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A B S T R A C T   

Objective: To estimate the accuracy of clustered regularly interspaced short palindromic repeats (CRISPR) in 
determining coronavirus disease-19 (COVID-19). 
Methods: As of January 31, 2022, PubMed, Web of Science, Embase, Science Direct, Wiley and Springer Link were 
searched. Sensitivity, specificity, likelihood ratio (LR), diagnostic odds ratio (DOR) and area under the summary 
receiver-operating characteristic (AUC) curve were used to assess the accuracy of CRISPR. 
Results: According to the inclusion criteria, 5857 patients from 54 studies were included in this meta-analysis. 
The pooled sensitivity, specificity and AUC were 0.98, 1.00 and 1.00, respectively. For CRISPR-associated 
(Cas) proteins-12, the sensitivity, specificity was 0.96, 1.00, respectively. For Cas-13, the sensitivity and speci-
ficity were 0.99 and 0.99. 
Conclusion: This meta-analysis showed that the diagnostic performance of CRISPR is close to the gold standard, 
and it is expected to meet the Point of care requirements in resource poor areas.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
infectious in human beings, which is the cause of coronavirus disease 19 
(COVID-19) in 2019. It spreads rapidly to all parts of the world through 
the close interaction of human beings or the respiratory substances 
(coughing and sneezing) of infected persons [1]. The World Health 
Organization (WHO) declared that COVID-19 is Public Health Emer-
gency of International Concern (PHEIC) on January 30, 2020 and 
pandemic on March 11, 2020 [2,3], due to it spread rapidly around the 
world in a concise period of time. The number of global COVID-19 cases 
remained at the highest level since the beginning of the pandemic for the 
second consecutive week, with more than 5.7 million new cases per 
week [4]. The number of new deaths rose for the seventh consecutive 
week, with more than 93000 [4]. The end of the epidemic requires 
diagnostic tools that can handle large numbers of samples and still 
perform well in order to prevent further spread of the epidemic. 

Detection and isolation of asymptomatic carriers has proved to be 
quite effective in controlling the spread of the virus. Therefore, there is a 
need for efficient, low-cost detection methods to carry out a wide range 
of patients and repeated detection. Reverse-Transcription Polymerase 

Chain Reaction (RT-PCR) has frequently been used as first-line test for 
COVID-19 as it is fast, sensitive and reliable, and can produce results in 
3–4 h [5]. However, RT-PCR requires expensive laboratory instruments 
and professional technicians, and its availability is limited to public 
health laboratories [6]. In the environment of backward economy, 
crowd gathering and poor sanitary conditions, COVID-19 is easy to 
spread, and the limitations of detection technology hamper the real-time 
monitoring and detection of highly contagious pathogens. The devel-
opment of diagnosis system based on clustered regularly interspaced 
short palindromic repeats (CRISPR) had changed the mode of molecular 
diagnosis. CRISPR has the advantages of high speed, high sensitivity and 
high precision, and strong versatility. With the outbreak of global 
COVID-19, different organizations have begun to design and develop 
diagnostic methods based on efficient CRISPR system. Based on CRISPR 
detection, CRISPR-associated (Cas) proteins were used to detect 
isothermal amplification products, the signal is generated only when the 
correct sequence exists. Cas12 and Cas13 are outstanding in analytical 
application, the Cas12 or Cas13 protein are guided by a CRISPR RNA 
(crRNA) to target a specific nucleic acid sequence, while the 
single-stranded region of the crRNA is complementary to the target. 
However, the functions of Cas12 and Cas13 are different, Cas12 targets 
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ssDNA, while Cas13 targets ssRNA [7,8]. Timely and correct case 
management and correct reporting can reduce incidence and mortality 
of COVID-19. CRISPR system can help develop molecular diagnostic 
methods with rapid, accurate and point-of-care. Compared with existing 
RT-PCR based diagnostic methods, CRISPR is convenient to use, 
portable and time-saving, without needing any technical expertise and 
expensive equipment in the absence of resources [9,10]. The availability 
of affordable portable diagnostic systems may facilitate large-scale 
screening of affected populations to stop the transmission chain of 
highly infectious viral infections [11]. 

The number of cases of COVID-19 and its related mortality have 
caused serious concern all over the world. At present, there is no meta- 
analysis on the diagnosis of COVID-19 based on CRISPR system. The 
purpose of this study is to evaluate the diagnostic value of CRISPR for 
COVID-19. 

