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Sepsis remains a major cause of death in the United States and worldwide, and

costs associated with treating septic patients place a large burden on the healthcare

industry. Patients who survive the acute phase of sepsis display long-term impairments

in immune function due to reductions in numbers and function of many immune cell

populations. This state of chronic immunoparalysis renders sepsis survivors increasingly

susceptible to infection with newly or previously encountered infections. CD4T cells

play important roles in the development of cellular and humoral immune responses

following infection. Understanding how sepsis impacts the CD4T cell compartment is

critical for informing efforts to develop treatments intended to restore immune system

homeostasis following sepsis. This review will focus on the current understanding of how

sepsis impacts the CD4T cell responses, including numerical representation, repertoire

diversity, phenotype and effector functionality, subset representation (e.g., Th1 and

Treg frequency), and therapeutic efforts to restore CD4T cell numbers and function

following sepsis. Additionally, we will discuss recent efforts to model the acute sepsis

phase and resulting immune dysfunction using mice that have previously encountered

infection, which more accurately reflects the immune system of humans with a history

of repeated infection throughout life. A thorough understanding of how sepsis impacts

CD4T cells based on previous studies and new models that accurately reflect the human

immune system may improve translational value of research aimed at restoring CD4T

cell-mediated immunity, and overall immune fitness following sepsis.

Keywords: CD4T cell, sepsis, immunoparalysis, adaptive immunity, therapy

INTRODUCTION

Sepsis is life-threatening organ dysfunction that results from an exaggerated host immune response
to disseminated infection (1). It is characterized (in part) by increased production of both pro- and
anti-inflammatory cytokines, resulting in transient severe lymphopenia and long-lasting immune
dysfunction (2). Each year at least 1.7 million adult Americans develop sepsis and nearly 270,000
Americans die as a result of sepsis (3). Hospital costs associated with treating sepsis total >$23
billion each year, making it the most expensive condition treated in the U.S. (4). Due to advances
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in medical care, the majority (∼75%) of today’s septic patients
survive the cytokine storm that results from the initial septic
event (5). However, surviving patients suffer from a long-lasting
state of immune dysfunction termed immunoparalysis and
display increased susceptibility to secondary infection, increased
viral reactivation, and decreased 5-year survival compared to
individuals who did not develop sepsis (6–8).

The first signs of immunoparalysis can be seen during
and shortly after resolution of the cytokine storm in the
numerical loss of many cell types, but most notably lymphocytes
(9). Lymphocyte numbers recover after resolution of the
cytokine storm, but the functional capacity of lymphocytes
that reconstitute the immune system is impaired for an
extended period (10). Therefore, experimental therapies aimed
at alleviating sepsis-induced immunoparalysis have focused
on reducing cell loss, increasing numerical recovery, and
restoring function of cells that repopulate the immune system
(11). Experimental mouse models have been instrumental in
informing our knowledge of the impact of sepsis on the immune
system and the benefits of perspective therapies for promoting
recovery of immune cell numbers and function. However, the
translational value of mouse studies depends on how accurately
they reflect the human condition (12, 13), and recent studies
have highlighted how some aspects of the immune response in
inbred, SPF mice do not accurately reflect the immune response
in the outbred, non-SPF human population. For example, studies
conducted in outbred Swiss Webster mice have shown how
inbred mice fail to reflect variation in immune outcomes seen
in a genetically diverse population more similar to the human
population (14–16). Additionally, studies using microbially-
experienced pet store mice or laboratory mice cohoused with
pet store mice (a.k.a. “dirty mice”) have shown that exposure
to a diverse array of pathogens shapes the immune system.
Notably, in contrast to SPF mice that possess an immune system
more similar to infants, the immune system of dirty mice more
closely resembles that of adult humans (17–21). These studies
suggest that incorporating genetic diversity and/or a history of
diverse pathogen exposures may improve the translational value
of experimental models.

This review will focus on our understanding of how CD4T
cells are impacted by sepsis and how changes within the
CD4T cell compartment affect overall immune fitness. To
provide context for this, we will begin with an overview of
the effects of sepsis on immune cell subsets, and end with a
discussion of therapeutic strategies to alleviate sepsis-induced
immunoparalysis, and implications of recent mouse studies that
more accurately model sepsis in humans.

