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Abstract: Metallodrugs form a large family of therapeutic agents against cancer, among which is
cisplatin, a paradigmatic member. Therapeutic resistance and undesired side effects to Pt(II) related
drugs, prompts research on different metal–ligand combinations with potentially enhanced biological
activity. We present the synthesis and biological tests of novel palladium(II) complexes containing
bisdemethoxycurcumin (BDMC) 1 and 2. Complexes were fully characterized and their structures
were determined by X-ray diffraction. Their biological activity was assessed for several selected
human tumor cell lines: Jurkat (human leukaemic T-cell lymphoma), HCT-116 (human colorectal
carcinoma), HeLa (human cervix epitheloid carcinoma), MCF-7 (human breast adenocarcinoma),
MDA-MB-231 (human mammary gland adenocarcinoma), A549 (human alveolar adenocarcinoma),
Caco-2 (human colorectal carcinoma), and for non-cancerous 3T3 cells (murine fibroblasts). The
cytotoxicity of 1 is comparable to that of cisplatin, and superior to that of 2 in all cell lines. It is a
correlation between IC50 values of 1 and 2 in the eight studied cell types, promising a potential use as
anti-proliferative drugs. Moreover, for Jurkat cell line, complexes 1 and 2, show an enhanced activity.
DFT and docking calculations on the NF-κB protein, Human Serum Albumin (HSA), and DNA were
performed for 1 and 2 to correlate with their biological activities.

Keywords: palladium(II) complexes; synthetic bisdemethoxycurcumin; cytotoxicity; DNA-binding;
HSA binding; transcription factor NF-κB; DFT calculations

1. Introduction

Cancer is still one of the main causes of death in the world, for which one of the most
common treatment for oncological diseases is based on combined therapies which use plat-
inum metallodrugs such as cisplatin [1–3], oxaliplatin [4,5], carboplatin [4], nedaplatin [6],
and lobaplatin [7,8]. However, treatment failure and multidrug resistance [9] in some cases
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has urged investigations in developing new metallic compounds with improved phar-
macokinetic and medicinal characteristics as therapeutic alternatives. The use of metallic
complexes is not limited to therapy, but includes the role of imaging agents [10] or even as
dual therapeutic–imaging agents, as proven by some vanadium [11,12] and rhenium com-
plexes. Metal-based complexes with more enhanced anti-cancer activity than conventional
platinum drugs include metals such as ruthenium [13–16] and gold(III) [17,18], which have
even been effective on cisplatin-resistant cell lines [19], as well as silver(I) complexes, which
have proven increased cytotoxicity and selectivity as compared to cisplatin [20]. Successful
attempts for greater cytotoxicity and fewer unwanted side-effects of platinum drugs were
also achieved with the use of palladium complexes [21–23] and nanomaterials [24,25].
Several studies already confirmed the fact that palladium complexes show promising
in vivo and in vitro antitumor activity. They are able to internalize in the cells, to modify
the secondary structure of the DNA, and to inhibit the cell growth selectively towards
the cancer cell lines, comparable to platinum-based anticancer drugs [26]. However, it
was concluded that the efficacy of metallodrugs generally depends not only on the metal,
but also on the ligand units coordinated to the metallic center. Dinuclear cyclopalladated
complexes containing two bioactive ligands in a single molecule were designed. Among
these biological ligands, curcumin, naturally found in Turmeric root, has been successfully
used [27,28]. Palladium(II) complexes exhibited great cytotoxicity on human prostate
cancer cells (DU145, LnCaP, PC3) which confirmed the potential of such organometallic
derivatives to inhibit the tumor cell growth and to initiate the apoptosis [28]. Our pre-
vious research was also focused on the synthesis of palladium(II) complexes containing
curcuminoids, which display a significant antiproliferative activity against several different
human cancer cell lines [29–33]. Synthesized palladium complexes induced early and
late apoptotic processes in colorectal cancer cells DLD-1 and HT-29 [30,32]. Moreover, the
treatment of lymphocytes with palladium complexes containing a curcumin derivative
reveals an increase in the proportion of the T helper CD4 positive cell population, collateral
with the decrease of T effector CD8 positive cells, and in the case of A2780 ovary cancer
cells and HT-29 colon cancer cells, a significant cytotoxicity is detected [31]. Lastly, our
research on palladium complexes containing the β-diketo moiety suggested that such
compounds will not exert severe side effects as anticancer drugs, since they displayed a
limited toxicity against normal, healthy cell populations such as colon epithelial cells [30],
lymphocytes [31], and hepatocytes [33] in vitro.