2. Materials and methods 

2.1. Search strategy and study selection 

Two independent researchers searched PubMed, Web of Science, 
Embase, Science Direct, Wiley and Springer Link for all relevant articles 
published before January 31, 2022, Search terms were defined as fol-
lows: ("severe acute respiratory syndrome coronavirus 2′′ or “SARS-CoV- 
2′′) and ("coronavirus disease 19′′ or "COVID-19′′) and ("clustered 
regularly interspaced short palindromic repeats" or “CRISPR"). 

2.2. Study selection 

All articles were screened according to the inclusion and exclusion 
criteria by two independent reviewers. The inclusion criteria were as 
follow: (1) The purpose of research is to evaluate the accuracy of CRISPR 
diagnostic method; (2) Participants were diagnosed with novel coro-
navirus pneumonia; (3) The extracted or calculated data could be used 
to obtain true-positive (TP), false-positive (FP), false-negative (FN), and 
true-negative (TN) values. The exclusion criteria were as follows: (1) 
Non-English literature; (2) Non-clinical research literature consisting of 
conference abstracts, reviews, case reports; (3) The data was not enough 
to form a 2 × 2 table. 

2.3. Data extraction 

For each eligible study, the following information was extracted: 
author, year of publication, parameters such as TP, FP, FN and TN, the 
type of amplification reaction, the type of Cas protein, reaction steps and 
results display method. Controversial results were evaluated and a 
consensus was reached by third-party researchers. 

2.4. Quality assessment 

To assess the quality of included literature, Quality Assessment of 
diagnostic Accuracy Studies 2 (QUADAS-2) was conducted. QUADAS-2 
was an evidence-based quality assessment tool that consisted of four 
domains: patient selection, index, test, reference standard, and flow and 

Fig. 1. Flow diagram of the study selection process.  
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timing [12]. 

2.5. Statistical analysis 

Heterogeneity from threshold and non-threshold effects were re-
flected by the spearman correlation coefficient, Cochran’ s-Q and I2 

tests, respectively. If the P-value of spearman correlation coefficient was 
more than 0.05, there was no threshold effect, whether a heterogeneity 
caused by non-threshold effect existed was further analyzed by Meta- 
regression. The pooled sensitivity, specificity, positive likelihood ratio 
(PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR), 
along with their 95% confidence intervals (CIs) were computed and 

graphically displayed using forest plots. A summary receiver operating 
characteristic (sROC) curve was constructed to access the diagnostic 
accuracy for CRISPR, and area under the curve (AUC) was calculated. 
The higher the AUC was, the higher the diagnostic value was. Publica-
tion bias was assessed by Deeks’ funnel plot asymmetry test, Begg’s test 
and Egger’s test [13]. The meta-analysis was undertaken using 
STATA15.0 (StataCorp, College Station, TX, USA) and Meta-Disc 1.4 
(Unit of Clinical Biostatistics, Ramo e Cajal Hospital, Madrid, Spain). 
Quality assessments of included studies were carried out with RevMan 
5.3 (RevMan, Cochrane Collaboration). P < 0.05 was considered of 
statistical significance. 

Table 1 
Major characteristics of included studies.  

