
genes in the graph were weighted. The topological structure of the graph remained 
the same as in the original protein interaction network.
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Table 1  Size of each data set and the number of genes contained in the network (common genes)

ONGene TSGene CGC​ NCG MSigDB

Number of genes 803 1217 723 2372 10,962

Common genes 490 641 525 1210 4184
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Experiments and evaluation

The whole experiment process is shown in Fig. 1.
First, we analysed the directed human protein interaction network with traditional 

MFVSs and obtained a set of 463 vertices. Then, we used our WMFVS method on the 
same network (the weights were derived from the FC values). We also used the inverses 
of the weights as the penalty values and applied them to our WFVS method.

Because of the non-uniqueness of the MFVS method, it is not a general evaluation if 
we consider only one MFVS result. Therefore, we calculated a set of random MFVSs by 
applying the WMFVS method with randomly shuffled gene weights. First, we planned to 
compute 1000 random MFVSs for analysis. However, since the Gurobi optimizer (ver-
sion 8.1.0) does not always output a real optimal solution (e.g., even when we restrict 
the size of the output to be exactly 463, which is the size of the MFVS, sometimes the 
sizes of the output are smaller than 463), we filtered the obviously incorrect results and 
verified all the other outputs as MFVSs. Finally, we obtained 875 approved random 
MFVSs (since some MFVSs may be lost in the ignore_w operation and the MFVSs are 
not distributed uniformly, not all possible MFVSs have the same possibility of random 
selection).

The WMFVS and WFVS result data can be found in the supplementary data. The ran-
dom MFVS data are placed in https://github.com/lrming1993/WMFVS_codes.

To evaluate the results of these three methods, we first checked the graph-level results 
(see Table 2).

The run time of MFVS is due to the use of the traditional non-weighted MFVS 
method. The sum weight of MFVS uses the average value from 875 randomly weighted 
WMFVSs.

As we expected, the WMFVS method obtained a better total weight than the tradi-
tional MFVS. However, the result of WMFVS is not always better than that of MFVS. 
The total weight of the output of the traditional MFVS method is random (the output 
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gene expression values
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expression values
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Gene weights
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Fig. 1  The experiment flowchart. The red, blue and green lines correspond to the WMFVS, WFVS and random 
MFVS pipelines, respectively
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is related to the graph structure but has no relevance to the vertex weights), so it is pos-
sible for MFVS to output a highly weighted vertex set, even higher than the weight of 
the calculated WMFVS (Gurobi may not always give a real optimal result because of its 
numerical instability). However, our WMFVS method clearly has better stability.

The WFVS method returned an FVS with 528 vertices, which is approximately 14% 
larger than the size of the MFVS. The selected WFVS has a better average weight than 
both the MFVS and WMFVS. This result is consistent with our purpose for WFVSs, 
which focuses on the total weight rather than the size of the FVS.

Then, we used the five prepared cancer-related gene data sets to evaluate the results 
of these three methods. We verified the recall of the three FVS methods in the five data 
sets. The results are shown in Table 3 and Fig. 2.

We can see that WMFVS and WFVS have better recall than traditional MFVS in all 
five sets, which is a benefit of the well-defined gene weights (especially for WFVS). Fur-
thermore, we calculated the p-values of WMFVS and WFVS for 875 random MFVSs 
(Table 4).

For a certain data set, denote the recall of WMFVS by RWMFVS . The recalls of all ran-
dom MFVSs compose a set Rrandom . Then the p-value of WMFVS is calculated by the 
following formula:

Table 2  The graph-level results of each method

Output size Run time (s) Sum weight Average 
weight of each 
vertex

MFVS 463 4.0 319.5 0.69

WMFVS 463 35.9 379.3 0.82

WFVS 528 23.6 496.4 0.94

Fig. 2  Distributions of the recalls for the random MFVSs (boxplot), the WMFVS method (orange circle), and 
the WFVS method (cyan circle) on different cancer gene data sets
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The calculation of the p-value of WFVS is the same as above.
Next, as control methods, we considered several other kinds of methods of cancer 

gene prediction. 

(1)	 Randomly select 463 genes (select 100 times and take the average performance).
(2)	 Select the 463 highest-weighted genes, which is a traditional differential expression-

based method.
(3)	 Select the set of genes that appear in at least 49.5% MFVSs (we used 49.5% since the 

number of genes was exactly 463).