Several literature studies are also dedicated to assessing the biological activity of
bisdemethoxycurcumin, the third component of turmeric extract. Based on the presump-
tion that this minor component of turmeric is more stable as the other two derivatives
(curcumin and demethoxycurcumin), significant anti-cancer properties have been observed.
Bisdemethoxycurcumin inhibits cell proliferation, metastasis, and tumor growth and in-
duces apoptosis in tumor cells. Moreover, it generates ROS levels in breast cancer, lung
cancer, gastric cancer, and ovarian cancer [34,35]. Indeed, researches focused on the capac-
ity of migration and invasion in HeLa cells, via the inhibition of NF-κB, MMP-2, and -9
signaling pathways, presumed the possibility of using the BDMC as a potential preventive
agent against human cervical cancer metastasis [36]. Although the promising activities
exhibited by bisdemethoxycurcumin, the poor solubility and consequently weak bioavail-
ability of this natural compound are still significant issues for the medical applications of
this original natural product [37,38]. Several approaches for improving the drug delivery
and activity of BDMC have been adopted. Here, we mention the optimization of BDMC
with nanoparticles [39], preparation of microspheres for delivery of BDMC to specific cellu-
lar targets [37], or creation of metal-based complexes [40] to enhance the bioavailability,
physicochemical properties, stability, medicinal effects, and so forth. Particularly, palla-
dium complexes containing curcuminoids and BDMC displayed an increased cytotoxicity
towards several human adenocarcinomas (MCF-7, HeLa, and A549), proving in this way
the significance of the coordination of free ligands to a metal center [41].
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In this work, we have synthesized and tested the cytotoxic activities of two Pd(II) com-
plexes containing the 1,7-bis(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione (BDMC) ligand,
herein referred to as 1 and 2, which were derived as a continuation of our work on palla-
dium(II) complexes previously reported. Biological tests were performed for complexes
1 and 2 against Jurkat (human leukaemic T-cell lymphoma), HCT-116 (human colorectal
carcinoma), HeLa (human cervix epitheloid carcinoma), MCF-7 (human breast adenocarci-
noma), MDA-MB-231 (human mammary gland adenocarcinoma), A549 (human alveolar
adenocarcinoma), Caco-2 (human colorectal carcinoma), and for non-cancerous 3T3 cells
(murine fibroblasts) cell lines. Computational modeling of these compounds and their
interactions with human serum albumin (HSA), the transcription factor NF-κB and a short
DNA sequence was carried out to assess their cytotoxic properties.

Recent studies on diverse pytochemicals, pointed also the capacity of curcumin to reg-
ulate the signaling pathways through the inhibition of NF-κB transcription factor [42–44].
Moreover, it was reported that curcumin can interact with both serum albumins in cyto-
plasm [45] and DNA in nucleus [46]. Therefore, we found it important to perform in silico
analyses on these two potential binding sites of our compounds.

2. Results and Discussion
2.1. Preparation and Structural Characterization of Palladium(II) Complexes

Palladium(II) complexes 1 and 2 containing bisdemethoxycurcumin have been syn-
thesized following a previously reported method [30–33] which consists of reacting the
corresponding intermediate palladium(II) complexes with bisdemethoxycurcumin in
an equimolecular ratio (Scheme 1). The two intermediate complexes were prepared
from palladium(II) acetate and N,N,N′,N′-tetramethylcycohexane-1,2-diamine and N,N′-
dimethylpiperazine, respectively [30]. Spectral methods (1H- and 13C-NMR, HR-MS and
IR) confirmed the proposed structural formulas of compounds 1 and 2. Moreover, com-
plexes 1 and 2 were recrystallized from a mixture of methanol:acetonitrile (10:2) to form
suitable crystals for X-ray diffraction.