Author Year TP FN FP TN Cas-protein Amplification Reaction Steps Result display 

Iqbal Azmi 2021 45 2 0 29 Cas13 RPA TWO-STEP Later Flow 
Eelke Brandsma 2021 144 10 11 213 Cas12 LAMP TWO-STEP – 
Daniel J Brogan 2020 12 9 0 21 CasRx RPA TWO-STEP Fluorescence 
Lucía Ana Curti 2021 105 0 1 104 Cas12 LAMP TWO-STEP Fluorescence 
Alfredo Garcia-Venzor 2021 6 0 0 6 Cas12 LAMP TWO-STEP Fluorescence 
Weiren Huang 2020 20 4 2 238 Cas12 PCR TWO-STEP Fluorescence 
Tin Marsic 2021 54 0 2 4 Cas9 RPA TWO-STEP Later Flow 
Maturada Patchsung 2020 78 0 3 73 Cas13 RPA TWO-STEP Fluorescence 
Ashwin Ramachandran 2020 30 0 2 32 Cas12 LAMP TWO-STEP Fluorescence 
Dan Xiong 2020 11 0 0 11 Cas12 RPA TWO-STEP – 
Xiong Zhu 2021 37 0 0 37 Cas12 MCDA TWO-STEP Later Flow 
Yanju Chen 2020 7 0 0 3 Cas12 LAMP ONE-STEP Fluorescence 
Shreeya Agrawal 2020 31 2 0 30 Cas13 LAMP ONE-STEP Fluorescence 
Xiong Ding1 2021 12 0 0 23 Cas12 DAMP ONE-STEP Fluorescence 
Xiong Ding2 2020 8 0 0 20 Cas12 RPA ONE-STEP Fluorescence 
Zahir Ali1 2020 18 3 0 3 Cas12 LAMP ONE-STEP Fluorescence 
Jon Arizti-Sanz 2020 27 3 0 20 Cas13 RPA ONE-STEP Fluorescence 
Julia Joung 2020 12 0 0 5 Cas12 LAMP ONE-STEP Later Flow 
Ning, Bo 2021 30 0 0 30 – RPA ONE-STEP Fluorescence 
Rui Wang 2021 26 0 0 24 Cas12 LAMP ONE-STEP Fluorescence 
Zhen Huang 2020 15 4 0 10 Cas12 RPA – Fluorescence 
Peixiang Ma 2020 13 0 0 11 Cas12 RRA – Fluorescence 
Tieying Hou 2020 52 0 0 62 Cas13 RPA – Fluorescence 
James P Broughton 2020 38 2 0 42 Cas12 LAMP – Later Flow 
Oraphan Mayuramart 2021 51 2 0 111 Cas12 RPA – Fluorescence 
Pattaraporn Nimsamer 2021 42 2 0 63 Cas12 RPA – Fluorescence 
Jen-Hui Tsou 2021 10 0 0 12 Cas12 RPA – Fluorescence 
Yu Wang 2021 58 5 0 57 Cas12 RPA – Fluorescence 
Erhu Xiong 2021 34 0 1 29 Cas9 RPA – Later Flow 
Roberto Alcántara 2021 40 10 0 50 Cas12 PCR ONE-STEP Fluorescence 
Zahir Ali2 2021 74 0 3 17 Cas9 RPA – Later Flow 
Azhar, M. 2021 14 1 0 32 Cas9 RPA ONE-STEP Later Flow 
Cao, Y. 2021 25 2 0 27 Cas12 LAMP – – 
Chen, F. E. 2021 11 0 0 16 Cas12 RPA ONE-STEP Later Flow 
de Puig, H. 2021 26 1 1 20 Cas12 RPA ONE-STEP Fluorescence 
Ding, Xiong3 2022 10 1 0 9 – DAMP ONE-STEP Fluorescence 
Feng, W. 2021 18 3 0 25 Cas12 RPA ONE-STEP Fluorescence 
Zhen Huang 2021 31 3 1 124 Cas12 PCR – Fluorescence 
Jiang, Yongzhong 2021 19 2 0 20 Cas12 RPA – – 
Khan, W. A. 2021 43 0 0 17 Cas13 LAMP – Fluorescence 
Lee, C. Y. 2021 10 0 0 10 Cas12 – ONE-STEP Fluorescence 
Hao Li 2021 243 3 25 378 Cas13 RAA – Later Flow 
Long Ma 2022 20 0 0 30 Cas12 PCR TWO-STEP Fluorescence 
Ahmed Mahas 2021 38 0 1 2 Cas13 LAMP – Fluorescence 
Jeong Moon 2021 30 0 0 30 Cas13 LAMP – Fluorescence 
Jennifer N Rauch1 2021 8 1 0 1067 Cas13 PCR – Fluorescence 
Jennifer N Rauch2 2021 63 3 2 150 Cas13 PCR – Fluorescence 
Chandana S. Talwar 2021 12 0 0 8 Cas12 RPA – – 
Zhang, Qin 2022 62 0 0 25 Cas13 RAA – Fluorescence 
Zhao, Xiangxiang 2021 30 0 0 30 Cas12 – – – 
Jiajie Liang 2021 32 0 0 80 Cas12 – – Fluorescence 
Shijun Lia 2021 38 14 0 80 Cas12 – – Fluorescence 
Shijun Li** 2021 35 17 0 80 Cas12 – – Later Flow 
Zhijian Yi 2021 38 2 0 20 Cas12 LAMP – Fluorescence 
Brendan J Manning 2021 65 0 2 90 Cas13 LAMP  Fluorescence 

TP: True positive. FN: False negative; FP: False positive; TN: True negative; RPA: Recombinase polymerase amplification; LAMP: Loop-mediated isothermal ampli-
fication; PCR: Polymerase chain reaction; MCDA: Multiple cross displacement amplification; DAMP: Dual-priming isothermal amplification; 1, 2, 3: Multiple sets of 
valid data for the different article of same author, the same for the following included articles. 