EFFECTS OF SEPSIS ON IMMUNE CELL
SUBSETS

Sepsis causes a seismic shift in representation and function
of immune cell subsets (Figure 1), which contributes to both
the pathophysiology of sepsis and resulting immunoparalysis.
Sepsis is initially characterized by leukocytosis in the first 2–
4 days, with marked increases in neutrophil and monocyte

populations, which is followed quickly by a state of lymphopenia
(22, 23). Lymphocyte populations are especially susceptible to
apoptosis, and numbers of B cells and CD4 and CD8T cells are
markedly reduced following sepsis onset (9, 23–29). Failure to
normalize cell numbers during either the stages of leukocytosis or
lymphopenia is associated with increased mortality. In surviving
patients, cell numbers return to normal within a month, but
failure to prevent viral reactivation and reduced effectiveness
at handling new infections suggests long-lasting functional
impairments (6–8).

Due to the important roles they play in initial pathogen
recognition and response and orchestration of adaptive
immune responses, defects in innate immune cells including
monocytes/macrophages, neutrophils, NK cells, and dendritic
cells (DCs) greatly impact overall immune fitness. Unlike
monocytes/macrophages and neutrophils, numbers and on-
per-cell basis function of NK cells and DCs initially decline
following sepsis (9, 23, 30, 31). RNA-sequencing has revealed
that multiple immune-response pathways are down-regulated in
monocytes of sepsis patients (32), and mass cytometry (CyTOF),
which allows for simultaneous analysis of more parameters
than conventional flow cytometry, has shown that monocytes
of sepsis patients have increased expression of the inhibitory
ligand PD-L1 and decreased expression of HLA-DR (33).
Considering that increased expression of inhibitory molecules
BTLA and PD-1 on monocytes/macrophages following sepsis
has been shown to impact bacterial clearance (34, 35), these
findings suggest that alterations in monocytes/macrophages
contribute to defective host innate immunity resulting from
sepsis. Additionally, decreased expression of HLA-DR could
reduce the ability of monocytes/macrophages to present antigen
(Ag) and prime B and T cell responses, so these data also suggest
that alterations in monocytes/macrophages may also contribute
defective host adaptive immunity resulting from sepsis. NK
cells that remain following sepsis have a reduced ability to
produce the effector cytokine IFN-γ in response to inflammatory
cytokines IL-12 and IL-18 or following infection, as well as the
reduced ability to degranulate and execute cytolytic activity
following Ly49H receptor-mediated activation. Consequently,
these numerical and functional defects resulting from sepsis
lead to decreased NK cell-mediated control of viral infection
(30). In addition, DCs present following sepsis have a decreased
ability to produce “signal 3” cytokines (e.g., IFN-γ) in response
to TLR stimulation or pathogen challenge, and to prime T cell
responses (31, 36). Taken together, these studies suggest that
defects in innate immune cell subsets following sepsis contribute
to immunoparalysis through both reduced innate antimicrobial
activity and decreased ability to stimulate adaptive immune
responses (Figure 1).

In addition to quantitative and qualitative alterations in
multiple innate immune cell populations, it has become clear that
cell-intrinsic defects in B cells and T cells also persist following
sepsis (Figure 1). Sepsis results in reduced representation of
immature B cells and increased representation of mature B
cells, with increased numbers of plasma cells and shifts in
representation of B1 and B2 B cells (29, 36, 37). Despite
increased plasma cell numbers, Ag-specific antibody production
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is impaired following sepsis (36–38), suggesting sepsis decreases
host ability to develop Ag-specific plasma cells. Following
sepsis, CD8T cells have a reduced ability to prevent infection
(39), which is likely due to many factors. Recovery of naïve
CD8T cells following sepsis is incomplete, resulting in loss of
some precursor specificities and inability to form responses to
some newly encountered Ags (40). The memory CD8T cells
that remain following sepsis display defects in Ag-dependent
and -independent functions including reduced Ag-sensitivity,
proliferative capacity, and ability to produce cytokines in a
bystander manner (41). Furthermore, memory CD8T cells from
hosts that have recovered from sepsis are more prone to undergo
exhaustion when combating chronic infections, displaying
increased expression of inhibitory receptors PD-1 and 2B4,
reduced ability to produce effector cytokines IFN-γ and TNF-α,
and reduced ability to clear the infection (42–44). Interestingly,
numerical loss and functional defects are not as profound for
infection-induced tissue resident memory (TRM) CD8T cells in
hosts that survive sepsis. However, immune responses initiated
by CD8 TRM from septic hosts are still ineffective due to the
inability of endothelial cells to transmit alarm signals, resulting
in reduced recruitment of circulating effector cells to the site
of infection (45). Decreased protective capacity of CD8T cells
following sepsis extends beyond pathogenic infection, as tumor-
infiltrating CD8T cells from septic hosts have reduced ability
to proliferate, produce IFN-γ, and prevent tumor growth (46).
However, CD8T cells from tumor-bearing hosts that experienced