The palladium(II) complex 1 crystallized in the C2 space group (No. 5), whereas
complex 2 crystallized in the monoclinic P21/n space group (No. 14). The molecular
structures of the cationic part of complex 1 and 2 are shown in (Figures 1 and 2) and their
crystallographic data are summarized in (Table 1).

The complex cations consist of bisdemethoxycurcumin ligand and appropriate amine
ligand. Space disordered acetate anions and solvents were treated by OLEX2 software over
the solvent mask (Supplementary Materials and CCDC cif files). The X- ray analyses of pal-
ladium(II) complexes 1 and 2 confirm that the disordered square-planar geometry around
the central atoms is very close to the ideal square-planar arrangement of the coordination
sphere. The polyhedron coordination of palladium atoms in complex 1 consists of two
oxygen atoms of the carbonyl moieties of bisdemethoxycurcumin (first molecule: Pd1—O
distances are 1.995(4) and 2.007(4) Å, while in the second molecule: Pd2—O distances are
1.982(4) and 2.002(4) Å) and two nitrogen atoms of N,N,N′,N′-tetramethylcycohexane-1,2-
diamine (first molecule: Pd1—N distances are 2.042(5) and 2.057(4) Å, and in the second
molecule Pd2—N distances are 2.039(5) and 2.051(4) Å). In the case of complex 2, the
polyhedron coordination of palladium atom contains two oxygen atoms of the carbonyl
moieties of bisdemethoxycurcumin (Pd1—O distances are 1.991(2) and 1.987(2) Å) and two
nitrogen atoms of N,N′-dimethylpiperazine (distances Pd1—N are 2.042(2) and 2.036(2)
Å). A similarity between complex 2 and previously reported compounds [30] has been
noticed. However, complex 1 shows slightly larger values for Pd-O and Pd-N lengths
(Pd—O distances are 1.975(4) and 1.981(4) Å, and Pd—N are 2.038(5) and 2.045(5) Å). The
angles around the central atom in complex 1 are in the range of 86.2(3)–94.7(2)◦ for both
central atoms and 73.2(1)–96.41(9)◦ for complex 2. The plane angles N1Pd1O2, N2Pd1O1,
N3Pd2O6, and N4Pd2O5 are in the range of 173.5(1)–176.6(2)◦ for both central atoms in
complex 1. The plane angles N1Pd1O2 and N2Pd1O1 for complex 2 are in a range of
168.3(9)–169.6(9)◦ (Supplementary Table S1). Concerning the angles O-Pd-O and N-Pd-N,
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complex 1 shows a close similarity with the formerly reported compounds [30], while in
complex 2 is observed a different value for the N1—Pd1—N2 angle (73.2◦), which explains
the better rigidity geometry of N,N′-dimethylpiperazine ligand. The crystal structures
of complexes 1 and 2 are stabilized by a network of intramolecular and intermolecular
hydrogen bonds and Van der Waals interactions. A zig-zag 3D network with big cavities
containing multi-disordered solvent molecules (acetonitrile) and acetate anions is observed
in both complexes 1 and 2 (Supplementary Table S2, Figures S3 and S4). The crystal
structures (packing) of complexes 1 and 2 are given in Supplementary Figures S1 and S2.
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Table 1. Basic Crystallographic parameters of palladium(II) complexes 1 and 2.

Data Complex 1 Complex 2

Empirical formula C29H37N2O4Pd C25H29N2O4Pd
Temperature (K)/Wavelength (Å) 100(1)/1.54186 100(1)/1.54186
Crystal system/space group monoclinic, C2 monoclinic, P21/n

Unit cell dimensions
a, b, c (Å)
β (◦)

a = 26.7722(5)
b = 10.2502(1)
c = 22.3191(4)
β = 100.776(1)

a = 15.4449(1)
b = 7.4624(1)
c = 25.8668(3)
β = 98.978(1)

Formula weight/Volume 584.00/6016.82(2) Å3 527.90/2944.78(6) Å3

Z, Calculated density 8, 1.289 mg/m3 4, 1.191 mg/m3

Absorption coefficient/F(000) 5.238 mm−1/2424 5.301 mm−1/1084
Crystal size 0.26 × 0.1 × 0.07 mm 0.15 × 0.11 × 0.02 mm
2Θ range for data collection 6.722 to 143.506◦ 6.268 to 143.992◦