Method (2) uses only weights for classification (i.e., a pure differential expression 
analysis method), while method (3) uses only graph theoretic results (i.e., a pure net-
work analysis method). Method (3) selects the most common genes that appear in the 
MFVS. Intuitively, these genes should have great significance in the graph topology. 
The recalls and precisions of all these methods are listed in Table 5. Additionally, see 
Fig. 3.

Discussion
Performance and enrichment score

In ONGene, TSGene and MSigDB, both WMFVS and WFVS have good p-values, but 
for CGC and NCG, the p-value is relatively high. One major reason is that there exists 
some correlation between the classification metric of the data set and the defined 
gene weight. To analyse this correlation, we utilized the enrichment score (ES) 
from GSEA [25], which reflects the degree to which a set S is overrepresented at the 
extremes (top or bottom) of an entire ranked list.

First, we sorted all the genes from the network by weight from high to low. Then, 
for a certain cancer gene set S, we traversed the sorted gene list, increasing a running-
sum statistic when we encountered a gene in S and decreasing it when we encountered 

(2)pWMFVS =
|{R|R ≥ RWMFVS ,R ∈ Rrandom}|

|Rrandom|

Table 3  The recall of each method in different gene sets

ONGene TSGene CGC​ NCG MSigDB

MFVS (average) 20.6% 14.4% 13.3% 13.2% 7.9%

WMFVS 21.8% 15.4% 18.8% 13.6% 8.1%

WFVS 22.2% 16.5% 19.0% 14.1% 9.6%

Table 4  The p-values of WMFVS and WFVS for random MFVSs

ONGene TSGene CGC​ NCG MSigDB

WMFVS 0.0491 0.0434 0.2537 0.2011 0.0069

WFVS 0.0069 0.0 0.1771 0.0091 0.0
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a gene not in S. We modified the increment and decrement value to ensure that the 
running sum was 0 at the end of the gene list. The enrichment scores of the five data 
sets are shown in Fig. 4.

It is easy to see that the ONGene, TSGene and MSigDB data sets are significantly 
enriched at the tops of the lists. Although NCG seems enriched at the top, its ES is 
relatively low; the ES of CGC is even worse than that of NCG. The best enriched data 
set is MSigDB. Since this data set was constructed directly from microarray gene 
expression data from cancer gene perturbations, it is closely related to differential 
expression values. The ES value explains the different performances of WMFVS and 
WFVS in different data sets.
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Fig. 3  The recalls and precisions of all the methods

Fig. 4  The enrichment score of each data set
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Table 5 and Fig. 3 show that, except in MSigDB, WMFVS has the best precision and 
WFVS has the best recall. In MSigDB, cancer genes are closely related to the differ-
ential expression values of genes in breast cancer, leading to a precision of 87.5% for 
the simple weight-based method (i.e., method (2)). In this case, integration of the net-
work structure may decrease the precision. However, in most cases, it is hard to find 
such a closely related metric for classification. We can observe that in other data sets, 
method (2) performs worse than the other methods. The results support the effective-
ness of our WMFVS and WFVS methods.

Dark genes

As mentioned previously, traditional differential expression-based methods are not 
able to find graph-level important genes that have low differential expression values, 
i.e., dark genes. In our research, we defined a dark gene as a gene that has a relatively 
low weight (i.e., a low differential expression value) but is recorded as a cancer gene in 
the cancer gene data base(s). Specifically, we first derived the differentially expressed 
genes (DEGs) by using the criteria of | log2 FC| ≥ 1 and adjusted p-value ≤ 0.05 from 
the TCGA breast cancer RNA-seq data, where FC is the fold change value of a certain 
gene. Based on these criteria, we found 4245 DEGs (called the DEG set). Next, we 
curated the dark gene set from each cancer gene data set by excluding these DEGs.

In our experiments, we further selected the top 463 of the highest-weighted genes 
(i.e., the most differentially expressed genes; called the top-463 DEG set) to avoid an 
unbalanced gene number in comparison to the WMFVSs and WFVSs identified by the 
WMFVS and WFVS methods, respectively. For each of the cancer gene data sets, the 
precisions of the all-DEG set, top-463 DEG set, WMFVS and WFVS are shown in Fig. 5.