sepsis, under certain conditions, could be even reinvigorated due
to sepsis-induced release of tumor Ags, leading to the surprising
reduction in tumor burden (47).Many defects in CD4T cells have
also been found, and due to their role in providing help to B cells
and CD8T cells, we will discuss the effects of sepsis on CD4T
cells in further detail in the following section.

EFFECTS OF SEPSIS ON CD4T CELLS

CD4T Cell Loss, Recovery, and Repertoire
Changes Following Sepsis
Numbers of CD4T cells are greatly reduced following sepsis
onset (24–27, 48–50). Absolute CD4T cell numbers return
to pre-septic levels after a month for most patients, but
failure to recover sufficient numbers of immunocompetent
CD4T cells is associated with poor prognosis, especially in
the elderly (24, 27, 49, 50). However, questions remain as
to how numerical recovery of CD4T cells occurs and the
roles that thymic output, homeostatic proliferation, and Ag-
driven proliferation play in that recovery. Initial experiments
examining numerical recovery of CD4T cells showed increased
percentages of CD4T cells expressing markers associated with
memory (e.g., CD44hi, CD62Llow) following sepsis, suggesting
recovery occurs through homeostatic proliferation of naïve
cells, Ag-driven proliferation, and/or outgrowth of endogenous
memory CD4T cell populations (49). However, the authors

FIGURE 1 | Effects of sepsis on immune cell subsets. The immune system enters a state of leukocytosis during the first 2−4 days following sepsis onset, with marked

increases in neutrophil and monocyte populations and increased levels of circulating pro- and anti-inflammatory cytokines. The state of leukocytosis is followed by a

state of lymphopenia, characterized by a marked decrease in numbers of adaptive immune cells including B cells, CD4 and CD8T cells, and innate immune cells

including NK cells and dendritic cells (DCs). The state of lymphopenia resolves ∼1 month after sepsis onset, as numbers of leukocytes return to normal. Despite the

numerical recovery of immune cells, hosts that have recovered from sepsis suffer from a long-lasting state of immune dysfunction termed immunoparalysis. The state

of immunoparalysis is characterized by reduced functionality of both innate and adaptive immune cells, increased viral reactivation, and reduced ability to control new

infections and to eliminate solid tumors.
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found that adoptively transferred naïve TCR-transgenic OT-II
CD4T cells did not proliferate when transferred into septic
hosts suggesting CD4T cell recovery does not occur through
homeostatic proliferation. Additionally, no skewing in TCR
Vβ expression in memory CD4T cells following sepsis was
observed, suggesting numerical recovery was not due to Ag-
driven proliferation of cells responding to infection during
sepsis. By ruling out homeostatic proliferation and Ag-driven
proliferation, the authors concluded that numerical recovery
results from outgrowth of endogenous memory CD4T cells—
even though this conclusion was not formally proven in this
study. In contrast, a later study found decreased TCR Vβ

diversity in human sepsis patients, which was associated with
increased risk of death (51). Data published from our group
(50) found CD4T cell numerical recovery occurred similarly
in wild type and thymectomized mice, suggesting numerical
recovery occurs independently of thymic output. As in previous
studies, numerical recovery of CD4T cells was accompanied by
accumulation of cells with an Ag-experienced phenotype (i.e.,
upregulation of CD11a and CD49d). However, both adoptively
transferred TCR-transgenic CD4T cells and endogenous CD4T
cells of known epitope specificity that were present during the
septic event (rather than transferred post-sepsis) proliferated in
septic hosts, suggesting that numerical recovery of CD4T cells
is driven at least in part by homeostatic proliferation. Ag-driven
proliferation also is likely to play a role for some Ag-specific
CD4T cell populations, as CD4T cells recognizing epitopes
derived from gut-derived segmented filamentous bacterium
(SFB) were found to proliferate in an Ag-dependent manner
following sepsis (52). Importantly, recovery of epitope-specific
CD4T cells occurred asymmetrically following homeostatic
proliferation. When numerical representation of six different
Ag-specific CD4T cell populations was determined in sham
and 1 month post-sepsis mice, half of Ag-specific populations
recovered numerically, while one population was found in
greater numbers and two were numerically reduced post-
sepsis (50). Furthermore, Ag-specific populations that failed
to recover numerically displayed functional defects including
decreased ability to proliferate and to produce cytokines
following infection or incubation with cognate Ag and to
mount Th17 polarized responses. Thus, changes within the
CD4T cell compartment during numerical recovery (Table 1)
impact their ability to respond to newly encountered Ags, which
likely impacts their ability to provide protection against newly
encountered infections.