Index ranges
−31 ≤ h ≤ 32
−12 ≤ k ≤ 6
−27 ≤ l ≤ 26

−19 ≤ h ≤ 13
−9 ≤ k ≤ 8
−22 ≤ l ≤ 31

Reflections collected 123,856 113,553
Independent reflections 8235[Rint = 0.0388,Rσ = 0.0206] 5714[Rint = 0.0409,Rσ = 0.0123]

Refinement method Full-matrix least-squares
on F2

Full-matrix least-squares
on F2

Data/restraints/parameters 8235/0/665 5714/0/293
Goodness-of-fit on F2 1.011 1.063

Final R indices [I > 2σ(I)] * R1 = 0.0376
wR2 = 0.1014

R1 = 0.0373
wR2 = 0.1225

R indices (all data) R1 = 0.0459
wR2 = 0.1044

R1 = 0.0409
wR2 = 0.1277

Flack parameter 0.024(14) -
Largest diff. peak and hole 0.72 and −0.70 e. Å−3 1.07 and −1.06 e. Å−3

* R[F2 > 2σ(F2)], wR(F2), S.

2.2. DFT Calculations

Geometry optimizations were performed starting from the crystallographic coor-
dinates of compounds 1 and 2 at the ωB97XD/LANL2DZ level of theory with the use
of the SMD continuous solvation model (water). The resulting structures (see Figure 3)
were characterized as minima on the potential energy surface by means of vibrational
calculations (Supplementary Table S3).
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Figure 3. Optimized geometry of compounds 1 (left) and 2 (right) at theωB97XD/LANL2DZ level of theory.

Energetic analysis of the Pd bonds was performed with the NBO3.1 code as pro-
vided by Gaussian 16. The sum of all Pd bond energies is 330.64 kcal/mol for com-
pound 1 whereas for compound 2 it is 353.28 kcal/mol. The calculated bond energies
in compound 1 are 115.28 kcal/mol for Pd-O and 73.09 kcal/mol for Pd-N bonds. For
palladium complex 2, the calculated bond energies are 127.45 kcal/mol for Pd-O and
74.67 kcal/mol for Pd-N bonds.

2.3. Docking Calculations

All docking simulations were performed with AutoDock Vina using an exhaustiveness
factor of 10 since the binding energies dropped severely for subsequent binding modes
making it futile to assess those conformations. Binding energies (−∆Gb) were obtained
directly from the scoring functions set as default in Autodock Vina.

2.3.1. Human Serum Albumin (HSA)

Both compounds 1 and 2 show good affinities for HSA (PDB entry 4F5S), as shown in
Figure 4, where it can be observed that the Gibbs free energy of binding (−∆Gb) ranges
between 6.00 and 7.43 kcal/mol for compound 1 and 5.82 to 7.60 kcal/mol for compound 2
for the 10 highest ranked modes of binding (Supplementary Table S4).
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Figure 5a shows the intermolecular interactions for the complex HSA-1 at the highest-
ranked binding mode for which the strongest interaction is observed with a single as-
paragine amino acid at 2.6 Å, whereas compound 2 (Figure 5b) could only dock to an
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allosteric site in which it exhibits multiple interactions with amino acids Leu115, Lys116,
Pro117, Asp118, Glu125, Lys136, Tyr137, Glu140, Tyr160, and Arg185.
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Although the difference in binding free energy is only very slight, on most of the high-
est ranked binding modes, NF-κB shows a higher preference for compound 2 which forms a
stable hydrogen bond with ASP243 throughout all the ten highest binding
modes (Supplementary Table S4).

2.3.3. DNA Sequence

Both compounds 1 and 2 show a remarkable affinity for the minor grove of the
selected DNA (PDB entry 2GVR) sequence, but the selectivity for compound 2 is much
higher across the ten highest ranked binding modes (see Figure 7). −∆Gb values for
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compound 1 range from 8.70 to 11.74 kcal/mol whereas for compound 2 they range from
10.23 to 13.21 kcal/mol.
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Although both compounds could be potential binders for DNA with various applica-
tions, compound 2 is much more likely to form a more stable association to DNA. In both
cases, cytosine 11 is the base on which most of the binding modes rely for their interaction
(see Figure 8 and Supplementary Table S4).
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2.4. Biological Tests