Figure 5 shows that our WMFVS and WFVS methods display better precision than 
the traditional DEG-based method (i.e., the all-DEG set and the top-463 DEG set) 
in four of five cancer gene data sets. Moreover, approximately 60–70% of the genes 
are dark genes, which were detected by using our WMFVS and WFVS methods but 
ignored by the traditional DEG method. Even for the MSigDB C6 data set, which was 
generated directly from microarray data or from internal unpublished profiling exper-
iments involving the perturbation of known cancer genes, the WMFVS and WFVS 
methods also have a good ability to detect dark genes. In summary, our WMFVS and 
WFVS methods have an advantage in identifying dark genes that are hard to find by 
using traditional DEG methods.

Table 5  The recalls (and precisions) of all the methods

463 random
genes

Top 463
weighted genes

Genes appearing in
49.5% MFVSs

WMFVS
(size: 463)

WFVS
(size: 528)

ONGene 7.3% (7.8%) 10.8% (11.4%) 20.6% (21.8%) 21.8% (23.1%) 22.2% (20.6%)

TSGene 7.2% (9.9%) 10.3% (14.3%) 14.5% (20.1%) 15.4% (21.4%) 16.5% (20.1%)

CGC​ 7.2% (8.2%) 6.5% (7.3%) 18.9% (21.4%) 18.9% (21.4%) 19.0% (18.9%)

NCG 7.3% (19.0%) 8.4% (22.0%) 13.4% (35.0%) 13.6% (35.6%) 14.1% (32.4%)

MSigDB 7.4% (66.5%) 9.7% (87.5%) 7.8% (70.8%) 8.1% (73.4%) 9.6% (76.3%)
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Missing‑data cases

In this study, to retain the topological structure of the network, the weight-loss genes are 
assigned default weights of 0 rather than being removed. By further analysis, we found 3 
weight-loss genes (i.e., CDC2, ZBTB8 and TADA3L) included in the WMFVS result, 7 
weight-loss genes (i.e., CDC2, ZBTB8, RhoGDI, TADA3L, RNF12, NP and MAP3K7IP1) 
contained in at least one of the 875 random MFVS results, and no weight-loss genes 
in the WFVS result. In particular, CDC2 and ZBTB8 were included in all the random 
MFVS results as well as in the WMFVS result. The CDC2 gene is related to the highly 
conserved protein CDK1, which functions as a serine/threonine kinase and is a key 
player in cell cycle regulation [28]. The CDC2 gene is also considered a cancer-related 
gene whose overexpression may play an important role in human breast carcinogene-
sis  [29]. While little is known about the ZBTB8 gene, the same ZBTB family protein, 
ZBTB7A, has been implicated in high expression in cancer tissue and the breast cancer 
cell lines MDA-MB-231 and MCF-7 [30], suggesting that ZBTB8 may act as a transcrip-
tional repressor or be involved in tumorigenesis. The uncovering of CDC2 and ZBTB8 
genes illustrates that the WMFVS method may address the disadvantage of traditional 
DEG methods in missing-data cases.

Conclusion
We present several new methods for cancer gene prediction. Our WMFVS method 
uses differential gene expression to select MFVSs, improving the stability of the gen-
eral MFVS algorithm and obtaining a much better result than the differential gene 
expression-based method when the weights of the genes are well defined. Our WFVS 
method is a variant of WMFVS, which aims at finding an FVS in the network that 
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respectively. Note that the all-DEG and the top-463 DEG sets contain no dark genes
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contains the maximum total weight. This method obtains better recall than WMFVS 
by sacrificing precision. Thus, generally, if the researcher wants to reveal as many 
potential cancer genes as possible, WFVS is better; if the researcher prefers better 
precision, then WMFVS is better. Furthermore, since WFVS ignores the restriction of 
the output size, it focuses more on the vertex weight than WMFVS. Therefore, if the 
researcher has good confidence in the weight definition, i.e., the weights are closely 
related to the classification, WFVS will have a better result than WMFVS. We can see 
this from the data analyses on the MsigDB data set, which has the highest enrichment 
score on our defined weights. However, in many cases, since we are not sure whether 
the defined weights are closely related to the classification, using WMFVS will main-
tain better precision for the prediction.