CD4T Cell Functional Defects Following
Sepsis
Evidence for functional defects of CD4T cells in septic patients
was first inferred from studies showing impaired DTH skin
reactions (53). Later studies pointed to the significantly higher
rates of CMV and HSV reactivation in septic patients (54, 55)—
infections for which effective CD4T cell immunity is essential
for limiting frequency and severity of recrudescence in humans
(54, 73–75). Early studies that examined cytokine production by
CD4T cells from septic patients showed that cytokines produced

TABLE 1 | Effects of sepsis on CD4T cells.

Category Effects References

Repertoire changes Decreased TCR Vβ diversity in humans (51)

Incomplete recovery of some epitope

specificities

(50)

Ag-dependent proliferation for some

specificities

(52)

Functional defects Impaired DTH responses and higher

rates of viral reactivation

(53–55)

Global anergy

• Reduced ability to produce cytokines

• Reduced ability to proliferate

• Increased expression of

inhibitory receptors

(2, 56–61)

(50, 56, 62)

(34, 35, 63–68)

Changes in subset

representation

Decreased transcript levels of T-bet,

GATA3, and ROR-γT

(69)

Repressive histone methylation at IFN-γ

and GATA3 promoter regions

(62)

Increased Treg cell representation (26, 59, 70, 71)

Decreased representation of Th1, Th2,

Th17, and Tfh subsets

(28, 59, 71, 72)

under Th1 or Th2 conditions were altered (56–60), leading to
the suggestion that sepsis caused a phenotypic switch of CD4T
cells from Th1 to Th2 (61). However, a later study examining
cytokine production by freshly isolated, postmortem spleen and
lung samples found almost no production of IFN-γ, TNF-α,
IL-6, and IL-10 after anti-CD3/CD28 mAb stimulation (2),
providing evidence for the suggestion that post-septic CD4T
cells display a global state of anergy (56). This argument was
strengthened by studies showing reduced proliferative capacity;
decreased mRNA transcript levels of T-bet, GATA3, and ROR-
γt transcription factors that regulate differentiation into Th1,
Th2, and Th17 CD4T cell subsets, respectively; and repressive
histone methylation marks at the IFN-γ and GATA-3 promoter
regions of CD4T cells taken from septic hosts (50, 62, 69).
Decreased ability to proliferate and produce effector cytokines is
reminiscent of functional defects arising during T cell exhaustion
caused by prolonged antigen exposure and inflammation in the
face of chronic viral infection and cancer (76–78). Exhaustion is
accompanied by increased expression of inhibitory receptors that
dampen immune responses, and CD4T cells from septic hosts
have greater expression of inhibitory receptors including PD-1,
2B4, BTLA, and TRAIL, which directly impacts their ability to
effectively respond to infection (34, 35, 63–68). Furthermore,
expression of inhibitory receptors has the potential to impact
CD4T cell-derived help to other cells, including B cells and
T cells. In support of this, reduced effectiveness of CD8T
cell immune responses in septic hosts has been shown to be
due in part to TRAIL-dependent mechanisms (67, 68, 79).
Thus, sepsis causes global changes in expression of factors
regulating CD4T cell effector responses (Table 1), which limits
help provided to other immune cells and effectiveness of de novo
immune responses.
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It should be noted, however, that triggering events and
microorganisms capable of inducing sepsis are numerous.
The most common triggering event in humans is pulmonary
infection, with other common triggers including infections
of the abdomen (e.g., those arising from a perforated or
ischemic bowel), soft tissues (often as a result of burns), and
the urinary tract (80, 81). Microorganisms that commonly
cause sepsis include gram-positive (Staphylococcus aureus and
Streptococcus pneumoniae) and gram-negative (Escherichia coli
and Klebsiella species) bacteria, fungal organisms, and viruses
including SARS-CoV-2 (82–85). Triggering events and causative
microbes for studies that suggested CD4T cells from recovered
sepsis patients exist in a state of global anergy varied among
patients (2). It is unclear if or how different triggering
events or factors unique to the causative pathogens, such
as their mitogenic capacity or quality and/or severity of the
cytokine storm they elicit, influence the severity of CD4T cell
functional defects observed in patients who have recovered
from sepsis.