The newly synthesized palladium(II) complexes 1 and 2 were biologically tested on a
series of human tumor cells: Jurkat, HCT 116, HeLa, MCF-7, MDA-MB-231, A549, Caco-2,
and noncancerous murine fibroblasts 3T3. Mentioned cells were exposed to complexes 1
and 2 at different concentrations, from 5 to 100 µmol/L (Figure 9) and their cytotoxicity was
compared with the effect of cisplatin on cell viability (Table 2, Supplementary Figure S5).
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Table 2. IC50 values (µmol/L) of tested compounds in comparison with cisplatin in different cell lines
after 72 h of incubation. Data are presented as the mean ± SD of three independent measurements
performed in triplicate.

Tested Compounds

Cell Lines 1 2 Cis-Pt

A549 42.79 ± 10.31 86.05 ± 9.85 9.50 ± 0.2
Caco-2 24.47 ± 5.28 78.57 ± 7.63 15.20 ± 0.3
HCT 18.23 ± 4.87 38.57 ± 7.84 15.30 ± 0.5
HeLa 17.35 ± 5.54 34.81 ± 9.22 13.10 ± 0.2
Jurkat 5.33 ± 0.98 7.69 ± 1.56 16.20 ± 0.6
MCF-7 34.13 ± 7.21 94.28 ± 12.87 15.60 ± 0.3
MDA 9.61 ± 1.76 50.10 ± 9.67 17.50 ± 0.5
3T3 20.32 ± 5.33 46.36 ± 8.75 20.87 ± 0.3

Based on IC50 values, palladium(II) complex 1 shows overall better cytotoxicity than
complex 2 (one-way analysis of variance and Bonferroni’s multiple comparison test in the
95% confidence interval, p < 0.05), displaying lower IC50 values in all cell lines (Table 2,
Supplementary Figure S5). In A549, Caco-2, HCT, HeLa and MCF-7, complex 1 displayed
higher IC50 values than cisplatin, thus being less active towards these five cell lines, while
in Jurkat and MDA lines, complex 1 has a lower IC50 value than cisplatin, being more
active. Complex 2 exhibits an inferior inhibitory effect to cisplatin among all cell lines,
with the remarkable exception of Jurkat. Complex 2 has a higher IC50 value against
the noncancerous fibroblasts 3T3 than cisplatin, whereas complex 1 exhibits a similar
cytotoxicity as that of cisplatin. A good statistical correlation between the IC50 values of 1
and 2 through all the eight cell lines is observed (Spearman r 0.833, p value 0.015), which
denotes that cytotoxicity caused by 1 and 2 tends to decrease in the same cell lines, notably
for Jurkat, HeLa and HCT (Figure 10 and Supplementary Figure S5); no association was
confirmed between the toxicities of cisplatin and the Pd(II) complexes 1 and 2 (Spearman
correlation, p value 0.268 and p = 0.665, respectively).
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3. Materials and Methods

Chemicals used in syntheses (4-hydroxybenzaldehyde 99%, acetylacetone, B2O3, tri-n-
butyl borate 98%, n-butanamine, ethylacetate, palladium(II) acetate, methanol, chloroform)
were of reagent grade and were used as purchased. Bisdemethoxycurcumin was synthe-
sized as described previously in the literature [47]. Intermediate palladium(II) complexes
containing N,N,N′,N′-tetramethylcycohexane-1,2-diamine and N,N′-dimethylpiperazine,
were prepared based on a reported [30].

For measurements of NMR spectra, a Varian Gemini 2000 spectrometer was used
at a frequency of 300 MHz (for 1H-NMR) and 75 MHz (for 13C-NMR). All spectra were
measured in CD3OD and the chemical shifts are reported relative to TMS used as an
internal standard (Supplementary Materials).

The MS measurements were performed on an LTQ Orbitrap XL spectrometer us-
ing the electrospray ionization in positive mode. The operating parameters used: spray
voltage (SV) 3.6 kV, sheath gas (Sh.G) 5 psi, capillary voltage (CV) 41 V, capillary temper-
ature 275 ◦C. Spectra were recorded for both complexes (1 and 2) from m/z 150 to 800
(Supplementary Materials).