WMFVS and WFVS take advantage of both bio-data and the network structure. 
They can be useful in novel cancer gene prediction and evaluation, and the same 
idea may also be applied to other bioinformatics problems. The main challenge of 
our methods is the definition of the weights. WMFVS and WFVS can perform very 
well when the weights are well defined but may display limited performance when the 
weights are not directly related to the category. Another issue concerns graph com-
pression. In our experiments, the traditional MFVS method analysed the compressed 
graph (with the ignore operation; see details in the next section), which contained 660 
vertices and 5604 arcs, and it was efficient and took only approximately 4 seconds to 
obtain the result. The input graph of WMFVS and WFVS was compressed using the 
limited ignore_w operation (see details in the next section), which contained 2348 ver-
tices and 17283 arcs. Because of the different input scales, WMFVS and WFVS were 
not as efficient as the simple MFVS method, although the time costs were still accept-
able. The development of new algorithms for weighted graph compression is left as 
future work.

Methods
Graph compression

In biological networks, a network usually contains tens of thousands of vertices and 
hundreds of thousands of arcs. In many cases, processing a large network is not prac-
tical because of the NP-hardness of the MFVS problem [12]. Generally, we can com-
press the original graph to a simpler graph that maintains (or can restore) the size of 
the MFVS of the original graph.

In the following sections, we define v.suc and v.pre as the sets of successors and 
predecessors of vertex v, respectively. Let vi be a vertex in a network S. Consider the 
following three cases [18]: 

	C1.	 vi ∈ vi.suc , i.e., vi has a self-loop; then, vi should be in all FVSs, otherwise the self-
loop cannot be removed.

	C2.	 vi.suc = ∅ (or vi.pre = ∅ ); then, vi is not in any MFVS, since it is not in any cycle.
	C3.	 |vi.suc| = 1 (or |vi.pre| = 1 ); let vj be the only successor (or predecessor, respectively) 

of vi ; then, any cycle containing vi also contains vj.
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For C1, we use a temporary list �M to record vi ; we add vi to �M and remove vi and all its 
incoming and outgoing arcs from the graph. We use remove(vi) to denote this removing 
process.

For C2, since vi is not in any MFVS, we can safely use remove(vi) without any change to 
the possible MFVSs.

For C3, assume vi is in some cycle c. If we attempt to break c by removing vi , then it is 
equally good (sometimes better) to remove vj rather than vi . Here, we connect all prede-
cessors of vi to all its successors and then use remove(vi) . We denote this connecting and 
removing operation by ignore(vi, S) , where S is the current graph to which vi belongs. The 
procedure is as follows:

In the above procedure, v is a vertex in graph S, and S.E is the arc set of graph S. Then we 
have the following procedure to compress a graph S:

We repeat this procedure until S cannot be modified.
Furthermore, we use the strongly connected components (scc’s)  [17, 19] to reduce the 

arcs. Since an arc between two scc’s is not in any cycle, the deletion of these arcs will not 
change any MFVSs. We use compress_scc(S) to denote the operation that removes all arcs 
between two different scc’s in S. The whole graph compressing procedure is as follows:
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The returned �M contains the vertices that are always in any MFVS, and the 
union of �M and any MFVS of the compressed graph will be an MFVS of the origi-
nal graph.

Note that not all MFVSs of the original graph can be obtained from the above 
method. Some MFVSs are lost in the ignore operation, while in a weighted MFVS 
problem, the lost MFVSs may have the maximum weight. For the weighted case, we 
modify the ignore operation to consider the weights of vertices (only for positive-
weighted cases). The following method ensures that the maximum-weight MFVS 
(the WMFVS) will not be lost:

where v.w denotes the weight of vertex v.

Theorem  1  When the weights of the vertices are positive, the vertices ignored in the 
ignore_w procedure are not in any WMFVS.

Proof
Assume v.pre = {v′} , v.w < v′.w , and v belongs to a WMFVS M. Then, v′ /∈ M , otherwise 
M′ := M − {v} is still an FVS, which has fewer vertices than an MFVS.

Now consider M′′ := (M − {v}) ∪ {v′} . It is obvious that M′′ is an MFVS. Since 
v′.w > v.w , we have �vi∈Mvi.w < �vj∈M′′vj .w. Thus, M cannot be a WMFVS, i.e., if v has 
only one predecessor and the weight of v is less than that of the predecessor, then v does 
not belong to any WMFVS.