a Multiple sets of valid data for the same article. 
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3. Results 

3.1. Study selection 

After PubMed, Web of Science, Embase, Science Direct, Wiley and 
Springer Link were comprehensive searched, 2534 literature was found. 
Among these articles, 1077 duplications were removed. By browsing 
literature abstracts and titles, 23 articles were non-English literature; 
294 articles were excluded because those were not related to topic; 998 
articles were non-clinical research literature; 39 articles focused on 
therapy rather than diagnosis; 11 articles focused on animals. After 
further browsing, 38 articles had no sufficient data for forming 2 × 2 
tables. Finally, 54 eligible articles were included (Fig. 1) [14–23; 24–34; 
35–45; 46–56; 57–67]. 

3.2. Study characteristics 

The study included 5857 peoples who underwent CRISPR. The 
characteristics of each included study were summarized in Table 1. The 
flowchart of the study selection process was shown in Fig. 1. 

3.3. Risk of bias and quality assessment 

Deeks’ funnel chart was used to analyze publication bias. The funnel 
chart was symmetrical and P＞0.05, suggesting no significant publica-
tion bias. Begg’s test and egger’s test reached the same conclusion 
(Supplementary Fig. 1). The results of QUADAS-2 showed that in terms 
of risk of bias, 3 studies were considered to have high risk of bias, 13 
studies had uncertain risk, and the rest were low-risk bias. In terms of 
applicability concerns, 3 studies had high risks, 13 studies were 
considered uncertain risks and 38 studies were low risks. The result 
means that the overall quality of the included studies is high. 

3.4. The diagnostic effect of CRISPR 

The pooled sensitivity and specificity of CRISPR for the diagnosis of 
COVID-19 were 0.98 (0.96–0.99) and 1.00 (0.99–1.00), respectively. 
The detailed results were shown in Fig. 2. The pooled PLR and NLR were 
217.17 (77.40–609.33) and 0.02 (0.01–0.04), respectively, as shown in 
Supplementary Fig. 3. The pooled DOR was 8971.74 
(2962.16–27173.46), as shown in Supplementary Fig. 4. The AUC was 
1.00 (0.99–1.00), as shown in Fig. 3. 

3.5. Meta-regression 

From the threshold analysis, the spearman correlation coefficient 
was 0.075 and P = 0.586 > 0.05, indicating that there was no threshold 
effect. But the results showed that there was heterogeneity caused by 
non-threshold effects. As shown in Fig. 2, the sensitivity of I2 was 90.52, 
and the specificity of I2 was83.20, indicating that there was overall 
heterogeneity. And meta-regression was conducted to perform sources 
of heterogeneity. Finally, amplification (Loop-mediated isothermal 
amplification; Recombinase polymerase amplification), results display 
(fluorescence/later flow) and reaction steps (one-step/two-step) were 
not potential sources of heterogeneity in sensitivity (P < 0.05). But P- 
value of Cas-protein was less than 0.05 indicating that it might be a 
significant source of heterogeneity in sensitivity. About specificity, re-
action steps might be a significant source of heterogeneity (P < 0.05) 
(Table 2). 

4. Discussion 

The global epidemic situation continues to be tense, and local 
medical systems have collapsed in some regions. The disaster caused by 
the SARS-CoV-2 is incalculable. Although some countries have devel-
oped SARS-CoV-2 vaccines, the vaccination rate is not ideal. At the same 
time, more countries have not entered the process of vaccine research 

Fig. 2. Forest plots of pooled sensitivity and specificity.  
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and development. Vaccine control in the world is far away. We still have 
to face the challenge of virus diagnosis. 

The meta-analysis included 54 studies. The evaluation results of 
QUADAS-2 tool showed that the included studies were of high quality 
and could provide reliable results. The pooled sensitivity and specificity 