Infrared spectra were measured with a Nicolet 6700 FT-IR spectrophotometer in the
range of 600–4000 cm−1 (Supplementary Materials).

3.1. Synthesis of Palladium(II) Complexes

Complex 1: To a solution of 0.21 g (0.68 mmol) bisdemethoxycurcumin in methanol
(7 mL) was added dropwise the methanolic solution (10 mL) of 0.27 g (0.68 mmol) inter-
mediate palladium(II) complex containing N,N,N′,N′-tetramethylcycohexane-1,2-diamine.
The reaction mixture turned from dark-orange to yellow and an orange precipitate was
formed. The precipitate was filtered off from the mother liquor, dried and identified as
the final product. Complex 1: mp 184 ◦C (decomposed); 0.21 g yield (48%); 1H-NMR
(CD3OD, 300 MHz), δ (ppm): 7.42–7.49 (m,3J = 8.6 Hz, 6H), 6.80 (d, 3J = 8.6 Hz, 4H), 6.65
(d, 3J = 15.7 Hz, 2H), 5.82 (s, 1H), 3.21 (d, 2H), 2.85 (s, 6H), 2.83 (s, 6H), 2.19 (d, 2H), 1.90
(s, 3H OCOCH3), 1.81 (2, 2H), 1.43–1.53 (m, 2 H), 1.21–1.29 (m, 2H). 13C-NMR (CD3OD,
75 MHz), δ (ppm): 178.6 (2C), 159.8 (2C), 140.3 (2C), 129.6 (4C), 126.5 (2C), 121.4 (2C),
115.5 (4C), 104.0 (1C), 71.7 (2C), 47.6 (2C), 42.1 (2C), 24.08 (2C), 23.82 (2C). IR υ (cm−1):
3010, 2943, 2867, 2675, 1599, 1497, 1437, 1389, 1273, 1162, 1103, 996, 970, 936, 829, 783, 703,
662, 633. HR-MS C29H38N2O4Pd+ calc.583.1783; exp. 583.1794.

Complex 2: Bisdemethoxycurcumin (0.23 g; 0.73 mmol) was dissolved in 9 mL of
methanol. To this solution was slowly added a solution of intermediate palladium(II)
complex bounding N,N′-dimethylpiperazine (0.25 g; 0.73 mmol) in 8 mL of methanol.
The reaction was checked on TLC after 24 h and unreacted bisdemethoxycurcumin it was
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observed, therefore the reaction was kept on stirring at room temperature another 18 h.
After that, the solvent was removed and the final product was isolated from the mixture by
silica gel chromatography, using as eluent methanol: chloroform in a ratio 1:9. Palladium
complex 2 was obtained as an orange powder. Complex 2: mp 195 ◦C (decomposed); 0.20 g
yield (46%); 1H-NMR (CD3OD, 300 MHz), δ (ppm): 7.50–7.45 (m, 3J = 8.6 Hz, 6H), 6.80
(d, 3J = 8.6 Hz, 4H), 6.65 (d, 3J = 15.7 Hz, 2H), 5.82 (s, 1H), 3.89 (d, J = 6.8 Hz, 4H), 2.74 (d,
J = 6.8 Hz, 4H), 2.62 (s, 6H), 1.89 (s, 3H OCOCH3). 13C-NMR (CD3OD, 75 MHz), δ (ppm):
178.4 (2C), 159.7 (2C), 140.5 (2C), 129.6 (4C), 126.6 (2C), 121.2 (2C), 115.5 (4C), 104.3 (1C),
58.1 (4C), 45.2 (2C), 22.5 (1C). IR υ (cm−1): 3010, 2810, 2681, 2609, 1601, 1501, 1446, 1389,
1271, 1199, 1164, 1104, 994, 964, 828, 796, 704, 654. HR-MS C25H30N2O4Pd+ calc. 527.1157;
exp. 527.1167.