The proof is similar when v has only one successor and the weight of v is less than that of 
the successor. �
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ILP formulation for MFVS and WMFVS

After the compressing procedure, if the compressed graph is not empty, we can use an 
ILP method [17] to solve the remaining MFVS problem. For each remaining vertex vi , we 
add two parameters xi (Boolean) and ki (integer), where xi denotes whether vi is included 
in the output MFVS result and ki is a temporary parameter used in the ILP. The ILP for-
mulation is as follows:
ILP1:

where E is the arc set of the remaining graph.
These constraints ensure that the selected vertices compose an FVS of S, while the 

objective function means that the selected FVS has a minimum size, i.e., it is an MFVS.
Now we consider the weighted case of the MFVS problem. Given a graph S, where 

each vertex vi ∈ S.V  has a weight vi.w (in what follows, we use wi to denote vi.w if there 
is no ambiguity), the WMFVS problem is to find an MFVS of S that has the maximum 
total weight. Assuming we already know the size s of the MFVS (by ILP1 or some esti-
mation method such as that of  [31] or  [32]), the following formulation optimizes the 
selected MFVS as a WMFVS:
ILP2:

The constraint �xi = s ensures that the selected FVS is an MFVS, while the objective 
function selects the maximum-weight MFVS among all possible MFVSs.

Maximum‑weight FVS

In the WMFVS problem, we first restrict the size of the FVS to be minimal and then 
select the maximum-weight MFVS as the objective. However, sometimes the weight 
may be more important than the size of an FVS. As an example, in Fig. 6, the WMFVS 
is {b} , which has a total weight of −20 . If we do not restrict the minimum size of the set, 
the FVS {a, c} , which has weight −4 , seems better.

Here we define a variant of the WMFVS problem, which ignores the exact size of 
the output vertex set, as follows: Given a graph S, where each vertex vi ∈ S.V  has a 
weight vi.w (or wi ), the weighted FVS (WFVS) problem is to find an FVS of S that 

Minimize �xi
Subjectto ki − kj + nxi ≥ 1 ∀(vi, vj) ∈ E

where 0 ≤ ki ≤ n− 1 and xi isBoolean

Maximize �wixi
Subjectto �xi = s

ki − kj + nxi ≥ 1 ∀(vi, vj) ∈ E
where 0 ≤ ki ≤ n− 1 and xi is Boolean

Fig. 6  A simple example. In this case, the total weight may be more important than the size of an FVS
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has the maximum total weight. We can simply use a similar ILP as ILP2 to solve the 
WFVS problem.
ILP3:

However, simply removing the constraint �xi = s may lead to a trivial solution when the 
weights of the vertices are positive, since the set of all vertices will always be a WFVS. 
Here we consider two methods to avoid the trivial solution: 

1.	 Modify all weights to be negative. Assume the maximum weight of the vertices is wm ; 
then, for each weight wi , modify it to wi := wi − wm − ǫ . Here, ǫ is a small positive 
constant to ensure that all weights are negative. The ILP is the same as ILP3.

2.	 Reverse the weights to penalty values. We can simply do this by taking the inverse of 
each wi , i.e., 

 Then, modify the ILP3 formula as follows: ILP3’:

In our research, we examined both ways of calculating the weights in the WFVS 
method. We found that the first modification is more unstable when running the ILP 
process, i.e., more obviously wrong ILP results appeared. Thus, we chose to use the 
second method to compute the weights in the WFVS method; i.e., we reversed the 
weights to be penalty values, which are always positive values.

In the second method, we need to avoid the ‘division by zero’ error. To this end, we 
used the simple heuristic formula below.

Let l be a large number (in our program, we used 65536); then, the penalty is calcu-
lated by:

Experimental environment
We implemented all the methods in Python 3.7.0 with an Intel(R) Core(TM) i7-7700 
CPU and 32.0 GB RAM. The compress_scc procedure uses Gabow’s algorithm  [33]. 
The ILP processing is based on Gurobi 8.1.0 [34].

Maximize �wixi
Subjectto ki − kj + nxi ≥ 1 ∀(vi, vj) ∈ E

where 0 ≤ ki ≤ n− 1 and xi is Boolean

pi =

{

1
wi

if wi �= 0

∞ if wi = 0

Minimize �pixi
Subjectto ki − kj + nxi ≥ 1 ∀(vi, vj) ∈ E

where 0 ≤ ki ≤ n− 1 and xi is Boolean

pi =

{

1
wi

if wi ≥
1
l

l if wi <
1
l
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