Changes in CD4T Cell Subsets Following
Sepsis
One of the defining features of CD4T cells is that they are
able to differentiate into subsets capable of performing unique
effector functions best suited to drive responses against perceived
threats based upon polarizing inflammatory cytokine and co-
stimulatory molecule signals present during Ag-presentation.
Based on the literature, it is clear that sepsis disrupts both
representation of and function of CD4T cell subsets, including
Th1, Th2, Th17, Tfh, and Treg subsets (Table 1). A number
of studies have noted an increased frequency of Treg cells in
the periphery of septic patients (26, 70, 71), which was later
shown to be the result of preferential loss of other subsets
(i.e., Th1, Th2, Th17, and Tfh) (28, 59, 71, 72, 86). It should
be noted, however, that these observations in humans are
based upon analysis of cells found in the blood. Considering
that mouse studies have shown lymphocytes in tissues are less
susceptible to sepsis-induced alterations (28, 45), similar shifts
in CD4T cell subset representation may not be observed in
peripheral tissues of humans. Losses in CD4T cell subsets
impacts CD4T cell-mediated help provided to other cell types,
as was recently demonstrated for reduced antibody production
resulting from CD4T cell-dependent B cell responses, which
was caused in part by reduced Tfh differentiation following
immunization of septic hosts (38). In addition, the effects
of sepsis on the ability to produce effector cytokines (IL-
10 in the case of Treg) may be less severe for Treg than
for other CD4T cell subsets (87). The impact of increased
Treg cell representation following sepsis has been debated,
as some have correlated it with worse outcomes (88), while
others have suggested it correlates with better outcomes and
immunity (89–91). Studies using anti-GITR mAb to block Treg
function (92) and siRNA to downregulate Foxp3 expression
(93) showed that reducing Treg numbers and/or function in
septic hosts improved overall immune function and pathogen
control. However, later studies concluded that depletion of

Tregs did not lead to improvements in survival (94), although
interpretation of this study is compounded by the use of anti-
CD25 mAb, which can deplete CD25-expressing cells (such as
effector T cells) other than Tregs. In addition to the factors
mentioned above, discrepancies for the role of Treg cells in
sepsis pathology and immunoparalysis may be due to timing of
analysis, as a recent study has suggested Treg cells contribute to
positive outcomes during the early stages of sepsis, but do not
significantly impact immunosuppression seen following recovery
(95). Regardless, the continued debate concerning the role Treg
cells play in sepsis pathology and immunoparalysis calls for a
more detailed analysis.

If targeting changes in CD4T cell subset representation could
provide a therapeutic benefit to sepsis patients, understanding
the factors leading to these imbalances becomes important.
Altered functions and loss of other immune cell subsets likely
plays a role in the remodeling of CD4T cell subsets following
sepsis. Adoptive transfer of bone marrow-derived DCs (BMDCs)
to septic animals elevated levels of Th1 cytokines, reduced
expression of the inhibitory receptor PD-1 on CD4T cells,
reduced proliferation and differentiation of Treg cells, and
increased rates of survival (96). Additionally, IL-33—a cytokine
that plays a role in promoting Treg expansion—is elevated in
septic patients, and recent studies showed neutralization of IL-
33 limited the immunosuppressive effects of sepsis and improved
outcomes following secondary infection (97). These studies
suggest therapies designed to restore numbers and function
of immune cells other than CD4T cells may be beneficial for
reestablishing the balance of CD4T cell subsets following sepsis
and for reducing the effects of increased Treg representation.
Furthermore, it is becoming appreciated that sepsis alters the
metabolic capacity of T cells (98), and targeting the effects of
sepsis on immunometabolism presents an intriguing opportunity
to restore T cell dysfunction resulting from sepsis. Targeting
metabolism may help to prevent undesirable shifts in CD4T
cell subsets following sepsis, based on recent data showing
administration of glutamine led to decreased representation of
Th2 and Treg cells in septic hosts (99). While there is much work
to be done to fully understand how changes in CD4T cell subsets
observed following sepsis impact the state of immunoparalysis,
these studies present the exciting possibility that therapies may be
developed to limit CD4T cell subset alterations following sepsis
and promote restoration of protective T cell immunity.