3.2. X-ray Crystallography

Diffraction measurements were performed with a Stoe STADIVARI diffractometer
equipped with Dectris Pilatus 300 K detector using a Genix3D Cu HF source (Cu-Kα,
λ = 1.54186 Å) at 100 K employing a nitrogen gas open-flow cooler Cobra Oxford Cryosys-
tems. Data reduction was achieved using X-Area (Stoe, 2018) software package [48]. The
crystal structures of 1 and 2 were solved in OLEX2 software [49] using SHELXT-2015 pro-
gram via Intrinsic Phasing [50] and refined with SHELXL-2015 by least-squares procedure
on F2 [51]. All non-hydrogen atoms were refined with anisotropic thermal parameters. The
positions of all hydrogen atoms in complexes 1 and 2, were geometrically optimized and
constrained on their parent atoms. Thus, the constrained C—H bond lengths are: 0.95 Å
(aromatic); 0.99 Å (aliphatic); 1.00 Å (asymmetric aliphatic); 0.98 Å (methyl group); and
O—H bond length 0.84 Å (hydroxyl group) for complex 1. In the case of palladium complex
2, the C—H bond lengths are 0.93 Å (aromatic); 0.97 Å (aliphatic); 0.96 Å (methyl group)
and the O—H length in hydroxyl group is 0.82 Å. The temperature factors of hydrogen
were Uiso(H) = 1.2 Ueq(C) (for aromatic and aliphatic parts) and Uiso(H) = 1.5 Ueq(O, C)
(for methyl and hydroxyl group). The DIAMOND (version 2.1e) [52], Mercury (version
4.1.3) [53] and OLEX2 (version 2-1.2) software [49] were used for the molecular graph-
ics. The crystal structure of complex 1 contains eight-strong disordered anions per cell,
which are removed, and electron density is calculated using OLEX2 solvent-masking. For
complex 2, the cell contains one big cavity with four strong disordered acetate anions and
eight acetonitrile solvent molecules. Solvent molecules and anions were removed and
electron density was calculated as in the case of complex 1. Crystal data for palladium
complexes 1 and 2, data collection procedures, structure determination, and refinement
parameters are summarized in Table 1.

CCDC: 2044620-2044621 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.
html (16 November 2020) (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;
Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk).

3.3. Computational Details

The electronic structure of compounds 1 and 2 was calculated with density functional
theory-based methods at the ωB97XD/LANL2DZ level of theory with the Gaussian 16
suite of programs [54]. The LANL2DZ pseudopotential includes relativistic corrections to
the core electrons which are important in describing Pd containing molecules. Molecular
Docking computations on the NF-κB protein (PDB: 1LE5), human serum albumin (HSA,
PDB: 4F5S) and a short DNA sequence (PDB: 2GVR) were performed for compounds 1 and
2 using the AutoDock 4.2.6 suite of programs [55]. This DNA sequence corresponds to a
berenil-D(CGCGAATTCGCG)2 complex from which the rod-shaped aromatic ligand—similar
in that regard to the BDMC ligand under study—in the major grove was removed, thus
yielding a pre-docked DNA structure into which we could dock compounds 1 and 2.

www.ccdc.cam.ac.uk/conts/retrieving.html
www.ccdc.cam.ac.uk/conts/retrieving.html
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3.4. Biological Testing

The proliferation of cells was assessed from the absorbance at 490 nm wavelength with
an automated Cytation™ 3 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA).

Cell cultures: Seven human cancer cell lines and one noncancerous cell line were
used for testing the synthesized complexes 1 and 2. The Jurkat (human leukaemic T-cell
lymphoma), HCT 116 (human colorectal carcinoma) and HeLa (human epitheloid cervix
carcinoma) lines were cultured in RPMI 1640 medium (Biosera, Kansas City, MO, USA).
The MCF-7 (human breast adenocarcinoma), MDA-MB-231 (human mammary gland
adenocarcinoma), A549 (human alveolar adenocarcinoma), Caco-2 (human colorectal
carcinoma), and noncancerous 3T3 (murine fibroblasts) cell lines were maintained in a
growth medium consisting of high glucose Dulbecco’s Modified Eagle Medium with
sodium pyruvate (GE, Healthcare, Piscataway, NJ, USA).

Cell cultivation: The growth medium was supplemented with a 10% fetal bovine
serum, 1X HyClone™ Antibiotic/Antimycotic Solution (GE Healthcare, Little Chalfont,
UK). Cells were cultured in an atmosphere containing 5% CO2 in humidified air at 37 ◦C.
Cell viability, estimated by trypan exclusion, was greater than 95% before each experiment.