of CRISPR in the diagnosis of COVID-19 were 0.98 (0.96–0.99) and 1.00 
(0.99–1.00), respectively, and the area under the curve (AUC) was 1.00 
(0.99–1.00). AUC, as a measure, reflects the effect of the test in dis-
tinguishing patients with and without disease [68]. The results show 
that CRISPR has good diagnostic performance and high diagnostic value. 
In subgroup analysis, the pooled sensitivity and specificity of lateral 
flow-based were 0.98 and 0.98, respectively, and the pooled sensitivity 
and specificity of fluorescence-based were 0.98 and 1.00, respectively. 
The performance of the two methods is almost the same, but Jon arizti 
Sanz thinks that the lateral flow-based is not suitable for testing a large 
number of samples at the same time, and introduces the potential risk of 
sample cross contamination [30]. In another subgroup, the pooled 
sensitivity and specificity of one-step reaction method were 0.97 and 
1.00 respectively, while two-step method were 0.98 and 0.98 respec-
tively. Meta-regression showed that the reaction steps was a source of 
heterogeneity in specificity between one-step and two-step (P < 0.05). 
And, Julia joung and Xiong Ding believed that one-step reaction method 
could prevent external pollution in the test environment and avoid false 
positive results [27,31]. The reason why the results are not different 
might be the included studies belong to the verification stage, not the 
population-based experiments. In the face of small samples, the operator 
had patience to control the risk of cross contamination and external 
contamination of samples, and did not verify in the ward, so the defect of 
two-step reaction method was not exposed. Besides, considering the 
application of cas13 and RPA in Zika virus and dengue virus, future 
studies may be able to combine them with CRISPR [69,70]. 

The control of epidemic situation in low and middle income coun-
tries is always a concern. Taking into account the speed of COVID-19’s 
dissemination, it is hoped that a cost-effective diagnosis system can be 
established in areas with limited resources. At present, two common 

Fig. 3. SROC curve of CRISPR for the diagnosis of COVID-19.  

Table 2 
Meta-regression.  

Covariate Number of 
studies 

Sensitivity 
(95%CI) 

P- 
value 

Specificity 
(95%CI) 

P- 
value 

Cas-protein 
Cas12 35 0.96 

(0.94–0.99) 
<0.05 1.00 

(0.99–1.00) 
0.24 

Cas13 13 0.99 
(0.97–1.00)  

0.99 
(0.98–1.00)  

Amplification 
LAMP 16 0.99 

(0.97–1.00) 
0.46 0.99 

(0.97–1.00) 
0.52 

RPA 22 0.98 
(0.95–1.00)  

1.00 
(0.99–1.00)  

Results display 
Fluorescence 38 0.98 

(0.96–0.99) 
0.09 1.00 

(0.99–1.00) 
0.27 

Later Flow 11 0.98 
(0.97–1.00)  

0.98 
(0.96–1.00)  

Reaction dish 
One-Step 16 0.97 

(0.94–1.00) 
0.44 1.00 

(0.99–1.00) 
<0.05 

Two-Step 12 0.98(0.96- 
1.00)  

0.98 
(0.96–1.00)  

LAMP: Loop-mediated isothermal amplification; RPA: Recombinase polymerase 
amplification. 
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diagnostic tools have been developed based on CRISPR diagnostic 
methods: specific high sensitivity enzymatic reporter unlocking 
(SHERLOCK) and DNA endonuclease targeted CRISPR trans reporter 
(DETECTR) [71], these two methods have comparable diagnostic per-
formance with RT-PCR. At the same time, it can meet the requirements 
of the ability to identify infectious disease pathogens without complex 
processing and the field deployable diagnostic tools with affordable cost. 
Considering the polluted environment, all in one dual CRISPR-Cas12a 
(AIOD-CRISPR) can effectively solve this problem without increasing 
too much cost, which can meet the application of point of care diagnosis 
[28]. 

CRISPR diagnostic technology has the advantages of fast, accurate, 
low cost, no need of laboratory, and has a broad development prospect. 
The included studies show that this diagnostic method is feasible, and 
there is still room for further improvement of these tools, especially 
when there is no instrument or amplification step at all. A recent study 
provides an improved version of CRISPR diagnosis, which bypasses the 
amplification step [72], but needs more optimization to provide a 
completely instrument free diagnostic platform. Importantly, CRISPR 
diagnostics has the function of detecting single nucleotide mismatch, so 
it will be used as a rapid diagnostic tool to detect any new mutation in 
the SARS-CoV-2 genome [73]. Some of these mutations have been 
shown to spread at a higher rate, it is necessary to adopt and deploy 
CRISPR based diagnostic methods to widely screen the spread of these 
new SARS-CoV-2 strains. 

This study also has some limitations. First of all, most of the included 
studies are only in the primary stage, and more are carried out in the 
laboratory, which can’t accurately verify their effectiveness in the actual 
situation, but can still provide direction for future research. Second, the 
results showed that there was heterogeneity, Meta regression also found 
the source of heterogeneity, but further confirmation is needed. 

5. Conclusion 

The results of this meta-analysis showed that CRISPR had good ac-
curacy in diagnosing COVID-19. It might provide a reference for the 
selection of rapid diagnostic tests for patients of COVID-19. 
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