EXPERIMENTAL THERAPIES TO
ALLEVIATE SEPSIS-INDUCED
IMMUNOPARALYSIS

Due to the contributions of numerical cell loss and functional
defects, therapies designed to alleviate sepsis-induced
immunoparalysis have focused on reducing cell death, expanding
numbers of surviving cells, and restoring function of those cells.
Initial experiments designed to block apoptosis through
overexpression of the antiapoptotic molecule Bcl-2 or inhibition
of caspases showed a clear survival benefit for septic hosts
(100–103). However, the use of caspase inhibitors to treat sepsis
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was not widely adopted due to the importance of caspases to
other cellular processes and difficulties in establishing doses and
timing of administration that provided clinical benefit. Because
of this, the most promising strategies currently involve single
or combination therapies with γc receptor-dependent cytokines
and blockade of inhibitory molecules, which both have the
potential to increase cell numbers and restore cell functions.

Common γc cytokines, including IL-2, IL-7, and IL-15,
promote the survival of naïve, effector, and memory CD4 and
CD8T cells. While IL-2 and IL-15 have shown therapeutic
benefits (104–106), indicating that further exploration of
their use in treatment of sepsis is warranted, therapeutic
administration of IL-7 is well-tolerated and shows promise to
reverse immunoparalysis of sepsis patients. Studies conducted
over the last several years have shown that IL-7 administration
improves T cell survival; functionality of surviving T cells
including ability to proliferate, traffic, and to produce effector
cytokines including IFN-γ, TNF-α, and IL-17; and ability to
stimulate DTH responses and clear secondary infections (107–
110). IL-7 treatment may also help to restore metabolic defects of
T cells present after sepsis recovery, as IL-7 was recently shown to
promote activation of mTOR, an important regulator of oxidative
phosphorylation, in T cells of sepsis patients (108). Importantly,
recent results from clinical trials have shown IL-7 administration
is well-tolerated in sepsis patients and results in improved
numbers and functions of CD4 and CD8T cells (110), pointing
to the translational value of this treatment for sepsis patients. It
will be important to follow septic patients treated with IL-7 in
the future to see if improvements in immune cell numbers and
functions translate to improved ability to prevent opportunistic
secondary infections and better long-term outcomes.

Interactions between inhibitory receptors, such as PD-1,
CTLA-4, BTLA, Tim-3, LAG-3, 2B4, and TRAIL expressed
by T cells and their cognate ligands can be generally
described to have inhibitory effects on T cell function.
Immune checkpoint modulation therapy, which is used to
block interactions of inhibitory receptors and their ligands,
has shown great promise for reducing functional defects of
exhausted T cells in settings of chronic infection and as a
therapeutic treatment of certain cancers (111–113). Because
T cells of sepsis patients share such similarities to exhausted
T cells, including increased expression of inhibitory receptors
and functional anergy (34, 35, 63–68), immune checkpoint
modulation has been explored as a therapeutic strategy to reverse
sepsis-induced immunosuppression. Therapeutic administration
of agents blocking inhibitory receptor interactions of PD-
1/PDL-1, 2B4, Tim-3, CTLA-4, LAG-3, and TRAIL have all
shown some benefit for improving function of T cells and
monocytes of septic hosts, including improving expression
of the costimulatory molecule CD28, ability of T cells and
macrophages to produce inflammatory cytokines, and ability
of CD8T cells to form memory populations (68, 107, 114–
123). However, the immunomodulatory effects of treatments
targeting immune checkpoint pathways in septic hosts are
dependent upon dose and timing of administration (116,
117), which will require careful consideration for clinical use.
Additionally, treatments based on administration of IL-7 and

PD-1 blockade have differing effects on reversing sepsis-induced
immunosuppression (107), suggesting that combined treatments
may have synergistic effects. While their long-term effects on
restoring fully protective immune responses of septic patients
remain to be elucidated, improvements in immune cell numbers
and function following administration of γc cytokines and
checkpoint blockade inhibitors are promising signs for their use
as therapies to reverse immunoparalysis resulting from sepsis.