MTS cell proliferation/viability assay: The cytotoxicity of complexes 1 and 2 was deter-
mined by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)-
2H-tetrazolium) assay. Cells were seeded at a density of 5× 103/well in 96-well polystyrene
microplates (SARSTEDT, Nümbrecht, Germany). After 24 h, tested compounds 1 and 2
were added in various concentrations (100, 50, 10, and 5 µmol/L). After 72 h of incubation,
10 µL of MTS (5 mg/mL, Sigma-Aldrich Chemie, Steinheim, Germany) was added to
each well according to the CellTiter 96® Aqueous One Solution Cell Proliferation Assay
protocol. The absorbance was measured at 490 nm with the automated Cytation™ 3 Cell
Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA) after 1 h of incubation. Three
independent experiments were performed for each test. The results obtained from the MTS
assay were used to determine the half-maximal inhibitory concentration (IC50) of each
tested compound.

4. Conclusions

The NF-κB transcription factor is responsible for the fine tuning of the apoptotic
process, cell cycle regulation, and cell differentiation in tumors. The crystal structure of
NF-κB has two distinct druggable areas: the protein–protein interaction and the DNA-
binding region [56]. The computational analysis showed that compounds 1 and 2 have
affinity to bind the ASP243 residue of NF-κB transcription factor, an amino acid located
in the protein–protein interaction area. Therefore, the two complexes and especially 2
display a good potential to specifically target NF-κB. Compound 2 exhibits a systematically
higher affinity for NF-κB than compound 1 (Figure 6), where −∆Gb ranges from 5.33 to
6.10 kcal/mol for compound 1 and from 5.17 to 6.52 kcal/mol for compound 2. Although
the difference in binding free energy is only very slight on most of the highest ranked
binding modes, NF-κB shows a higher preference for compound 2 which forms a stable
hydrogen bond with ASP243 throughout all the ten highest binding modes. Additionally,
complex 2 shows a higher affinity than 1 towards a specific DNA sequence, particularly
stacking to a cytosine base. The IC50 values corresponding to standard cisplatin are closer
to those of complex 1 in detriment of 2 (Table 2). Based on the IC50 values, complex 2 is
less toxic than complex 1. The cytotoxicity of compound 2 in cancer cell lines does not
differ significantly versus the normal cells. According to the in-silico analysis, compound
1 has a better binding capacity towards the asparagine amino acid of HSA. Asparagine
plays a critical role in the mitochondrial mechanism of tumor cells, the cell cycle, and
apoptosis [57] and the compounds cytotoxicity was evaluated relying on the mitochondrial
activity of cells (MTS assay, as described in 3.4. Materials and Methods section). Therefore,
our results are consistent with previous findings. Complex 2 has a better selectivity towards
certain amino acids of HSA as well, which confirms once again that despite the weaker
antiproliferative activity, compound 2 it is target-specific towards the DNA, has, and NF-κB
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transcription factor. Our preliminary results on these palladium(II) complexes bring into
consideration their antiproliferative potential and open the road to further examinations,
mainly in vitro, as possible metallodrugs with anticancer activity.

Supplementary Materials: The following are available online. Additional crystallographic (Figure S1:
The crystal packing of complex 1 viewed along the (b) axis. Hydrogen atoms of carbons, multi-
disordered acetate anions and solvent molecules are omitted for clarity. Figure S2: The crystal packing
of complex 2 viewed between the (a, b, c) axis. Hydrogen atoms of carbons, multi-disordered acetate
anions and solvent molecules are omitted for clarity. Table S1. Selected bond distances and angles
of palladium(II) complexes 1 and 2. Table S2. Hydrogen Bonds and interactions of complex 1 and
2. Figure S3: Intramolecular and intermolecular hydrogen bonds and Van der Waals interactions
in complex 1 Figure S4: Intramolecular and intermolecular hydrogen bonds and Van der Waals
interactions in complex 2), DFT, molecular docking (Table S3. Cartesian coordinates for the optimized
compounds (1) and (2). Table S4 Docking Results) and cytotoxicity (Figure S5 3D representation of
cytotoxicity values for palladium(II) complexes 1, 2 and cisplatin in 8 different cell lines) data are
available online.
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