ADVANCEMENT OF ANIMAL MODELS
THAT MORE ACCURATELY REFLECT
SEPSIS IN HUMANS

While mouse-based preclinical studies have resulted in
development of therapies that have shown great efficacy in
the clinic, such as the immune checkpoint blockade therapies
for the treatment of some cancers, it has also been argued that
differences between mice and humans are a major reason for
the inability to translate therapies described in laboratories to
successful clinical outcomes (124–128). Therefore, developing
experimental mouse models that more closely resemble the
human condition may improve the translational potential of
preclinical sepsis studies. One of the major differences between
mouse studies and humans is that the majority of preclinical
mouse studies are conducted using inbred mice, which does not
reflect the genetic diversity present in the human population.
We know from human sepsis studies that outcomes, including
survival and resulting parameters of immunoparalysis, vary
greatly from person to person (129). While this may be due to
a number of factors including patient age, severity of sepsis,
and underlying health conditions, genetics may also play a role.
Studies utilizing outbred mice have shown inbred mice fail
to capture diversity of immune outcomes seen in genetically
diverse populations (14–16). Only a limited number of sepsis
studies have included outbred mice and/or mice of varied
genetic background, but these experiments have provided
insight into how models of sepsis in mice might compare to
outcomes in humans. Studies using outbred Swiss mice have
shown that immunoparalysis following sepsis, including reduced
numbers and function of both DCs and CD8T cells, can be
observed in outbred as well as inbred mice (31, 41, 42, 45),
suggesting some aspects of immunoparalysis are likely to
be universal in a population of mixed genetics. However,
other parameters of immunoparalysis might differ based in
part on genetics, as the percentage of MHC II-expressing
lymphocytes and representation of Treg cells post-sepsis was
found to differ between BALB/c and outbred CD-1 mice (130).
Thus, use of genetically diverse mice in sepsis studies should
be encouraged, as they could help uncover aspects of sepsis
that are influenced by genetics, as well as help to pinpoint
genetic factors responsible for divergent sepsis outcomes in the
human population.

Another big difference between mouse studies, which are
primarily conducted using SPF mice, and humans is that
humans are exposed to a diverse array of pathogens throughout
life. Recent studies have shown that the immune system of
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SPF mice is more similar to human infants, while “dirty”
mice that have been exposed to a diverse array of pathogens
through co-housing with pet store mice possess an immune
system more similar to adult humans (17–21). Importantly, the
training and shaping of the immune system that occurred as a
result of pathogen exposure rendered mice less susceptible to
newly encountered infections, suggesting the history of infection
may also influence how organisms respond to a septic insult.
Recent work from our laboratory, however, found that microbial
exposure results in an enhanced cytokine storm following sepsis
and increases risk of mortality (131). While changes in the
microbiome due to cohousing were partially responsible for
this outcome, changes in function of immune cells due to
history of pathogen encounter also played a role, as leukocytes
of cohoused mice displayed increased expression of TLR4 and
produced greater amounts of inflammatory cytokines in response
to LPS. Thus, changes in the immune system due to history
of infection with diverse pathogens, which varies from person
to person shape the response to septic insult. This also could
impact the effectiveness of treatments for sepsis, as antibiotic
treatment of septic hosts possessing pre-established memory
populations was more effective when combined with memory
cell reactivation (132). Mouse models that incorporate a history
of pathogen exposure also may improve translatability of sepsis
studies, as was recently demonstrated using laboratory mice
born to wild mice, which possess similar microbiota and history
of pathogen exposure to dams (21). Using this model, the
authors were able to replicate clinical trial data showing TNF-
α neutralization was ineffective in their dirty mice (just like in
human sepsis patients), even though it was an effective therapy
for SPF mice. Clearly, increased use of mouse models that
incorporate history of pathogen exposure have the potential to
increase our understanding of sepsis pathology and resulting

immunoparalysis in humans, and to improve translatability of
sepsis studies that utilize animals.

CONCLUSIONS

Advancing therapies to reverse sepsis-induced immunoparalysis
will require a thorough understanding of defects in immune cell
subsets resulting from sepsis, and how those defects contribute
to decreased host immune fitness. CD4T cells play an important
role in orchestrating successful immune responses due to their
ability to provide help to a range of immune cell types. Therefore,
understanding how CD4T cells are impacted by sepsis, including
numerical and functional alterations and changes in subset
representation, is an important goal in sepsis-based research.
Mouse models that more closely represent the human condition
through incorporation of host genetic differences and history of
infection with diverse pathogens have the potential to increase
our understanding of defects in immune cells of various types
caused by sepsis and to improve the translational value of animal-
based sepsis studies.
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